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Abstract: In this work, a non-iterative identification approach is presented for estimating
a single-input single-output Wiener model, comprising an infinite impulse response discrete
transfer function followed by static non-linearity. Global orthogonal basis functions and
orthogonal Hermite polynomials are used as expansion bases for the linear subsystem and the
non-linearity, respectively. A multi-index based method is used to transform the non-convex
optimization over the parameter values into an over-parametrized linear regression. A singular
value decomposition based method is then used to project the result of the over-parametrized
linear regression onto the class of Wiener models, each comprising a linear element followed
by a memoryless non-linearity. The advantages obtained by using orthogonal polynomials are
illustrated using a series of simulation examples.

1. INTRODUCTION

The process of applying numerical tools and methods to
construct an appropriate mathematical model of a dynam-
ical system from measurements of its inputs and outputs is
called system identification [1]. Many practical systems are
non-linear, in that they don’t obey the superposition and
scaling principles. Saturation in power amplifiers, back-
lash in gears, and hysteresis in magnetic materials are
examples of some of the most familiar non-linearities [2, 3].
While models of non-linear systems can be very complex,
a wide variety of non-linear systems can be represented
by non-linear block oriented models [7]. These relatively
simple models consist of interconnected linear dynamic
subsystems and memoryless non-linear elements.

The Hammerstein model consists of a memoryless non-
linearity (N) followed by a linear time invariant filter (L),
and is often denoted NL. The Hammerstein (NL), Wiener
(LN), Wiener-Hammerstein (LNL) and Hammerstein-
Wiener (NLN) models are the most common non-linear
block structures [4, 5].

The simplest of these is the Hammerstein model [5, 6, 7],
which has been extensively studied in the literature [5, 6,
7, 8, 9].

The reverse arrangement of the Hammerstein model is
called the Wiener or LN model, where the linear dynamic
subsystem comes before the non-linearity. This model is
widely used in the literature as in [5, 7, 10, 11, 12, 13,
14, 15] and in practical applications such as modelling
distillation columns [12, 13, 14] and radio frequency (RF)
power amplifiers [15].

? This work was supported by NSERC (Canada) and Ministry of
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Different approaches to Wiener model identification have
been presented in the literature. Many identification al-
gorithms are based on Prediction Error methods [6, 16],
but a non-iterative over-parametrization approach [10]
has also been proposed. Lacy and Bernstein [10] con-
sidered the identification of Wiener models with Finite
Impulse Response (FIR) linear elements and (possibly)
non-invertible polynomial non-linearities. A multi-index
was used to generate an over-parametrized model which
was linear in the variables. We extended this method in
[11] to deal with infinite impulse response (IIR) Wiener
filters, represented by a finite sum of global orthogonal
basis functions (GOBFs) (such as Laguerre filters) [9, 17].

The main contribution of the present work is to extend this
non-iterative, overparameterization-based method to use
orthogonal polynomials, such as the Hermite or Tcheby-
shev series, instead of the simple polynomials used in
previous studies [10, 11]. The main reason for replacing
the polynomials is to avoid the poor numerical properties
inherent in polynomial regressions, and hence to improve
the accuracy of the identification of both the linear and
non-linear elements.

This paper is organized as follows: first, the proposed
model is described and formulated in §2, after that, the
identification algorithms for both FIR and IIR Wiener
models proposed in [10] and [11] are summarized in §3.
Then, Hermite orthogonal polynomials are reviewed and
incorporated into the identification algorithm. In the 5th

part, simulation examples, qualitative and quantitative
comparisons and discussion of the results are provided.
Finally, Section 6 contains concluding remarks.
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2. PROBLEM STATEMENT

The proposed model is a single-input single-output Wiener
cascade with an additive disturbance after the non-linear
element, as shown in Fig. 1. The measured input and
output to/from the system are denoted u(t) and z(t),
respectively, while e(t) is an additive independent distur-
bance. This disturbance, as well as the outputs of the
linear dynamic element and static non-linearity, denoted
x(t) and y(t), respectively, is assumed to be inaccessible
to the investigator.

Fig. 1. Block diagram of a Wiener system with additive
measurement noise, e(t)

The dynamics of the linear filter are expanded onto a basis
of orthogonal filters, such as the Laguerre or Kautz filters
(or any other GOBFs [20]). Thus, the unmeasured output
of the linear block, x(t), is expressed as a weighted sum of
the outputs of the basis filters, as illustrated in Fig. 2 and
formulated in (1).

Fig. 2. The linear part of the system x(t)

x(t) = γ0Ho(q)u(t) + γ1H1(q)u(t) + · · ·+ γnHn(q)u(t)

=

n∑
k=0

γkHk(q)u(t) (1)

The basis filters, Hk(q), are often just simple delays [10], in
which case Hk(q) = q−1, but Laguerre filters or any other

GOBFs could also be used [11]. The expansion coefficients,
γk for k = 0 . . . n, are the parameters that describe the
linear element.

The signal resulting from the non-linearity is denoted y(t)
and can be expressed as:

y(t) =m
(
x(t)

)
=

p∑
i=0

aiMi

(
x(t)

)
(2)

where x(t) is the output of the linear element, as computed
in (1), and the functions Mi(x) for i = 0 . . . p are polyno-
mial basis functions. These may be orthogonal polynomials
such as the Hermite, Legendre or Tchebyshev polynomials.
Most often, they are simple polynomials, [10], in which
case:

Mi(x) = xi (3)

Finally, the ai are the expansion coefficients used to
parametrize the non-linearity. It is well known that using
orthogonal polynomials generally leads to better condi-
tioned estimation problems [5]. In this study, the estima-
tion algorithm proposed in Lacy and Bernstein in [10],
and extended to use IIR linear filters in [11], will be
reformulated in terms of orthogonal polynomials, in order
to take advantage of their improved numerical properties.

The measured output of the system is obtained by adding
a zero-mean Independent and identically distributed (IID)
sequence, e(t), to the output of the Wiener model y(t):

z(t) = y(t) + e(t) (4)

after substituting the (1) and (2), this:

y(t) =

p∑
i=0

aiMi

( n∑
k=0

γkHk(q)u(t)

)
(5)

3. IDENTIFICATION OF IIR WIENER MODELS

This section contains a summary of the multi-index based
identification algorithm for Wiener [10, 11] systems.

The output, z(t), as is given in (5), but using simple
polynomials as in (3), becomes:

z(t) =

p∑
i=0

ai
( n∑
k=0

γkHk(q)u(t)
)i

+ e(t) (6)

To represent the proposed model in a multi-index form,
we define an n+ 1 element multi-index vector α by:

α = [α0 α1 · · · αn]T ∈ Nn+1
0 (7)

and the vector µ which contains the outputs of the basis
filters due to the input u(t):

µ(t) = [H0(q)u(t) H1(q)u(t) .... Hn(q)u(t)] (8)

The vector γ contains the expansion coefficients of the
linear filter:

γ = [γ0 γ1 · · · γn]T ∈ Rn+1 (9)

The operation of raising a vector such as µ(t) or γ to the
multi-index α is defined in (10) and (11).

µ(t)α = µ0(t)α0µ1(t)α1 · · ·µn(t)αn =

n∏
i=0

µi(t)
αi (10)
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γα = γα0
0 γα1

1 · · · γαn
n =

n∏
i=0

γαi
i (11)

As a final piece of multi-index notation, define the norm
and factorial of a the multi-index, α, as follows:

|α| = α0 + α1 + · · ·+ αn =

n∑
i=0

αi (12)

α! = (α0!)(α1!) · · · (αn!) =

n∏
i=0

αi! (13)

The equivalent formulation for the final model output z(t),
(6), using a multi-index representation , as derived in (10),
is,

z(t) =

p∑
i=0

ai
∑
|α|=i

|α|!
α!

γαµ(t)α + e(t) (14)

After combining the two sums this becomes:

z(t) =

p∑
|α|=0

|α|!
α!

a|α|µ(t)αγα + e(t) (15)

Let φ(t) contain the known elements in (15). Thus

φ(t) =

[
|α|!
α!

µ(t)α
]
|α|≤p

RD
n+1
p (16)

and let θ contain all of the unknown elements from (15),

θ = [a|α|γ
α]|α|≤p]

T ∈ RD
n+1
p (17)

Rewriting (15) in terms of φ(t) and θ

z(t) = φ(t)Tθ + e(t) (18)

reveals a linear regression, which may be solved using least
squares. Note, however, that the number of entries in θ is
larger than the number of unknowns in the vectors a and
γ.

Fig. 3. Multi-index block diagram illustrating Wiener
model output, y(t), computation. Where the linear
dynamics have been expanded onto a general basis
filters (Hk(q))

By rearranging the problem to be able to use a least
squares method as follows:

z = ΦT θ + e(t) (19)

where z and Φ are known and formulated, respectively, in
(20) and (21):

z = [z(N) · · · z(`)]TR`−N (20)

and
Φ = [φ(N) · · ·φ(`)]TRD

n+1
p ×`−N (21)

Note that the notation N is the total number of data and
the range is assumed to be between t = ` · · ·N .

3.1 Singular Value Decomposition

As a result of its simplicity and accuracy, a singular value
decomposition (SVD) based method is used extract the
linear parameters, γ̂n, and the coefficients of the non-
linearity, âi from the over-parametrized vector θ, where
the first coefficient of the non-linearity, is simply equal to
the first parameter of θ:

â0 = θ̂(1) (22)

The rest of the parameters in θ are placed into the matrix
A(θ) such that it has the following structure:

A(θ̂) = ψγT

=


a0

a1γ
α1
1

...
anγ

αn
n

 (23)

where:
ψ = [a|α|+1γ

α]|α|=p (24)

Note that the vector θ̂ contains estimates of the unique ele-
ments of the system’s Volterra kernels of order 0 through p,
expanded onto a basis constructed from the GOBF basis
filters [11]. Construct estimates of the Volterra kernels,
by placing each unique coefficient in all of its symmetric

locations in the appropriate kernel. Then, the matrix A(θ̂)
may be constructed as follows:

A(θ̂) =



KT
1

K2

K3(:, :, 1)
K3(:, :, 2)

...
K3(:, :, n+ 1)

...


K1 is an n+1 element vector, K2 is a n+1 by n+1 matrix,
and that Ki is an i’th order tensor, with n + 1 elements
in each dimension. MATLAB notation has been used to
indicate matrix and tensor partitions. Thus, for kernels of
order 3 and higher, where Ki is the estimate of the order

i Volterra kernel. For kernels of order 3 and higher, A(θ̂)
contains stacks of 2-dimensional slices of the kernel.

Computing the SVD of A(θ̂),

A(θ̂) = USV T (25)

it is evident from (22) that:

γ̂n = S(1, 1)V (1, n) (26)

which can be used to recover the expansion coefficients of
the linear element. Finally, the non-linearity is estimated
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by applying a simple least squares regression, after com-
puting the output of the estimated linear element, x̂(t).

Note that there are approaches other than the SVD
method discussed here that may be used to estimate the
parameter values, ai and γk, from elements of the vector

θ̂. These include the other three techniques presented in
Lacy and Bernstein in [10]

4. ORTHOGONAL POLYNOMIALS

Two polynomials are called orthogonal if the expected
value of the product of their outputs is zero. Thus, the
polynomial terms will only be orthogonal if their input has
a specific probability distribution. In this section, one of
the most common orthogonal polynomials available in the
literature is discussed, namely the Hermite polynomials.

4.1 Hermite Polynomials

The Hermite polynomials are orthogonal, provided the
input is a sample function of a standard Gaussian process
(i.e. zero mean, unit variance). They are formulated by [5]

Mn(u) = n!

n/2∑
m=0

(−1)m

m!× 2m(n− 2m)!
u(n−2m)(27)

and have the recurrence relation:

Mn+1(u) = uMn(u)− kMn−1(u) (28)

where the first four Hermite polynomials are shown in Fig.
4 and defined by:

M0(u) = 1

M1(u) = u

M2(u) = u2 − 1

M3(u) = u3 − 3u

M4(u) = u4 − 6u2 + 3

Fig. 4. Hermite polynomials of orders 0 through 4.

4.2 Multi-index algorithm using Hermite Polynomials

To expand the multiple-input polynomial (described by
Eq. (14) and illustrated in Fig. 3) onto a basis of Hermite
polynomials, the basis elements µ(t)α are replaced with:

Mαi(µi(t)) =Mα0(µ0(t))Mα1(µ1(t)) · · ·Mαn(µn(t))

=

n∏
i=0

Mαi(µi(t)) (29)

thus, instead of raising each element in µ(t) to a power, it
is transformed by the corresponding Hermite polynomial.

When simple polynomials are used, the multi-index gen-
erates all of the unique terms in the Volterra series up to
degree p (whether a basis of simple delays or GOBFs is
used for the dynamics, as in [10] and [11], respectively).
The polynomial non-linearity has been replaced with Her-
mite orthogonal polynomials to reduce the numerical con-
ditioning problems inherent in polynomial estimation. Ex-
panding the Volterra kernels using a basis of Hermite
polynomials results in the Wiener series [5]. Thus, the over-
parametrized linear regression resulting from the multi-
index generates estimates of all of the unique entries in the
system’s Wiener kernels. Since the Volterra and Wiener
kernels of Wiener-Hammerstein systems are proportional
to one another [21], the same SVD based approach used in
the previous section may be used to recover the coefficients
of the linear element.

4.3 Scaling Orthogonal Hermite Polynomials

Since the Hermite polynomials are only orthogonal for a
standard normal input, the basis filters Hk(q) must all be
scaled so that their outputs have unit variance. This added
scaling must be taken into account when constructing the
linear element from its estimated coefficients.

5. SIMULATION

The simulations used the structure of Fig. 1, with a
third-order Butterworth filter with a normalized cut-off
frequency of Wn = 0.2455 as the linear element followed
by a third order polynomial for the non-linearity.

y(t) = 1 + x(t) + x2(t)/2 + x3(t)/3

A sum of 7 Laguerre filters was used to approximate the
third order Butterworth filter shown in Fig. 5. In these
simulations, the Laguerre pole was chosen manually based
in the dynamics of the simulated linear system, resulting in
the value α = 0.22151. In practical applications, α would
be chosen using an iterative optimization [22].

Four different experiments were conducted. In two of the
experiments, the input u(t) was a zero-mean IID sequence
of Gaussian random variables with variance ≈ 4. In the
other experiments, the input was uniformly distributed
between −1 and 1. The system was identified for both
input signals using a mulit-index based expansion onto
either simple polynomials, or Hermite polynomials.
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Each test involved a 50 trial Monte-Carlo simulation. The
data length was N = 214 = 16384 with a Signal To Noise
Ratio (SNR) of 10 dB.

The effect of the scaling, used to produce unit variance
inputs to ensure the orthogonality of the Hermite polyno-
mials was also tested. Two complete sets of simulations
were performed, one with and one without this scaling.

Fig. 5. Third order Butterworth filter and the fitted
Laguerre filter using impulse input

The results of all experiments are presented in Table 1
which shows that the case with a Gaussian input, scaled
filters and a Hermite polynomial expansion of the non-
linearity generated the most accurate and consistent re-
sults. Note as well that reductions in the condition num-
bers of the regressions occurred when using a Hermite
expansion, as compared to a simple polynomial expansion
(rows listed as xxx.H and xxx.P, respectively). This con-
tinued to hold when the input was uniformly distributed,
even though the polynomials were no-longer orthogonal.

Table 1. The sample average and standard
deviation of the MSE the impulse response
estimate of the linear subsystem as well as
the sample average and standard deviation of
the condition numbers of the overparametrized

linear regressions for all experiments.

Exp. AveMSE stdMSE AveCo stdCo

Scaled
Gauss.H 0.330e−8 0.143e−8 7.17 0.265
Gauss.P 4.879e−8 2.233e−8 25.86 0.656
Unif.H 0.497e−8 0.316e−8 13.33 0.618
Unif.P 7.788e−8 4.022e−8 33.17 0.824

Unscaled
Gauss.H 2.667e−8 1.388e−8 117.50 4.713
Gauss.P 6.345e−8 3.187e−8 178.05 5.484
Unif.H 6.735e−8 4.099e−8 231.26 10.181
Unif.P 15.61e−8 9.556e−8 324.15 11.605

The simulated non-linearity is plotted in Fig. 6, superim-
posed on the 50 estimates produced in the Monte-Carlo
simulation which used a Gaussian input, Hermite polyno-
mial expansion and scaling. Figure 7 illustrates that the
estimated impulse responses of the estimated filters in 50

runs fits properly the exact one. Tables 2 and 3 contains
the standard errors of the estimated linear filter coefficients
based on the 50 run Monte-Carlo simulations. Table 2
shows the results for Gaussian inputs, whereas the results
from the Uniform input trials are shown in Table 3. From
these 2 tables, it clear that the smallest errors occurs when
the Hermite is scaled and the input is Gaussian and the
worst happens in the case of unscaled Polynomials with
non-Gaussian input. Fig. 8 shows the average condition
numbers of the 50 runs against the average Mean Squares
Error (MSE) of all the experiments.

Fig. 6. The exact and estimated 50 runs non-linearity by
fitting Hermite Polynomials for the Hermite approxi-
mated over-parametrized coefficients

Fig. 7. The estimated impulse response for 50 runs of
the linear subsystem and the exact one for the case
Hermit Gaussian scaled

6. CONCLUSION

In this paper, we extended the multi-index based over-
parametrization method for Wiener system identification
proposed in [10], replacing the simple polynomial expan-
sion with an orthogonal expansion based on Hermite poly-
nomials. Simulations demonstrated the increased accuracy
that result from the better numerical properties of the
orthogonal polynomials.
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Fig. 8. The condition number against the MSE values

Table 2. Standard errors in the estimated lin-
ear subsystem parameters for the four experi-

ments, when the input is Gaussian

Par. S.Hermite Uns.Hermite S.Poly Uns.Poly

h0 0.1861e−4 0.5928e−4 0.6991e−4 0.897e−4

h1 0.1375e−4 0.4031e−4 0.5438e−4 0.601e−4

h2 0.2414e−4 0.7001e−4 0.8210e−4 1.087e−4

h3 0.2082e−4 0.4644e−4 0.8245e−4 0.720e−4

h4 0.2301e−4 0.5403e−4 0.7733e−4 0.823e−4

h5 0.2156e−4 0.6192e−4 0.9331e−4 0.960e−4

h6 0.1804e−4 0.5888e−4 0.8070e−4 0.915e−4

h7 0.2167e−4 0.6751e−4 0.7887e−4 1.053e−4

Table 3. Standard errors in the estimated lin-
ear subsystem parameters for the four experi-

ments, when the input is uniform

Par. S.Hermite Uns.Hermite S.Poly Uns.Poly

h0 0.0332e−3 0.0967e−3 0.1081e−3 0.1517e−3

h1 0.0188e−3 0.0504e−3 0.0627e−3 0.0777e−3

h2 0.0254e−3 0.0953e−3 0.1106e−3 0.1510e−3

h3 0.0206e−3 0.1049e−3 0.0972e−3 0.1573e−3

h4 0.0203e−3 0.1021e−3 0.0933e−3 0.1547e−3

h5 0.0298e−3 0.0975e−3 0.0977e−3 0.1463e−3

h6 0.0252e−3 0.0963e−3 0.1035e−3 0.1432e−3

h7 0.0192e−3 0.0793e−3 0.1038e−3 0.1176e−3
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