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Abstract: Reinforcement Learning (RL) algorithms can learn optimal control laws for nonlinear
dynamic systems without relying on a mathematical model of the system to be controlled. While
RL can in principle discover control laws from scratch, by solely interacting with the process,
in practice this does not yield any significant advantages. Learning control laws from scratch
is lengthy and may lead to system damage due to the trial and error nature of the learning
process. In this paper, we adopt a different and largely unexplored approach: a nominal control
law is used to achieve reasonable, yet suboptimal, performance and a RL agent is trained to
act as a nonlinear compensator whose task is to improve upon the performance of the nominal
controller. The RL agent learns by means of an actor-critic algorithm using a plant model
acquired on-line, alongside the critic and actor. Fuzzy approximators are employed to represent
all the adjustable components of the learning scheme. One advantage of fuzzy approximators is
the straightforward way in which they allow for the inclusion of prior knowledge. The proposed
control scheme is applied to a reference tracking problem of 1-DOF robot arm influenced by an
unknown payload disturbance due to gravity. The nominal controller is a PD controller, which
is unable to properly compensate the effect of the disturbance considered. Simulation results
indicate that the novel method is able to learn to compensate the disturbance for any reference
angle varying throughout the experiment.

Keywords: reinforcement learning, nonlinear disturbance compensation, fuzzy modeling,
model-based learning control

1. INTRODUCTION

Reinforcement Learning (RL) can be used to optimize the
control performance for a large class of nonlinear dynamic
systems. The user sets a certain goal by specifying a
suitable reward function for the RL controller, and the
controller then learns to maximize the cumulative reward
received over time. While this method can in principle dis-
cover control laws from scratch by solely interacting with
the process, in practice this does not yield any significant
advantages. Direct applications of RL to a control problem
typically starts from scratch and the performance only
gradually improves throughout the learning trials. The de-
sired performance is generally achieved after a long period
of unpredictable and potentially damaging behavior. This
is not acceptable in practical applications, especially if a
reasonable controller already exists.

The use of RL as a compensator cooperating with a readily
available controller has not been much investigated in the
literature, see (Brujeni et al., 2010) for a notable exception.
This paper presents such a control scheme, using a nomi-
nal controller in combination with a compensator learned
through the actor-critic RL. The latter component of the
scheme learns to deal with disturbances or nonlinearities
that cannot be rejected by the nominal controller. We
employ fuzzy function approximators to approximate the
actor, the critic and the process model involved in the

MLAC (model-learning actor critic) RL method (Grond-
man et al., 2012). Through a hierarchical structure of the
critic’s rule base, the scheme can handle varying references.
For other approaches to reference tracking in the context
of RL see (Kiumarsi-Khomartash et al., 2013; Modares
and Lewis, 2013).

As the learning task is interacting with a well performing
nominal controller, the initial performance of the control
scheme is comparable with that of the nominal controller
and the performance improves over the course of time.
Although, we do not formally prove the convergence of
the learning, experimental results indicate that with rea-
sonable settings of the learning parameters, the closed-loop
performance of the proposed control scheme never becomes
worse than the performance of nominal controller alone.

The use of fuzzy approximators enables the use of prior
knowledge within the learning task (Berenji and Vengerov,
2003). For instance, a priori information on the form
of the nonlinearities can be incorporated in the fuzzy
approximators in terms of constraints on their parameters
(Abonyi et al., 2000). Consequently, the complexity of
the learning problem can be reduced, which leads to a
significant acceleration on the learning speed.

The rest of the paper is organized as follows. Section 2
gives the preliminaries of RL, actor-critic algorithms and
fuzzy modeling. Then, the novel control scheme is pre-
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sented and the algorithm is explained in Section 3. Fi-
nally, the results of simulation experiments with 1-DOF
robot arm reference-tracking are presented in Section 4.
Conclusions are drawn in Section 5.

2. PRELIMINARIES

2.1 Reinforcement Learning

Reinforcement learning can find optimal policies for sys-
tems modeled as the Markov Decision Process (MDP). For
the sake of brevity, and without the loss of generality, we
present the deterministic MDP framework. An MDP is
defined by the tuple M(X,U, f , ρ) where X is the state
space, U is the action space, f : X × U → X is the state
transition function and ρ : X × U → R is the reward
function.

The process to be controlled is described by the state
transition function

xk+1 = f(xk,uk). (1)

which returns the state xk+1 that the process has reached
from state xk after applying action uk, where k denotes
discrete time. After each transition, the controller receives
a scalar reward rk+1 ∈ R, calculated by the reward
function

rk+1 = ρ(xk,uk).

The goal in RL is: given the above reward function ρ(·, ·)
and the transition samples (uk,xk,xk+1) generated by
process (1), find an optimal control policy π : X → U ,
such that the discounted sum of rewards received while
following that policy is maximized.

The discounted sum of rewards is called the return J . To
estimate the return for a given state x and a given policy
π, define the value function V π : X → R as follows:

V π(x) =

∞∑
j=0

γjρ(xj ,uj), with x0 = x, uj = π(xj) (2)

with γ ∈ [0, 1) the discount factor. The value function
satisfies the Bellman equation

V π(x) = ρ(x,π(x)) + γV π(f(x,π(x))), (3)

forming the basis upon which RL improves the policy π,
as explained next.

2.2 Model-Learning Actor-Critic Algorithm

Reinforcement learning in continuous state and action
spaces requires the use of function approximators. Actor-
critic RL algorithms employ two separate function approx-
imators to represent the policy (actor) and the value func-
tion (critic). The critic is parameterized by a parameter
vector θc ∈ Rq and from here on denoted as V (x;θc).

The critic parameter vector is updated by the following
TD(λ) update rule:

δk = rk+1 + γV (xk+1;θck)− V (xk;θck) (4)

θck+1 = θck + αcδkζk (5)

ζk+1 = λγζk +∇θcV (xk;θck) (6)

where αc ∈ (0, 1] is the critic learning rate, ζ the eligibility
trace with λ its associated forgetting factor, δ the temporal
difference, and ∇ denotes the gradient.

The actor is parameterized by θa ∈ Rr and denoted as
π(x,θa). The actor parameter vector is updated by:

θak+1 = θak + αa∇θaJk (7)

where αa is the actor learning rate and ∇θaJk is the
gradient of the return with respect to the policy parameter
θa. 1 A common way to approximate ∇θaJk is to use the
following heuristic estimate:

∇θaJk ≈ ∆uk∇θaπ(xk;θak) (8)

where ∆uk is an exploration term drawn from a zero-mean
normal distribution and added to control value calculated
by the policy π(xk,θ

a
k):

uk = π(xk;θak) + ∆uk .

In this paper, we use a more accurate estimate of the
policy gradient (8), as introduced in the Model Learning
Actor-Critic (MLAC) method (Grondman et al., 2012). In
addition to the actor and the critic, the MLAC algorithm
learns a process model

x̂k+1 = f̂(xk,uk;θpk)

with x̂k+1 the estimated next state for the (xk,uk) pair
and θp ∈ Rn×s an adjustable parameter matrix (n is
the dimension of the state). The model parameters are
updated by the following first-order gradient descent rule:

θpk+1 = θpk + αp(xk+1 − x̂k+1)∇θp f̂(xk,uk;θpk) (9)

where αp is the learning rate of the process model.

The learned process model allows us to calculate the

Jacobian of the process model f̂ with respect to u and
consequently to approximate the policy gradient by using
the chain rule as follows:

∇θaJk ≈ ∇xV (xk+1;θck)∇uf̂(xk,uk;θpk)∇θaπ(xk;θak)

Note that contrary to (8), the policy gradient of the MLAC
method does not use the exploration term ∆u. However,
exploration is still needed to make the value function
estimate cover a sufficiently large portion of the state
space.

2.3 Fuzzy Rule-Based Parameterization

The MLAC algorithm relies on three function approxi-
mators which are in this paper defined as singleton and
Takagi-Sugeno (TS) fuzzy models (Takagi and Sugeno,
1985). A generic function y = h(x) with input x ∈ Rn
and output y ∈ Rm is approximated by the following rule
base:

If z is Ai then yi = β>i

(
x
1

)
, i = 1, 2, . . . ,K

where z ∈ Rnz denotes the vector of antecedent variables
which are typically some selected elements of x, Mi is
a fuzzy set (linguistic term) of rule i, βi ∈ Rm×(n+1) is
the consequent parameter matrix for rule i and K is the
number of rules in the rule base. The rule antecedent can
also be defined by using the individual elements of z, e.g.,
in the conjunctive form:

If z1 is Ai,1 and . . . and znz
is Ai,nz

then yi = β>i

(
x
1

)
, i = 1, 2, . . . ,K . (10)

1 In the RL literature called the policy gradient.
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This fuzzy rule-based structure allows for the use of prior
knowledge in the selection of the antecedent variables z
and the associated membership functions µAi,j .

The output of the fuzzy model is calculated by using the
weighted-mean interpolation

y =

K∑
i=1

ωi(z)yi =

K∑
i=1

ωi(z)β>i

(
x
1

)
where ωi(z) is the ith antecedent’s normalized degrees of
fulfillment, for the conjunctive form (10) given by:

ωi(z) =

∏nz

j=1 µAi,j
(z)∑K

i′=1

∏nz

j=1 µAi′,j (z)

In matrix notation, y can be expressed as

y = Ω(z)>B>
(

x
1

)
where the degrees of fulfillment are collected in matrix
Ω(z) and the consequent parameter matrices are collected
in matrix B defined by

Ω(z) =


ω1(z)Im
ω2(z)Im

...
ωK(z)Im

 , B = (β1 β2 . . . βK)

with Im the m × m identity matrix. In this paper, the
antecedent membership functions are fixed, while the
consequent parameters are adjustable.

3. NONLINEAR DISTURBANCE WITH
REINFORCEMENT LEARNING

We propose a control scheme which combines a nominal
controller, typically a linear controller designed by stan-
dard control methods, with an actor-critic RL algorithm
to learn to compensate for nonlinear deterministic distur-
bances and other effects due to the process nonlinearity.
These effects are supposed to be input additive and conse-
quently the compensatory control action of the RL actor
is added to the control input calculated by the nominal
controller, see the diagram in Figure 1.

3.1 Fuzzy Rule Base Representation of Actor

Following the generic structure presented in Section 2.3,
the actor rule base has the form:

If za is Aai then ui = βai
>
(

x
1

)
, i = 1, 2, . . . ,Ka

where the superscript a denotes the parameters of the
actor. For the update, the columns of the parameter matrix

Ba = (βa1 βa2 . . . β
a
Ka)

are stacked into one vector θa ∈ Rm(n+1)Ka

, with m the
input signal dimension, n the state dimension and Ka the
number of rules in the actor rule base.

Note that the notational distinction between the an-
tecedent variables z and the consequent variables x is
explicit, as they can generally be different. Typically, vari-
ables responsible for nonlinear behavior are included in the
antecedent, while they do not necessarily have to be a part
of the consequent. Similarly, the consequent can include

Nominal
Controller

∑ ∑ ∑
Process

Reward

Critic

∑

Actor
Process
Model

u

d

∆u

unxr x

xr

−

Fig. 1. A block diagram of the proposed control scheme.
The solid lines indicate actual signals whereas the
dashed lines indicate the use of the gradient from a
particular block. Signal d is the additive disturbance
that is to be compensated. The dotted box encloses
the learning compensator.

variables in which the output is linear and these variables
are then not present in the antecedent. This holds also for
the fuzzy approximators of the process model and of the
critic. The example in Section 4 illustrates the concept on
a practical problem.

3.2 Fuzzy Rule Base Representation of Process Model

The process model is approximated in the same manner
as the actor:

If zp is Api then f̂i(x,u) = βpi
>
(

x
u
1

)
, i = 1, 2, . . . ,Kp

with the superscript p denoting the parameters of the pro-
cess model. For the update, the columns of the parameter
matrix

Bp =
(
βp1 βp2 . . . β

p
Kp

)
are stacked into one vector θp ∈ Rn(n+m+1)Kp

, with n
the state dimension, m the input dimension and Kp the
number of rules in the process model rule base. Note that
in the scheme in Figure 1, the process model approximates
the closed-loop system including the process and the
nominal compensator.

3.3 Fuzzy Rule Base Representation of Critic

The learning scheme works for arbitrary asymptotically
constant state references, which is an improvement over
the RL solutions found in the literature. However, to
guarantee the Markov property, the critic must include
the state reference xr as one of its inputs, see Figure 1. To
this end, we employ the two-layer hierarchical rule-base
structure shown in Figure 2.

The individual value functions Wj(x− cj) are defined for
constant, a priori selected, references cj and are approx-
imated with the following rule base with the total of Kc

j
rules:

If zcj is Ci,j then Wi,j(x− cj) = βci,j
>
(

x− cj
1

)
,

i = 1, 2, . . . ,Kc
j
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x V

xr

V (x− xr,xr)

W1(x− c1)

W2(x− c2)

...

WKv (x− cKv )

Fig. 2. Hierarchical structure of the critic. V indicates the
fuzzy mean aggregation used to approximate V (x −
xr,xr).

with the antecedent variables zcj being some selected
elements of x, Ci,j the fuzzy terms of rule i. The rules
involved in V, approximating the overall value function
V (x− xr,xr), are given as follows:

If xr is Vj then Vj(x− xr,xr) = Wj(x− cj)

j = 1, 2, . . . ,Kv

where Vj is the antecedent fuzzy term of rule j. For the
update, the columns of the parameter matrix

Bc
j =

(
βc1,j βc2,j . . . β

c
Kc

j
,j

)
are stacked into one vector θcj ∈ R(n+1)Kc

j with Kc
j the

number of rules in the jth critic rule base.

To compensate for disturbances and to achieve a good
reference-tracking performance, the reward function must
also be modified. For each Wj , the corresponding reward
is defined as

rj = ρ(x− cj ,u)

The ρ(·) function is constructed such that it attains its
maximum when x− cj is 0.

3.4 Parameter Update Laws

The individual value functions are updated as follows:

δj,k = rj,k+1 + γWj(xk+1 − cj)−Wj(xk − cj)

θcj,k+1 = θcj,k + αcδj,kζj,k
ζj,k+1 = λγζj,k +∇θc

j
Wj(xk − cj)

where, k is the time index, ζj,k the eligibility trace and
rj,k+1 = ρ(xk+1 − cj ,uk) the reward. The update rules
for the actor and process model remain the same as in
Section 2.2:

θak+1 = θak + αa∇xV (xk+1 − xr,xr)∇uf̂(xk,uk)∇θaπ(x)

and

θpk+1 = θpk + αp(xk+1 − x̂k+1)∇θp f̂(xk,uk)

The entire model-learning actor-critic (MLAC) algorithm
for nonlinear disturbance rejection is summarized in Al-
gorithm 1. Note that other RL algorithms, such as the
standard actor-critic, can be applied in this setting as well.

4. REFERENCE TRACKING FOR 1-DOF ROBOT
ARM

The proposed control scheme is applied a 1-DOF robot
arm operating under the influence of gravity as shown in
Fig. 3. The equation of motion is:

Algorithm 1 Nonlinear disturbance rejection via MLAC
with fuzzy approximators

Input: γ, λ, and learning rates α
1: Initialize ζj,0,∀j, and fuzzy function approximators
2: Apply un,0 + ∆u0

3: k ← 0
4: loop
5: Measure xk+1, rj,k+1,∀j and xr
6: Choose un,k+1 according to nominal control law

7: % Choose compensation action and update
actor

8: uk+1 ← output of actor rule base
9: θak+1 ← θak+

αa∇xV (xk+1 − xr,xr)∇uf̂(xk,uk)∇θaπ(x)

10: % Update process model
11: θpk+1 ← θpk + αp(xk+1 − x̂k+1)∇θp f̂(xk,uk)

12: % Update critic
13: for ∀j ∈ [1, 2, . . . ,Kv] do
14: δj,k ← rj,k+1 + γWj(xk+1 − cj)−Wj(xk − cj)
15: θcj,k+1 ← θcj,k + αcδj,kζj,k
16: ζj,k+1 = λγζj,k +∇θc

j
Wj(xk − cj)

17: end for
18: Choose ∆uk+1 ∼ N (0, σ2)
19: Apply un,k+1 + uk+1 + ∆uk+1

20: k ← k + 1
21: end loop

motor

M
φ

l

Fig. 3. 1-DOF robot arm.

Jφ̈ = Mgl sin(φ)−
(
b+

K2

R

)
φ̇+

K

R
v (11)

with φ the arm angle measured clockwise from the upright
position and v the control voltage, limited to v ∈ [−10, 10]
V. The model parameters are given in Table 1.

Table 1. Robot arm parameters

Model parameter Symbol Value Units

Arm inertia J 1.91 · 10−4 kgm2

Arm mass M 5.50 · 10−2 kg
Arm length l 4.20 · 10−2 m
Gravity acceleration g 9.81 m/s2

Damping b 3 · 10−6 Nms
Torque constant K 5.36 · 10−2 Nm/A
Rotor resistance R 9.50 Ω

The fully measurable state x consists of the angle φ and
the angular velocity φ̇:

x =

[
φ

φ̇

]
The reference state, xr, is given as;
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xr =

[
φr
0

]
with φr the reference angle. The nominal controller is a
regular PD controller:

un = Kp(φr − φ)−Kd(φ̇)

A continuous reward function ρ(·) is defined as follows:

ρ(ε) = 0.1 exp(−ε2) + 0.9 exp(−ε4/0.06)

This function attains its maximum of 1 when the error
ε is 0. The reward for jth individual value function is
calculated by:

rjk+1 = ρ(φ− cj)
where cj is the constant reference angle for the jth
individual value function. Additionally, the performance
of the control scheme in experiments is measured by
accumulating the reward

rk+1 = ρ(φ− φr) .
The RL controller proposed is tested in a learning experi-
ment consisting of 400 consecutive trials, each trial lasting
1.8 seconds. The trials start in the downward position with
zero angular velocity: x0 = [π 0]T .

In defining the fuzzy approximators, we used the following
prior knowledge. As the gravity-induced nonlinearity only
depends on the angle (11), the actor has a single input,
the angle φ. Equidistant Gaussian membership functions
are used and the fuzzy system is of the singleton type
(constant consequent parameters). Similarly, the process
model also uses equidistant membership functions defined
for the angle φ only. However, this fuzzy system is of
the TS type, using local linear consequent models to
capture the second-order process dynamics. Finally, the
critic rule bases are of the TS type with the full state x
as its input and use Gaussian membership functions. The
individual critic rule bases are aggregated using Gaussian
membership functions depending on the reference angle,
see Fig. 2.

The membership functions at the edge of the domains
have their centers at ±π for the angle φ, 0 and π for
the reference φr and ±8π for the angular velocity φ̇. The
membership functions parameters are presented in Table 2
in the following format:

[Nφ, Nφ̇, Nφr
] .

Since all membership functions are Gaussian functions

e−(x−s1)
2/2s2

the width parameter is given as s2 in Table 2.

Figure 4 shows a comparison between the mean learning
curves of the RL control scheme and of the PD controller
for random reference angles φr, averaged over 10 learning
experiments. Note that the control performance signif-
icantly improves with the RL disturbance compensator
compared to the plain PD controller and that the im-
provement is on average monotonic with time. This is a
very favorable property with respect to potential practical
applications of this method.

Figure 5 shows the closed-loop step responses for three
different setpoints. While the PD control response results
in steady-state errors (due to the gravity load disturbance)
the RL disturbance compensator is able to almost com-
pletely eliminate the error.

Table 2. Parameters used in the experiments

RL parameters

sample period Ts 0.03

reward discount rate γ 0.97

eligibility discount rate λ 0.65

exploration variance σ2 9

Linear Controller

Proportional Gain Kp 5

Derivative Gain Kd 0.5

Process model parameters

learning rate αp 0.008

width of membership functions sp2 0.1

number of membership functions Np [9,− ,−]

Critic parameters

learning rate αc 0.08

width of membership functions (φ) scφ2 0.1

width of membership functions (φr) scφr
2 0.08

width of membership functions (φ̇) scφ̇2 10

number of membership functions Nc [9,11,5]

Actor parameters

learning rate αa 0.008

width of membership functions sa2 0.1

number of membership functions Na [9,− ,−]
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Fig. 4. Comparison of the average cumulative reward col-
lected per trial for the PD controller (dashed line)
and the fuzzy RL controller (solid line) for random
references. The results are the mean of 10 experiments
with the gray area showing the 95% confidence inter-
val.

5. CONCLUSIONS AND FUTURE WORK

This paper introduced a new control method combining
a nominal linear controller with a nonlinear disturbance
compensator tuned by means of actor-critic reinforcement
learning. The method is suitable for compensating non-
linear disturbances in reference tracking tasks with ar-
bitrary asymptotically constant references. We have veri-
fied empirically that the closed loop control performance
improves monotonically from the baseline performance of
the nominal controller and throughout the learning experi-
ment never becomes worse than the nominal performance.
In simulation experiments with a 1-DOF robot arm the
convergence times were satisfactory – the optimal perfor-
mance was achieved in 50 to 100 trials.
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Fig. 5. Closed-loop step responses. The dotted line shows
the reference angle, the dashed-dotted line the PD
control response and the solid line the fuzzy RL
response.

The rule-base structure of the fuzzy approximators em-
ployed in the learning scheme makes it easy to implement
a priori information about the process. The approach is
therefore not completely black box and the learning task
can easily be simplified, for instance, by providing infor-
mation on what variables are responsible for the nonlinear
behavior.

Proper tuning of the learning parameters remains a chal-
lenge in RL and also in this research we do not have
any guarantees that these parameters we chosen optimally.
This remains a subject for future research.
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