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Abstract: This paper investigates an online effective method for tool condition monitoring. Acoustic 
emission signal of a system which is acquired by a sensor mounted to the spindle of the milling machining 
center is used as the fault indicator because it is easily to be installed, inexpensive and practical for use in 
industrial environment. Time-frequency analysis is selected for signal processing step based on its ability 
to reveal time and frequency variant characteristics of faulty signal. S-transform is used as a powerful 
time-frequency method for this purpose. Because of the high dimension of the time-frequency results, it is 
desirable to use a local region of interest in time-frequency domain instead of using the entire information, 
for fast and accurate monitoring and detection when any abnormal/fault operating condition might occur. 
Such a strategy also helps to reduce the computation cost which is necessary for online applications and 
improves the interpretation resolution for law quality signals. An optimization method based on genetic 
algorithm is used for finding the most discriminative local area as the region of interest in time-frequency 
domain. For feature generation step, a correlation coefficient between each signal and the healthy signal is 
assigned to the signal using a 2-D correlation analysis. Curve fitting approach is then used to determine a 
function to approximate the fault value based on the correlation coefficients. Experimental results based on 
a milling machine under different operating conditions show that this method has a high accuracy for fault 
detection. It is also concluded that the accuracy of the local feature extraction is higher than the 
conventional ways. 

 

1. INTRODUCTION 

Turning, milling, and drilling are examples of conventional 
machining operations which are among the most common 
activities in the manufacturing industry. Tool failure is one of 
the probable faults during machining process. The high 
temperature of tool cutting edge, generation of built-up-edge 
resulting in higher cutting force and temperature and other 
possibilities in industrial environment may cause tool 
failure/damage (Landers et al., 2001). Tool failure can cause 
unscheduled down-time which is costly in terms of time lost. 
Furthermore, it may increase the production cost because of 
the damages of tools, machines and work pieces. The amount 
of down-time due to the tool breakage is about 20% of 
machine down-time based on some researches (Camci, 2010 
and Rehorn et al., 2005). Moreover, cutting tools should be 
maximally utilized to reduce manufacturing costs as tooling 
is quite expensive. Another issue is that excessive tool faults 
such as wear can affect the accuracy of cutting and surface 
finishing quality significantly. Therefore, it is in high demand 
to automatically monitor and diagnose tool wear, tool fault, 
or tool damage during machining to increase efficiency and 
product quality and reduce production cost (Landers et al., 
2001). 

Methods used for tool condition monitoring (TCM) can be 
classified as either direct or indirect. Direct methods are 
generally more reliable, although they are not convenient for 
in-process use in a harsh manufacturing environment and 
they are still very expensive or not possible to be used online. 

On the other hand, indirect methods estimate the tool fault by 
relating it to a measured variable such as the change in the 
size of the workpiece, cutting force, temperature, vibration, 
acoustic emissions etc. (Danai, 2010 and Abellan-Nebot & 
Romero Subirón, 2010). Most indirect methods use signal 
processing algorithms as well as artificial intelligence (AI) 
techniques to detect the faults according to abnormality 
occurs to the signals because of the faults. 

Many signals have been used for tool condition monitoring in 
the field of machining monitoring. Cutting force signal can 
reflect different features of the cutting. It is considered to be 
the variable that best describes the cutting process and it is 
widely used in TCM systems (Abellan-Nebot & Romero 
Subirón, 2010). For example Liu, et al. (2012) has developed 
a tool wear monitoring algorithm based on the cutting force 
signals. One drawback of cutting force signal is that increase 
in the cutting force due to a fault is strongly dependent on 
other cutting conditions. Furthermore, force signal based 
monitoring systems are very difficult to apply in industry in 
terms of cost and applicability. Vibration and acoustic 
emissions (AE) signals are also widely used in TCM systems 
(Zhang & Chen, 2008 and Mathew et al., 2008). Using 
vibration signals has the advantage of simplicity and low 
cost, but is not reliable (Abellan-Nebot & Romero Subirón, 
2010). AE sensors are also easy to install and inexpensive, 
but they should be located in an appropriate position and 
carefully calibrated (Abellan-Nebot & Romero Subirón, 
2010). Current and power sensors, temperature sensors, 
optical  sensors  and  ultrasonic  sensors  are   among   others 
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Fig. 1. Steps to design a TCM system 

 

that can be used for monitoring purposes (Abellan-Nebot & 
Romero Subirón, 2010). 

The next step, after signal acquisition, is signal processing 
and feature extraction which is needed for automated TCM. 
The nature of faulty signals in TCM is often non-stationary 
and contains rich information about machinery health 
conditions (Feng et al., 2013). Time domain, frequency 
domain, and conventional time-frequency domain analysis 
have been widely used in the literature in this context. 
Nevertheless, there is still a lack of using advanced time-
frequency analysis in this area (Rehorn et al., 2005). Time-
frequency analysis has the potential to reveal the time-
varying features of the signal which makes it an effective tool 
to extract machinery health information contained in non-
stationary signals since fault will induce significant time-
varying behaviours (Feng et al., 2013). S-transform is such a 
modern time-frequency analysis method. It has shown great 
applicability in many research fields such as medical and 
electrical engineering. The performance of this method is 
higher than short-time Fourier transform (STFT) because of 
using a progressive frequency resolution and maintaining a 
clear relationship to the Fourier spectrum which is its 
paramount advantage in comparison to Wavelet transform 
(WT) (Stockwell, 2007). Therefore, it has a great potential 
for TCM applications and it can improve the interpretation 
accuracy from a low quality signal and reveal the specific 
signature of different faults in time-frequency domain (Rad et 
al., 2013). 

Time-frequency representation of a signal should be 
converted to feature vectors ideally containing only relevant 
information in order to make the fault detection problem 
solvable (Avendaño-Valencia et al., 2011). It is possible to 
use linear transform methods directly, such as principal 
component analysis (PCA) or partial least squares (PLS), to 
decrease the time-frequency information dimension and 
construct a feature vector. However, for high dimension 
datasets, it becomes time consuming to compute the feature 
vectors and the obtained components are not always 
representative of the most discriminative information. One 
way to conquer this issue is to form the feature vector using 
local regions of time-frequency domain instead of the entire 
time-frequency plane. The significantly unsolved issue 
associated with local-based analysis, is the selection of the 
size and location of relevant area which is highly dependent 
on the final application (Avendaño-Valencia et al., 2011). 
Rehorn et al. (2006) investigated the detection and diagnosis 
of brush seizing faults in the spindle positioning using 
selective regional correlation (SRC) which is a local time-
frequency analysis method. However, to the authors’ best 

knowledge, effective local time–frequency feature generation 
issue still has not been addressed in the field of TCM. 

In this study, spindle acoustic emissions signal is used for 
tool wear detection due to its applicability and ease of use in 
industrial environments. S-transform is selected for time-
frequency analysis as an advanced and powerful 
transformation method. A local region of interest with most 
discriminative information of fault is obtained using genetic 
algorithm (GA). A 2-D correlation coefficient between each 
faulty signal and the healthy signal is calculated on the region 
of interest in time-frequency domain and is assigned to each 
signal as a representative of tool wear intensity for fault 
detection purpose. Genetic optimization algorithm is 
employed to find the most informative area with respect to 
fault. In the next step, a curve fitting approach determines a 
function between the correlation coefficients and tool wear 
value which is used for tool wear detection. Finally, the 
accuracy of the proposed fault detection scheme with natural 
integration of the above components is evaluated by testing a 
number of faulty signals from a milling machine system and 
its accuracy is compared to the scheme without using a local 
region of interest.  

2. STEPS TO DESIGN A TOOL CONDITION 
MONITORING SYSTEM 

In this paper a TCM system is designed using indirect 
method. Figure 1 shows the steps of designing a TCM 
system. The first step is to capture an indicator signal from 
appropriate sensor(s) for fault detection purpose. In the next 
step, signal processing and feature generation methods are 
needed to convert the signal to features vector with a more 
clear relation to the faults. Final step is to learn a model and 
determine the fault value based on the model for faulty 
signals in industrial environment. 

2.1 Acoustic emission as the fault indicator signal  

The data set of the BEST lab at UC Berkeley (Agogino & 
Goebel, 2007) is used for fault detection. This dataset 
contains experimental results measured from a milling 
machine under different operating conditions and the flank 
wear (Vb) is measured as a generally accepted parameter for 
evaluating tool wear. The insert of milling machine is of the 
type of KC710 grade and the work piece is made of cast iron. 
A high speed data acquisition board sends data with maximal 
sampling rate of 100 KHz. Figure 2 represents the spindle AE 
signals for healthy case as well as the signals associated with 
the flank wears Vb = 0.24 and Vb = 0.50 in time domain with 
0.5 mm/s feed rate and 1.5 mm depth of cut as the operation 
conditions. It can be implied from Figure 2 that the fault 
existence and intensity is not clear in time domain analysis 
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and it is not possible to realize whether the chan
of cutting condition alternation or different kind

2.2 Signal processing 

2.2.1 S-transform (ST) 
The S-transform is an advanced ti
transformation with a great ability of interpreta
quality of signals.  It can be assumed to be an
the continuous wavelet transform (CWT) conce
its local spectral phase properties. It works
moving and scalable localizing Gaussian wind
that the modulating sinusoids are fixed with 
time axis while the localizing scalable Gaus
dilates and translates (Stockwell, 2007). 

The window function in S-transform is a fun
time and frequency which is the advantage of S
comparison to STFT. Therefore, the window i
time domain for lower frequencies, and narrow
frequencies. As a result, the window pr
localization in the time domain for high freque
provides good localization in the frequency do
frequencies (Djurovi et al., 2008). 

Fig. 2. Spindle AE signal in time domain: a) Vb
0.24,  and  c) Vb = 0.50 
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Using the equivalent frequency dom
transform for the discrete case has co
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where H [ ௡ே்] is the Fourier transfo
series h[kT] and j, m, and n = 0, 1, ..., 

Averaging the S-transform over ti
transform spectrum, and inverting to
the discrete inverse of the S-transform
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Fig. 3. Spindle AE signals in time-fre
0,  b) Vb = 0.24, and  c) Vb = 0.50 
 
2.2.2 Time-frequency analysis using S
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3. FEATURE GENERATION, 
SELECTION/EXTRACTION 

3.1 2-D correlation analysis  

In order to make the fault detection problem solvable, the 
time-frequency domain information of each signal needs to 
be converted to features which represent a specific fault in 
the system. As the fault value increases in the system, the 
indicator signals show more deviations from the 
corresponding healthy signal. Therefore, a correlation 
analysis between each signal and the healthy signal with the 
same operating conditions determines intensity of 
abnormality in the system. In this paper, a 2-D correlation 
coefficient between the time-frequency representation of each 
signal and the healthy signal is generated as the detection 
feature for each faulty state. The 2-D correlation coefficient  
for 2-D signals A and B can be calculated as follows: ݎ ൌ  ∑ ∑ ሺ஺೘೙ି ஺ ഥ ሻ ሺ஻೘೙ି ஻ ഥ ሻ೙೘ඥሺ∑ ∑ ሺ஺೘೙ି ஺ ഥ ሻ మ೙೘ ሻሺ∑ ∑  ሺ஻೘೙ି ஻ ഥ ሻమ೙೘ ሻ               (4) 
where ܣ ഥ ഥ ܤ ݀݊ܽ   are the mean value of ܣ and ܤ, respectively. 
 
3.2 Local feature extraction in the time-frequency domain 
After transferring the faulty signals to time-frequency 
domain, the fault existence and its growth trend is clear. 
However, the dimension of the time-frequency representation 
is extremely high which makes an interpretation time 
consuming and inappropriate for online application. 
Furthermore, for low quality signals, there may be some 
noise in the time-frequency domain representation of the 
signals which deteriorate the fault detection performance. 
Employing a local region of interest of time-frequency 
domain rather than using the whole information can be a 
suitable approach to overcome the aforementioned issues. 
The most informative region of interest which reflects the 
fault characteristics and intensity accurately will improve the 
signal resolution as well as reducing the calculation cost. 

Figure 4 depicts a local region in time-frequency domain with 
the τ1 and τ2 boundaries in time domain and γ1 and γ2 
boundaries in frequency domain. Let us assume that the time-
frequency transforms of the healthy signal and faulty signal 
are Sh(t, f) and Sf(t, f) respectively. It is proposed that for the 
correlation evaluation, only the region of interest (t א [τ1, τ2] 
and f א [γ1, γ2]) will be taken into account. Then, the key 
question related to this approach is how to find the most 
informative local area. 

The possible solution for finding the most discriminative 
local area for fault detection purpose is to use an optimization 
algorithm. Genetic algorithm is selected as the optimization 
method based on the nonlinear nature of the problem. The 
variables aimed to be optimized are the boundaries of the 
region of interest (τ1, τ2, γ1, γ2). Therefore, both the size and 
location of the region can be changed within the time-
frequency domain until the best solution is found. The first 
constraint of the optimization is that the variables should be 
within the time-frequency matrix range and a minimum 
length and width size is set as the constraint for region of 
interest to increase the reliability of system. 

 
Fig. 4. A local area in time-frequency domain: a) Vb = 0 and 
b) Vb = 0.50 
 

 
Fig. 5. GA optimization trend 
 
The objective of this optimization problem is to find the 
region that best describes the trend of change in the signal 
with the changes in fault values. A sequence of faulty signals 
is used to define to define an appropriate objective function 
to better notify the trend of changes in the signals as faulty 
situation changes. Signal dataset samples are divided into two 
categories of training and test. The training data itself is 
divided to subcategories of training and validation data to 
determine a function between the correlation coefficients of 
faulty signals and their fault values. A curve fitting approach 
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is employed for this purpose. A curve is fitted by around 70% 
of training data and then the 30% validation data is fed into 
system and the fault value is calculated for each iteration. 
Minimizing the mean error of fault estimations for validation 
dataset is the objective of this optimization. In other words, 
the region of interest is the one which gives less mean value 
of error for fault estimation of the validation dataset. Figure 5 
shows the trend of GA optimization. 

Finally, the test group of data which was not used in the 
optimization process will be fed into scheme based on the 
local region of interest obtained in the optimization step and 
the fault value will be estimated for this data. This error is 
considered as an evaluation of the accuracy of the local 
feature generation method. 

 

4. EXPERIMENTAL RESULTS AND VALIDATION 

In the final step of this research, two online fault detection 
systems are designed and evaluated. Both systems use the 
spindle AE signals for fault detection purpose. In the first 
fault detection system, signals are transformed to time- 
frequency domain using S-transform as the first step. In the 
second step, a correlation coefficient with the healthy signals 
is assigned to each signal using the whole time-frequency 
output band. In this system the dataset is divided to two 
subsets. The first one is used for curve fitting and 
determining a function between the fault values and 
correlation coefficients and the second subset is used for test. 
In this scheme there is not any optimization and therefore not 
validation data is required. Finally test data which is not seen 
in curve fitting step is used for accuracy evaluation and 
scheme error calculation. 

Table 1.  Fault estimation example for two case (Depth of cut 
= 1.5 mm and feed = 0.5 mm) 

Case number 1 2 
Actual value 0.24 0.43 

 Estimated value by system 
using  the entire time-frequency 

information 
0.2755 0.4559 

Estimated value by system 
using the local feature 

extraction  
0.2521 0.4519 

 

The first step of the second fault detection system is the same 
as the previous system by transferring the signals to time- 
frequency domain. Then a GA optimization approach 
provides the coordinates of the most informative local area 
and the system uses this region instead of the entire time- 
frequency information for the test section. It should be noted 
that the test data is not seen by the optimization method and 
the training data itself is divided to curve fitting and 
validation in the optimization algorithm. This approach 
guarantees that the local area gives accurate result for new 
signals in the industrial environment and provides realistic 
circumstances for comparing two systems. It should be noted 
that the selected local area in time frequency-domain has less 
dimensions and therefore less calculation is needed in the 
correlation coefficients evaluation step. Table 1 represents 

the actual value and the estimated tool wear value by each 
system for two example cases. 

Table 2.  Designed systems accuracy results 

System number Mean 
error 

Maximum 
error 

System using  the entire time-
frequency information 10.40% 14.80% 

System using the local feature 
extraction  5.00% 5.10% 

 

Table 2 demonstrates the accuracy results of the system 
without and with using local features. As it is interpreted 
from the results in the table, the combination of S-transform 
correlation analysis and curve fitting approach has promising 
results for fault detection with mean errors of 10.40% and 5% 
in two systems. Furthermore, using a local region in time-
frequency domain and GA optimization approach to find this 
region is made the system more accurate by decreasing both 
mean error value and maximum error from 10.4% to 5% and 
14.8% to 5.10% respectively. Moreover, the second system 
has the important advantage of less computing cost which 
makes it more suitable for online application. 

 

5. CONCLUSIONS 

This paper investigates a new online monitoring method for 
tool wear estimation in milling process. Acoustic emission 
signal acquired by an acoustic emissions sensor mounted to 
the spindle of the milling machining centre is used as the 
fault indicator signal. Based on the non-stationary nature of 
the faulty signals a time-frequency analysis is performed 
using S-transform to provide clear and accurate information 
of signal and clarify the fault effect. It can be concluded from 
the time-frequency results that S-transform has great potential 
to reveal the fault signature and can reflects the fault nature 
more significant.   

The output of time-frequency analysis has high dimensions 
and is costly for further investigations. This paper proposed a 
new method for dimensionality reduction of the transmitted 
signal and also obtain more resolution with focusing on the 
most relevant data to faulty situation for signal 
representation. It is concluded that a local region of time-
frequency domain has more resolution for the fault detection 
purpose especially for low quality signals. It is also important 
to conclude that the selected local area in time frequency-
domain has less dimensions and therefore less calculation is 
needed in the correlation coefficients evaluation step that 
reduces the calculation cost significantly, which is desirable 
for online applications. A genetic algorithm optimization 
approach is employed for finding the local region with the 
most discriminative information. Then, a 2-D correlation 
analysis between each faulty signal and the corresponding 
healthy signal in the region of interest is used and a 
coefficient is assigned to each signal. In the next step, a 
function is determined between the fault values and their 
corresponding signal correlation coefficients using curve 
fitting. Finally a group of test signals are fed into the system 
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and the method accuracy is evaluated. Table 2 shows that for 
the system with local feature in time-frequency domain the 
mean and maximum errors are 5% and 5.1% respectively. 
The results imply that the local area in time-frequency 
domain perfectly represents the fault situation and intensity 
of the system. This system accuracy is compared to the 
accuracy of a system using the entire information of time-
frequency domain with the mean error of 10.40% and 
maximum error of 14.80%. It is clear from comparing the 
results that the local feature extraction in time-frequency 
domain outperforms using whole information of time-
frequency domain for feature generation from the accuracy 
and online applicability point of view. 
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