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Abstract:
This paper is concerned with the consensus problem of a multi-agent system where some nodes
inject unexpected values as a consequence of a fault. A fault compensation algorithm is proposed
and its properties are thoroughly analyzed. Afterwards, closeness of system trajectories to
the consensus value in the presence of compensated persistent faults is studied. Finally, an
example on two different applications of the proposed strategy is shown and simulation results
are reported to validate theoretical results developed in the paper.
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1. INTRODUCTION

The analysis and design of the collective behavior of a
number of agents locally interacting between themselves
is receiving a great research effort in the last years (see,
e.g., Bullo et al. (2009), Olfati-Saber et al. (2007), Chen
et al. (2013)). Recently, this challenging framework has
been considered for platoons of vehicles (see, e.g., Pan
(2009), Ghasemi and Azadi (2013)).

A key tool for the achievement of a variety of global prop-
erties is the ability of the group to reach a consensus on a
given quantity. Consensus is reached by iteratively updat-
ing a value using the information shared with neighboring
agents. A large number of practical applications have been
developed based on this simple concept of consensus be-
tween agents (Olfati-Saber et al. (2007), Chen et al. (2013),
Ren et al. (2006)). In the last years, consensus has been
adopted as a basic tool for the self organization of mission
objectives or formation control of platoons of vehicles ( see,
e.g., Porfiri et al. (2006), Wang et al. (2012)). The problem
of the presence of a set of misbehaving nodes that perturb
the network evolution has been widely studied in the litera-
ture and it has been considered from different perspectives.
One significant branch of research on this topic has been
developed since the eighties by computer scientists (see
e.g. Lamport et al. (1982), Pease et al. (1980)) where the
problem was set within the area of distributed computing
and computer networks. Recently, the same problem arose
in the framework of robotic networks, power systems and
sensor networks (see e.g. Sundaram and Hadjicostis (2011),
Pasqualetti et al. (2012), Pasqualetti et al. (2011)).

In the paper of Bauso et al. (2009), the authors propose
a modified consensus protocol to face the problem of
reaching a consensus under unknown but bounded noise.
Another interesting paper on this topic is Chen et al.

1 The research leading to these results has been funded by the italian
PRIN 2010-2011 project MARIS: Marine Autonomous Robotics for
InterventionS.

(2010) where the authors propose a protocol to make nodes
react against packet losses. In the recent papers (Yucelen
and Egerstedt (2012), Yang et al. (2011)) the consensus
problem in the presence of exogenous disturbances is
studied. Finally, in the recent paper (LeBlanc et al. (2013))
a promising concept of network robustness is studied as an
important property for analyzing the behavior of resilient
distributed algorithms using local information only.

The paper is organized as follows. In Section II the nota-
tion and some preliminaries about system model are given
in order to state the problem clearly. In Section III the
proposed control law is introduced. First the controller
structure is given, then a proposition on the choice of the
controller’s gains to restore the initial consensus value in
the presence of misbehaving inputs follows. Afterwards,
the existence of time-invariant gains is discussed. Section
IV is reserved to the convergence properties of the con-
trolled system. In Section V a set of simulation results are
given and discussed.

Notation: The notation adopted in this paper is fairly
standard. Vectors are denoted with bold letters. Given
a vector v ∈ Rd, we denote vi the i-th component of v
so that v = [v1 . . . vd]

T . We denote with In the n × n
identity matrix, and ei, i ∈ N, denotes the i-th vector of
the standard basis, e.g. e1 = [1 0 . . . 0]T . Vector 1 is the
vector with all components equal to 1.

A graph G = (V,E) is a pair where V = {1, 2, . . . n} is
the set of vertices and E ⊂ V × V is the edge set. A
path between two nodes u and v is a collection of edges
{(vi−1, vi) ∈ E , i = 1.., n} such that v0 = u, vn = v. We
call distance d(i, j) from i to j the minimum number of
edges of a path going from i to j. Given a node i, we
call a neighbor of i any node distant 1 from i and we
denote with Ni the set of neighbors of node i defined as
Ni = {j ∈ V : (i, j) ∈ E}. A graph G is connected if any
node of G can be connected to another node of G through
a path.
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Some features of the graph are described by suitable
matrices. In this paper we use the weighted Laplacian
of the graph G, that is a matrix L̃ ∈ Rn×n defined
(L̃)ij = −lij if i 6= j and (L̃)ii =

∑n
j=1,j 6=i lij where lij

is a positive weight if (i, j) ∈ E and lij = 0 if (i, j) /∈ E.

2. PROBLEM STATEMENT

In this paper we consider a group of n agents each
one described by a first order discrete-time integrator
dynamics xi(t + 1) = xi(t) + ui(t), i = 1, .., n, and
we assume that each agent follows an agreed common
protocol ui(t) =

∑
j∈Ni lij(xj(t) − xi(t)) but some nodes

may fail during their activity and inject a different value
with respect to the agreed protocol, namely ui(t) =∑
j∈Ni lij(xj(t)− xi(t)) + ūi(t), ūi(t) 6= 0.

If all the nodes assign correct input values, then each node
asymptotically reaches the consensus value f(x(0)) =∑n

i=1
γixi(0)∑n

i=1
γi

= γTx(0)
γT 1

, where γ = [ γ1 γ2 . . . γn ]T is the

eigenvector of (I − L̃)T associated to the eigenvalue 1.

Consider now the presence of some m faulty agents with
labels i1, i2, . . . , im. The evolution of the group can be
compactly written

x(t+ 1) = Ax(t) +

m∑
`=1

ei` ūi`(t), where A = (I − L̃). (1)

The presence of misbehaving nodes in a consensus network
even for few instants can have a wasteful impact on
the control objectives; the consensus value deviates from

f(x(0)) =
γTx(0)

γT1
to

f(x(0), ū(·)) =
γTx(0) +

∑m
`=1 γi`

∑t
j=0 ūi`(j)

γT1
(2)

so, even if a misbehaving agent is located and excluded,
the consensus value is corrupted by the past values of the
faulty nodes.

The main goal of this paper is to design self counteractions
of the network against this phenomenon. To reach this
goal, we assume that some compensation nodes are allowed
to inject corrective signals into the network. We denote
the set of compensation nodes with Vo = {io1 , io2 , . . . , ioq},
and we assume that each node of Vo can communicate with
any other node of Vo and is able to perform elaborations
based on its own state and the received signals. More
precisely, we assume that any node j ∈ Vo can send a
message ν to any node l ∈ Vo and the message ν is received
after a temporal delay τlj . We denote with νlj(t) a message
sent from node j to node l at time t and ν̂lj(t) a message
received from node l at time t, so ν̂lj(t) = νlj(t− τlj). We
assume that each compensation node ` can elaborate its
own value x`(t) and all messages received from any other
compensation node ν̂`j(t) = ν`j(t− τ`j), j ∈ Vo. Based on
such elaboration, any compensation node of Vo has the
capability of driving the time evolution of the group with
an additional input ψ(ν̂ij(t)) so that the evolution of the
network takes the form

x(t+ 1) = Ax(t) +

m∑
`=1

ei` ūi`(t) +
∑
j∈Vo

ejψ(ν̂ij(t)) (3)

with A = (I− L̃). The main goal of this paper is a suitable
design of such functions ψ(ν̂ij(t)) to overcome or mitigate
the effect of faulty nodes on network evolution.

A dynamic relation between a set of faulty nodes and
the monitoring nodes is the state space description (1)
together with y`(t) = x`(t) = eT` x(t), ` = io1 , io2 , . . . , ioq .
An equivalent description of the connection between a
faulty node j and a compensation node ` is the Auto
Regressive Moving Average (ARMA) model:

AR(y`(t)) =MA`,j(uj(t)) where (4)

AR(y`(t)) = y`(t)+a1y`(t−1) + · · ·+ any`(t−n)

MA`,j(uj(t)) = b1uj(t− δ`j) + ..+ bmu`(t− n)

where the temporal delay δ`j depends only on the distance
between the two nodes δ`j = d(`, j) + 1 while weights li,j
in (1) are related with coefficients ai and bi.

In the following, we denote with b`,j ∈ Rn the vector of
the coefficients of the MA`,j elaboration with increasing
order and zero entries in the first (δ`j − 1) positions, i.e.

b`,j = [ 0 ... 0︸ ︷︷ ︸
δ`j−1

b1 b2 ...bm ].

There is a strict connection between the ARMA model (4)
and the state space model (1); coefficients ai, bi in (4) are
those of the polynomials of the transfer function between
` and j:

W`j(z) =C`(zI −A)−1ej =

=
b1z

n−δ`j + b2z
n−δ`j−1 + ..

zn + a1zn−1 + a2zn−2 + ..+ an
. (5)

Notice that the structure of the AR(·) elaboration (i.e.,
its coefficients ai) does not depend on the specific input
or output node. Consider also that, even if the models (1)
and (4) are equivalent mathematical descriptions of the
evolution of the system, they give rise to different data
elaboration, so one can be more suited than the other in
some practical applications.

3. COMPENSATION OF THE FAULT EFFECTS ON
THE CONSENSUS VALUE

3.1 Structure of the compensation algorithm

One key problem in the Intrusion Detection and Isolation
is to separate the free response from the forced response
caused by a misbehaving agent (see e.g.Sundaram and
Hadjicostis (2011), Parlangeli (2010)). A first useful prop-
erty of model (4) is that the AR(·) elaboration filters
the free evolution out, so it is directly connected to the
exogenous values of a faulty node.
Proposition 3.1. Under the assumption that no faulty
nodes are present in the network until time t = n, then
the autoregressive AR(·) elaboration of the data collected
from any output node is zero if data are coherent with an
evolution without intruders.
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Remark As opposed to the classical problem of Intrusion
Detection, notice that the present approach does not
require the distinguishability of the free response from the
forced one. Indeed, the main question we want to answer
to is not to select the node that injected faulty values but
to compensate for faulty inputs wherever the faulty node
is. An interesting connection with the Intrusion Detection
problem is that, if the set of monitoring nodes verify the
necessary and sufficient structural conditions with respect
to a given set of misbehaving nodes, then the proposed
algorithm naturally performs an on-line recontruction of
each faulty signal and injects a suitable compensation
input. Anyway, the proposed algorithm can be applied also
when these assumptions do not hold.

First, we introduce the structure of the proposed algorithm
executed by a compensation node ı ∈ Vo, that is the
mathematical structure of functions ψ(ν̂ij) in (3). The
algorithm is based on the AR(·) elaboration of local
data yı(t) and the messages exchanged with the other
compensation nodes ν̂ji, j ∈ Vo. The reasons of this choice
are related to all the peculiarities reported in the end of
the previous section, mainly because it cancels out the
free evolution of the system without a large amount of
computation.

We assume that each compensation node i chooses a
corrective signal νi(t) according to the rule:

νi(t) = ri(t)

εı(t− τ̄i)−∑
j∈Vo

MAij(ν̂ij(t− τ̄i))

 (6)

εi(ξ) :=AR(yi(ξ)) = yi(ξ) + a1yi(ξ−1)+· · ·+anyi(ξ−n)

τ̄i = max

{
0,max
j∈Vo

[τij − δij ]
}
.

where ri(t) are some suitable time-varying gains, εı(ξ) is
the AR elaboration of local data available to each elab-
oration node, while the exchanged signals are processed
with the MAij(·) elaboration. All the involved signals are
delayed of τ̄i in order to build a causal elaboration (6).

A preliminary and simplified version of the above algo-
rithm has been studied in (Parlangeli (2013b)) for the
compensation of a single faulty node under the hypothesis
that an underlying IDS sends information about the faulty
node identity to the compensation node. In the previous
paper Parlangeli (2013a) the fault compensation is based
on an explicit monitoring by a suitable Intrusion Detection
System.

A remark on the set of equations (6) is useful for the forth-
coming analysis. A fault on a node at a single time instant,
say t̂, induces a finite-time reaction of the compensation
nodes of span equal to n− δij . Indeed, by (4) it is straight
to see that the AR(y`(t)) is nonzero only in the interval
[t̂ + δ`j , t̂ + n], and so does ε`(t) for any ` ∈ V0, so the
action of a correction for a single faulty injection lasts n
time steps.

3.2 Compensation of the consensus value: assignment of
the compensation gains

The next result is a step toward the design of the time-
varying gains in (6), namely the way to choose them in

order to recover the effects of the faulty inputs on the
objective function.
Theorem 3.2 (p faulty nodes). Let p, q ∈ { 1, . . . , n }.
A set of p faulty nodes acting at the same time on system
(1) can be effectively compensated by a set of q monitoring
nodes running algorithm (6). Each compensation node
must inject a compensation signal of the form (6) where
rκ(t) are time-varying gains (that can be computed off-
line) satisfying the relations

γj1 + γιo1b11ρ1(`) + γιo2b12ρ2(`) + · · ·+ γιoq b1qρq(`) = 0

γj2 + γιo1b21ρ1(`) + γιo2b22ρ2(`) + · · ·+ γιoq b2qρq(`) = 0

... (7)

γjp + γιo1bp1ρ1(`) + γιo2bp2ρ2(`) + · · ·+ γιoq bpqρq(`) = 0

where ` ∈ N, ρκ(`) = [ rκ(`) rκ(` + 1) . . . rκ(` + n)]T ,
κ ∈ [1, .., p] and b`,j as in (4).

Sketch of the proof: The detailed proof is omitted for the
sake of space, a sketch of the proof is here reported.

For the ease of presentation, consider two faulty nodes and
two monitoring nodes. Let j1, j2 be the two faulty nodes
and io1 , io2 the two monitoring ones.

According to (3) and (4), it is possible to rearrange
the time evolution of the objective function γTx(t) as
a function of the faulty inputs. After some algebraic
manipulations, it can be written:

γTx(t) = γTx(0) +

2∑
m=1

n+τ̄m∑
`=1

γjm ūm(t− `) + (8)

+

2∑
m=1

t−τ̄m−n∑
`=0

[
γjm+γιo1bm1ρ1(`) + γιo2bm2ρ2(`)

]
ūm(`) +

+

2∑
κ=1

2∑
m=1

ϕκ(ūm(t), ūm(t− 1), . . . , ūm(t− δ`,m))

where, for the sake of readability, vectors ρ1(t) = [ r1(t +
τ̄1) r1(t+ τ̄+1) . . . r1(t+ τ̄1 +n)]T , and ρ2(t) accordingly,
have been introduced and vectors bmκ, m,κ = 1, 2 contain
the coefficients of MAιom ,jκ(·) according to the convention
described in the comments after equation (4); functions
ϕκ(·) are explained hereafter.

Equation (8) describes the time evolution of the consensus
value and it deserves some comments. Three terms are
associated to the faulty inputs: the first is the influence
of faults before a faulty signal reaches the output of
any compensation node and no compensation action has
started still. The second term is the effect that each faulty
input induces to the consensus value together with the
reaction induced by each faulty input on the compensation
nodes. It involves the compensation gains at different time
steps because each faulty injection induces a reaction of
n−δj` to each compensation node. The last term is related
to those faulty injections that are being compensated at
time t but the compensation action is not finished already
and some other terms are expected in the very next steps.
Functions ϕκ(·) encode this last transient signal; for the
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sake of completeness, considering a given compensation
node κ and a faulty node jm, each function ϕ`(·) has the
following expression

ϕκ(ūm)=

t−δκ,jm∑
`=t−n+1

γjm+t−δκ,jm∑
ς=`

r(ς + δκ,jm)(bκm)ς−`+1

um(`).

(9)

In view of equation (8), it is clear that it is possible to
choose the gains r1(t) and r2(t) to make ineffective the
action of the misbehaving nodes on the consensus value.
This is possible if they are chosen in order to zero all the
coefficients of each faulty injection so that any faulty input
cannot influence the consensus value:{

γj1 + γιo1b11ρ1(`) + γιo2b12ρ2(`) = 0
γj2 + γιo1b21ρ1(m) + γιo2b22ρ2(m) = 0

where `,m ∈ N.

A key point for the design of the proposed control strategy
is the existence of a solution for (7). We now consider a
special case of control law (6), namely the time invariant
one.

Time-invariant output injection gains. The following
Lemma is about a technical result which is the building
block for the existence of a solution for a set of time-
invariant gains. The proof is omitted for the sake of space.
Lemma 3.3. Consider system (3) and assume that
the communication graph is connected. Let Gij(z) =
nij(z)

(z − 1)p(z)
the tranfer function from any node j to any

node i. The quantity nij(1) does not depend on the output
node i and it is equal to

nij(1) =
γjp(1)∑n
j=1 γj

.

Remark : The above result has a strong impact on the
existence of a solution for equation (7). We now prove that,
based on the previous result, it is always possible to find
constant solutions of (7) for any p, q ∈ N.
Proposition 3.4. [Existence condition for constant gains]
For any p, q ∈ N it is always possible find a set of constant
gains ri(t) = ri, i ∈ {1, . . . , q} satisfying (7).

4. CONVERGENCE ANALYSIS

The main goal of this section is to quantify the evolution
of a consensus system (1) subject to faults and to find
an estimation of the asymptotic limit set of system (1)
under the action of a set of faulty nodes managed with
the compensation strategy (6). Indeed, a persistent fault
induces a persistent transient to system evolution and
it is necessary to develop tools to understand how far
the system trajectories are from the consensus value. In
order to quantify this, in this section an estimation of the
uncertainty region where system trajectories converge in
the presence of unknown but bounded faults is sought. The
results of this section can be the basic tool for the decision
logic about an eventual reconfiguration of the network.

Here, in view of the previous results and for the sake of
clarity, we make the analysis considering constant gains rκ.
It is matter of simple computation to extend the results in
this section to the time-varying case.

To suitably perform this analysis, consider a decompo-
sition of x along the 1 direction and the projection of
x on the plane orthogonal to γ, say πγ . According to
Olfati-Saber et al. (2007), we call them respectively the
agreement component and the disagreement one.

Now, consider such decomposition with respect to both the
initial state vector x(0) and the current state vector x(t):
x(0) = αc1 + δ(0), x(t) = α(t)1 + δ(t), α(t) = αc + αf (t)
where αc is the component along 1 of x(0) and it is the
unbiased consensus value in the absence of faults. When
faulty nodes influence the evolution of the system, the
value of α deviates from the correct value αc by a quantity
αf (t) uniquely depending on the intensity of faults.

Based on these considerations, the next Proposition can
be proven, which gives the upper bound of a convergence
region of the state vector in the presence of compensated
faults.
Proposition 4.1. Consider system (1) subject to a set
of bounded exogenous inputs |ūκ(t)| ≤ Mκ, κ = 1, . . . , p
and the compensation injection signals (6), (7) for a given
choice of coefficients rj.

State trajectories converge to a ball centered in
γTx(0)

γT1
·1

and radius R = [Ω2 + ∆2 + Ω∆ sin(θ)]
1
2 where ∆ and Ω

are defined later and θ is the angle between γ and 1.

The proof is constructive and here it is omitted for space
limits. Here, we report the explicit expressions of the upper
bounds

Ω =

p∑
m=1

(n+ τ̄m)·q ·γjmMm+

p∑
m=1

q∑
`=1

ϕ̄`(ūm),

ϕ̄`(ūm) =

n−δ`m∑
ζ=1

γ`|(b`m)ζ |(n− δ`m − ζ)r̄`Mm

∆ :=

m∑
j=1

|λ2|−nMjBfj
|1− λ2|

where

Bfj = |λ2|n‖gj‖+

n−δmj−τ̄j∑
i=0

|λ2|i−τ̄j‖gioj‖|rj(b`j)i|

with ‖g`‖ = n
γ2
`(∑
j γj

)2 + 1− 2γ`(∑
j γj

) for any vector g`.

5. SIMULATION RESULTS

In this section we show some simulations that confirm
the theoretical results developed in the paper and the
effectiveness of the proposed control strategy. Consider a
group of eight agents connected as in Fig. 1, and assume
that all weights lij are chosen equal to one. The eigenvalue

of the system matrix (I − L̃) (see eq. (1)) with second
largest modulus is λ2 = 0.6548, and the characteristic
polynomial is z8− 1.4z7− 0.2z6 + 0.8z5− 0.1z4− 0.11z3 +

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

960



1	   2	   3	  

4	   5	  

6	   7	   8	  

Fig. 1. Topology of the communication graph.
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Fig. 2. Evolution of the consensus network in Fig. 1 with
uncompensated faulty nodes.

0.0125z2 + 0.004z so the AR(·) elaboration performed by
each compensation node is AR(y`(t)) = y`(t) − 1.4y`(t −
1)− 0.2y`(t− 2) + 0.8y`(t− 3)− 0.1y`(t− 4)− 0.11y`(t−
5) + 0.0125y`(t− 6) + 0.004y`(t− 7).

In a first simulation, we consider a scenario where nodes
1, 3, 8 and 6 inject each one a single faulty value of
amplitude one at the time steps t = 75, 150, 225, 300.

In the first figure, Figure 2, the detrimental effect of
faulty nodes in a consensus network is shown. The small
windows inside the picture show the variations of the
consensus value as a consequence of faults, and jumps at
the consensus value as a consequence of a fault can be
easily seen.

Figure 3 shows the evolution of the system with a single
compensation node, namely node 1. Here, according to
the theoretical results, the consensus value is promptly
adjusted by the feedback of the compensation node.

In the next figure, Fig. 4, simulations with two compen-
sation nodes are shown. The interesting point that can be
appreciated in this figure is that the control effort of the
compensation node is significantly lower than the single
compensation node case.

A second simulation has been performed considering all
nodes as faulty nodes. The faulty signal is an unknown
but bounded signal, namely a random variable identically
distributed in [0; 0, 2].

0 50 100 150 200 250 300 350
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0
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4

6

8

10

X: 361
Y: 1.625

X: 21
Y: 1.625
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Y: 1.625

time (steps)

x
i(t

)

Fig. 3. Evolution of the consensus network with one
compensation node.
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Fig. 4. Evolution of the consensus network with two
compensation nodes.
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x i(t
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Fig. 5. Evolution of the consensus network with uncom-
pensated unknown but bounded noise

In the first figure of this simulation, Fig. 5, an unstable
behavior of the group is reported. This phenomenon is
a straight consequence of an uncompensated disturbance
action on a consensus network and it was well described
in the paper Bauso et al. (2009).

In Fig. 6 the behavior of the system with one compensation
node is reported. The figure shows that the system evolu-
tion is confined within a bounded strip of the consensus
value, and this is in accordance with Proposition 4.2.
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Fig. 6. Evolution of the consensus network in Fig. 1 subject
to unknown but bounded noise and one compensation
node

6. CONCLUSIONS

In this paper the consensus problem for a multi-agent
system where some nodes inject unexpected values as a
consequence of a fault is considered. A fault compensation
algorithm is proposed and its properties are thoroughly
analyzed. Unbiasness of the consensus value in the pres-
ence of a set of faults is studied and the existence of a
corrective injection by a prescribed set of monitoring nodes
is discussed. Afterwards, closeness of system trajectories
to the consensus value in the presence of compensated
persistent faults is studied. Finally, an example on two
different applications of the proposed strategy is shown
and simulation results are reported to validate theoretical
results developed in the paper.

REFERENCES
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