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Abstract: Underactuated mechanical systems are systems with less actuators than degrees of
freedom. Therefore, it is complicated to measure all states, i.e. angular positions or angular
velocities, of the mechanical system. Alternative solution consists in an observer design such
that unmeasurable states are estimated. For this purpose, a high gain observer for an Acrobot
was introduced. By virtue of an Acrobot embedding into a 4-link model, the high gain observer
was simply extended and applied to the 4-link model. The main aim of this paper consists in a
coupling of a method of the Acrobot embedding into the 4-link model and the high gain observer
design for the Acrobot. The coupling results in an observer for the 4-link model with the same
structure as the already developed high gain observer for the Acrobot model. The control of the
4-link model using the embedding method is based on a definition of constraining functions for
knees control whereas the remaining angle in the hip is controlled in the same way as it would be
an Acrobot’s angle. The ability of feedback tracking of the walking-like trajectory of the 4-link
with observed geometry during a swing phase of a single step is demonstrated in simulations.

Keywords: Underactuated mechanical systems, Embedding, High gain observer.

1. INTRODUCTION

Underactuated walking robots, i.e. robots with less degrees
of freedom than number of actuators, form subclass of
walking robots. The simplest underactuated mechanical
systems are an Acrobot and a Pendubot. Both of them
consist from two links and one actuator. In the case of the
Acrobot, the actuator is placed between its links whereas
in the case of the Pendubot, the actuator is placed at the
end of one link.

Despite the fact, that the Acrobot, alternatively also re-
ferred to as the underactuated Compass gait walker, is the
simplest underactuated walking mechanism, theoreticaly
able to walk. The walking ability is interesting problem,
therefore, the Acrobot has been studied extensively in the
control area during the past few decades, especially an
efficient control of the Acrobot in application to reliable
walking or running. There are many works in this direc-
tion. Dynamics of walking robots have been exploited in
order to make passive walkers McGeer (1990), which have
limited capabilities and walk down a slope, or have used
n− 1 actuators to execute motion on a flat terrain Spong
(1998); Grizzle et al. (2005); Zikmund and Moog (2006).

However, in the real application, the Acrobot would not be
able to walk by virtue of stumbing of the moving leg upon
the ground. Therefore, it is necessary to bend the moving
leg during the walk. The direct extension of the Acrobot
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depicts in addition of knees and its control during a walk.
The recent state of the art in underactuated walking robots
is reflected in Westervelt et al. (2007); Chevallereau et al.
(2009).

In Čelikovský et al. (2013) an idea of an Acrobot embed-
ding into the 4-link was presented. The Acrobot embed-
ding consists in a definition of constraining functions for
knees with dependence on angle in the hip whereas the
angle in the hip is controlled in the same way as it would be
an Acrobot’s angle. By virtue of the embedding method, it
is not necessary to develop a new control strategy for the
4-link, but, the 4-link could be controlled using already
developed control strategies for the Acrobot and using
constraining functions for bending of the swing leg and
straighten of the stance leg during one step.

However, either the Acrobot or the 4-link are underac-
tuated mechanical systems and, in generall, some states
are not measureable due to lack of actuators or rotary
resolvers. In the case of the Acrobot or the 4-link it is not
obvious to know the angle between the first link and the
ground. Nevertheless, for the full state feedback controller
is necessary to measure or estimate all states of the system.
Either, it is possible to use an indirect method of mea-
surement of the underactuated angle, e.g. an laser beam
sensor as it is suggested in Anderle and Čelikovský (2010b)
or it is possible to estimate this angle using an observer.
A high gain observer for the Acrobot was developed and
used in Anderle and Čelikovský (2010a) and by virtue of
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embedding method the observer will be extended for the
4-link here.

The key idea of the novel approach presented here is
based on the combination of the embedding method from
Čelikovský et al. (2013) and the high gain observer from
Anderle and Čelikovský (2010a) and its extension accord-
ing to the embedding method in order to demonstrate the
advantage of the embedding approach. It was not neces-
sary to design a new observer for 4-link system. However,
by virtue of embedding method, the already developed
high gain observer could be successfully used.

The rest of the paper is organized as follows. The next
section briefly presents the model of the 4-link model
together with the main theoretical pre-requisites necessary
for the further tracking analysis. The sections 3 describes
the results from Čelikovský et al. (2013) whereas the
sections 4 describes the high gain observer from Anderle
and Čelikovský (2010a) and its extension. Simulations of
the 4-link walking are presented in Section 5. Final section
draws briefly some conclusions and discusses some open
future research outlooks toward an efficient underactuated
walking.

2. THE MODEL OF THE 4-LINK

The 4-link is a special case of n-link chain with n − 1
actuators attached by one of its ends to a pivot point
through an unactuated rotary joint. Therefore it belongs
in a class of underactuated walking robots. The 4-link
depicted in Figure 1 has four degrees of freedom and three
actuators placed among its rigid links, roughly speaking,
the 4-link has two leg with knees and three actuators.
Two actuators are placed in knees and one actuator is
placed between legs. Mechanical systems with one-sided
constraint are in the literature usually called Lagrangian
hybrid systems.

Walking robots or underactuated walking robots are
typical representatives of hybrid systems, i.e. systems
having continuous-time and discrete-time dynamics. The
continuous-time dynamics is described by differential
equations whereas the discrete-time dynamics is described
using an equation. Both dynamics are covered by a general
hybrid system model in the form

ẋ ∈ F (x, u), x ∈ C(x), (1)

x+ ∈ G(x, u), x ∈ D(x), (2)

where x ∈ R, F (x) is a set-valued mapping, C is a subset
of R, G(x) is a set-valued mapping, D is a subset of
R and u is an input. The general model (1,2) describes
wide variety of systems not only mechanical systems, but
e.g. switching systems, hybrid system automata, discrete
events in biological systems etc.

The continuous part of the 4-link robot occurs during a
walking, i.e. when one leg, usually called swing leg is in
air. The discrete part occurs when the swing leg touches
the ground. The collision between the swing leg and the
ground is called an impact. In general, the impact causes a
discontinuous change in velocities while positions remain
unchanged. Only for completeness, the second leg, which
is in contact with ground, is usually called stance leg.

q1

q2

−q3

q4

τ2

τ3

τ4

Fig. 1. The 4-link.

2.1 Continuous-time dynamics of the 4link

The continuous part, when the swing leg of the 4-link is
in air, is modelled by usual Lagrangian approach. The
resulting Euler-Lagrange equation is

d

dt

∂L
∂q̇1
− ∂L
∂q1

d

dt

∂L
∂q̇2
− ∂L
∂q2

...
d

dt

∂L
∂q̇4
− ∂L
∂q4


= u =


0
τ2
...
τ4

 , (3)

where u stands for vector of external controlled forces. The
system (3) is the so-called underactuated mechanical
system having the degree of the underactuation equal to
one, Spong (1998). Moreover, the underactuated angle is at
the pivot point. Equation (3) leads to a dynamic equation
in the form

D(q)q̈ + C(q, q̇)q̇ +G(q) = u, (4)

where D(q) is the inertia matrix which depends on vari-
ables q2, q3 and q4, C(q, q̇) contains Coriolis and centrifugal
terms, G(q) contains gravity terms and u stands for vector
of external forces, see Fantoni and Lozano (2002).

The configuration of the 4-link is described by the gener-
alized coordinates q and is bounded by one-sided constrait
represents the limitation that, in general, two solid bodies
do not penetrate each other. In our case, the limitation
means that the 4-link’s swing leg cannot goes under the
ground, i.e. the height of the swing leg’s end-point has to
be hendpoin(q) > 0.

2.2 Discrete-time dynamics of the 4-link

When the swing leg of the 4-link touches the ground, i.e.
hendpoint(q) = 0, the impact occurs. The result of this
event is instantaneous jump in angular velocities q̇ while
angles q remain unchanged.

The impact is modelled as a contact between two rigid
bodies. Crucial in the impact mapping is extended iner-
tia matrix De(qe). In order to obtain the matrix, it is
necessary to extend the original model of the 4-link (4)
by Cartesin coordinates of the end of the stance leg and

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2819



apply the identical procedure as in the previous case, i.e. in
obtaining the dynamical equation of the 4-link, especially
the matrix D(q).

There are different ways the impact can be modelled in
the literature Brogliato (1996); Hurmuzlu and Marghitu
(1994); Brach (1989); Keller (1986); Grizzle et al. (2001);
Chevallereau et al. (2009).

Nevertheless, the discrete part of the 4-link’s dynamics is
not taken into an account during the high gain observer de-
sign because the estimation of the underactuated angle is
done only during a continuos part of the step. The impact
has no influence on the estimation of the underactuated
angle q1 because 4-link’s angles q remain unchanges during
the impact. Relabelling legs due to change of the leg is
necessary only.

3. ACROBOT EMBEDDING INTO THE 4-LINK AND
ITS CONTROL

The key idea of the Acrobot embedding into the 4-link
model is straightforward. The angle in the hip of the 4-link,
q2 is controlled in the same way as it would be an Acrobot’s
angle whereas the remaining angles in knees are controlled
according to constraining functions φ3(q2), φ4(q2) for knees
control. The idea of Acrobot embedding into the 4-link
model was firstly introduced in Čelikovský et al. (2013).

Dependencies of angles q3 and q4 on angle q2 represented
by constraining functions φ3(q2), φ4(q2) for knees control
and new coordinates as q̄1, . . . , q̄4, ˙̄q1, . . . ˙̄q4, τ̄2, . . . , τ̄4 are
crucial for the embedding method.

The coordinate change taking the “old” coordinates in (3,
4) into new coordinates is defined as follows:

q̄1 = q1, q̄2 = q2,

˙̄q1 = q̇1, ˙̄q2 = q̇2, τ̄2 = τ2,

q̄3 = q3 − φ3(q2),

˙̄q3 = q̇3 −
∂φ3(q2)

∂q2
q̇2,

τ̄3 = q̈3 −
∂φ3(q2)

∂q2
q̈2 −

∂2φ3(q2)

∂q2
2

q̇2
2 ,

q̄4 = q4 − φ4(q2),

˙̄q4 = q̇4 −
∂φ4(q2)

∂q2
q̇2,

τ̄4 = q̈4 −
∂φ4(q2)

∂q2
q̈2 −

∂2φ4(q2)

∂q2
2

q̇2
2 ,

(5)

where q̈2, q̈3, q̈4 are substituted from (4). The definition of
constraining functions φ3(q2), φ4(q2) for knees control will
be discussed later. In Čelikovský et al. (2013) is shown
that transformation of coordinates (5) is invertible. For
more details see Čelikovský et al. (2013).

3.1 Partial exact feedack linearization of the embedded
Acrobot

The partial exact feedback linearization method is
based on a system transformation into a new system of
coordinates that displays linear dependence between some
auxiliary output and new (virtual) input Isidori (1996).
The partial exact feedback linearization is generated by

the suitable output function having the relative degree r
yields a linear subsystem of dimension r.

In Grizzle et al. (2005) it was shown that if the gener-
alized momentum conjugates to the cyclic variable is not
conserved (as it is the case of Acrobot or the embedded
Acrobot) then there exists a set of outputs that defines
a one-dimensional exponentially stable zero dynamics.

In the case of the embedded Acrobot there are two inde-
pendent functions with relative degree 3 which transform
the original system into the desired partial linearized form
with one dimensional zero dynamics, namely

σ =
∂L
∂ ˙̄q1

, (6)

p= q̄1 +

∫ q̄2

0

d̄11(s)−1d̄12(s)ds. (7)

In Čelikovský et al. (2008) it was shown that using the set
of functions with maximal relative degree, the following
transformation

ξ = T (q̄, ˙̄q) : ξ1 = p, ξ2 = σ, ξ3 = σ̇, ξ4 = σ̈ (8)

can be defined. In Čelikovský et al. (2013) particular form
of (11) was defined, namely

ξ1 = q̄1 +

∫ q̄2

0

d̄11(s)−1d̄12(s)ds,

ξ2 = d̄11(q̄2) ˙̄q1 + d̄12(q̄2) ˙̄q2,

ξ3 = −G1(q̄),

ξ4 = −∂G1

∂q̄1
(q̄) ˙̄q1 −

∂G1

∂q̄2
(q̄) ˙̄q2.

(9)

The bar above q, q̇ represents new coordinates (5) and the
same bar above dynamic equation’s matrices (4) represents
the dynamics of the embedded Acrobot.

Notice, that by (6,7) and some straightforward but labo-
rious computations the following relation holds

ṗ = d̄11(q̄2)−1σ, (10)

where d̄11(q̄2) is the corresponding element of the inertia
matrix D̄ of the embedded Acrobot. Applying (8), (10) to
(4) we obtain the dynamics of the embedded Acrobot in
partial exact linearized form as follows

ξ̇1 = d̄11(q̄2)−1ξ2, ξ̇2 = ξ3, ξ̇3 = ξ4,

ξ̇4 = α(q̄, ˙̄q)τ2 + β(q̄, ˙̄q) = w (11)

with the new coordinates ξ and the input w being well
defined wherever α(q̄, ˙̄q)−1 6= 0.

The system (11) can be used either for a design of a
reference step as follows Čelikovský et al. (2008) which
results in pseudo-passive reference trajectory or for design
exponentially stable state feedback to track a given refer-
ence trajectory.

Assume, the following reference system is used to generate
the reference trajectory

ξ̇1 = d̄11(q̄2)−1ξ2, ξ̇2 = ξ3, ξ̇3 = ξ4, ξ̇4 = 0. (12)

To obtain the exponentially stable state feedback, subtract
the original system (11) and the reference one (12) and
apply Taylor expansion
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ė1 = µ1(t)e1 + µ2(t)e2 + µ3(t)e3 + o(e),

ė2 = e3, ė3 = e4, ė4 = w,
(13)

where e := ξ − ξr. Definition of µ1,2,3(t) is given in

Čelikovský et al. (2008); Čelikovský et al. (2013).

By virtue of embedded Acrobot into the 4-link it is possible
to use the control approach developed for the Acrobot from
Čelikovský et al. (2008); Anderle et al. (2010); Anderle and
Čelikovský (2009, 2011a) to stabilize the tracking error
dynamics (13), i.e. to control the 4-link in a way resembling
the walking.

4. HIGH GAIN OBSERVER FOR 4-LINK

The tracking method in previous section based on the par-
tial exact linearization was developed under the assump-
tion that all state variables are available for measurement.
However, in the case of the 4-link this assumption is not
fulfilled because the underactuated angle between the 4-
link’s stance leg and the ground is not measured due to
lack of actuator or rotary resolver in this point.

In Anderle and Čelikovský (2010b) an idea of an observer
for the Acrobot was presented based on additional mea-
surement of a distance between a fixed point on the stance
leg and the ground. Whereas in Anderle and Čelikovský
(2010a) the idea of the high gain observer based on q2 and
q̇1 measurement was shown. In Anderle and Čelikovský
(2011b), the high gain observer was used in periodic walk-
ing of the Acrobot. The stability analysis of the periodic
walking was done numerically using the Poincaré method.

Let us here extend the high gain observer developed for the
Acrobot in order to estimate the underactuated angle q1

of the 4-link. By virtue of method of Acrobot embedding
into the 4-link, the extension of the high gain observer is
straightforward.

Assume that all states except the underactuated angle q1

are measured. The angular velocity q̇1 could be measured
using a gyroscope and remaining angular positions q2,3,4

and velocities q̇2,3,4 are measured by virtue of actuators
placed between each two links. The high gain observer
from Anderle and Čelikovský (2010a) is able to estimate
the angular velocity q̇2 and the extended high gain ob-
server is able to estimate the angular velocity q̇2 as well,
however, the knowledges of angular velocities q̇3,4 is essen-
tial for transformation of coordinates (5) for embedding
the Acrobot into the 4-link. Therefore we have admitted
angular velocities measurement.

In Anderle and Čelikovský (2010a) a slightly adapted
coordinate change (9) was defined, namely

η1 = p− q̄1, η2 = σ, η3 = σ̇, η4 = σ̈, (14)

then η̇1 = ṗ − ˙̄q1, so following the same path as when
deriving (11) one has in new coordinates

η̇1 = d̄11(q̄2)−1 η2 − ˙̄q1,

η̇2 = η3,

η̇3 = η4,

η̇4 = β(η) + α(η1, η3) τ̄ .

(15)

η1 is measurable because q̄2, ˙̄q1 are outputs of the system,
therefore, high gain observer can take the form

˙̂η1 = −L1(η1−η̂1) + d̄11(q̄2)−1 η̂2 − ˙̄q1,

˙̂η2 = −L2(η1−η̂1) + η̂3,

˙̂η3 = −L3(η1−η̂1) + η̂4,

˙̂η4 = −L4(η1−η̂1) + β(η̂) + α(η1, η̂3) τ̄ .

(16)

Denoting the observation error as ẽ = η̂ − η, one has
˙̃e1 = L1 ẽ1 + d̄11(q̄2)−1 ẽ2,

˙̃e2 = L2 ẽ1 + ẽ3,

˙̃e3 = L3 ẽ1 + ẽ4,

˙̃e4 = L4 ẽ1 + β(η̂)−β(η)+(α(η1, η̂3)−α(η1, η3)) τ̄ .

(17)

Now, gains L1,2,3,4 can be designed using the standard

high-gain technique, namely, take any L̃1,2,3,4 such that
the matrix 

L̃1 1 0 0

L̃2 0 1 0

L̃3 0 0 1

L̃4 0 0 0

 (18)

is Hurwitz. Define

L1 = ΘL̃1, L2 = Θ2L̃2, L3 = Θ3L̃3, L4 = Θ4L̃4, (19)

then the system (17) is exponentially GAS for Θ large
enough. Therefore ẽ(t) = η̂(t)− η(t)→ 0, i.e. η̂(t)→ η(t),
as t → ∞ and therefore (16) is the exponential observer
for (15).

The estimation of angle q̄1 is possible to obtain from (14),
namely

η3 = σ̇ = −Ḡ1(q̄), (20)
after a simple modification.

5. SIMULATIONS

Simulations of the 4-link with the underactuated angle
estimation are done for so called pseudo-passive trajec-
tory, developed in Čelikovský et al. (2008). Pseudopassive
trajectory is the one for which wr ≡ 0, i.e. there is no
input action in the exact feedback linearized coordinates.

The reference trajectory design is done in ξ coordinates.
From the fixed initial and final positions ξr1(0, T ) and
ξr3(0, T ) are determined. From the partially linearized form
and from the meaning of the variables it can be seen that
the above pseudo-passive feedback ensures the movement
of the centre of mass of the 4-link horizontally forward with
constant horizontal velocity. Therefore ξr4(t) ≡ (ξr3(T ) −
ξr3(0))/T , where T is time of the step. From partially
linearized coordinates ξr3(0), respectively ξr3(T ), represents
x-position in the beginning, respectively in the end, of
the step. The remaining reference step parameter ξr2(0)
is determined by simple numerical tuning.

Constraining functions defining dependencies of angles q3

and q4 on angle q2 represented by functions φ3(q2), φ4(q2)
are defined as follows. The initial and final values of the
functions result from initial and final posture of the 4-link,
i.e. both of them are bent. During the step, the swing leg
is bended whereas the stance leg is straighten. Moreover,
both functions are continuous.

The corresponding simulations for the reference trajectory
tracking with estimated angular positions q1 and with
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Fig. 2. Angular positions q1, q2, q3, q4 and references
(dotted line) for 1 steps walking using the feedback
controller with the high gain observer.
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Fig. 3. Angular velocities q̇1, q̇2, q̇3, q̇4 and references
(dotted line) for 1 steps walking using the feedback
controller with the high gain observer. The course of
velocities of q̇3 and q̇4 are the same and therefore their
curves overlap.

an initial error in angular positions and velocities are
shown in Figs. 2, 3. One can easily see the convergence
to the reference angular positions and velocities depicted
in figures with dotted line. The estimation of angle q1 was
used as an input for the state feedback controller.

A detail of underactuated angle q1 estimation using ex-
tended high gain observer is depicted in Fig. 4. The blue
curve is the real course of angle q1 whereas the black curve
is its estimation.

Animation of the corresponding 4-link walking is shown in
Fig. 5.

6. CONCLUSION

We extended the feedback controller with the high gain
observer for the tracking of the pseudo-passive reference
trajectory in order to demonstrate the Acrobot walking
without angle q1 measurement. The numerical simulations
and animation of one step show nicely convergence of the
tracking error.
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Fig. 4. An detail of estimation of angle q1 using extended
high gain observer. The blue curve is the real cource
of angle q1 whereas the black curve is its estimation.

Fig. 5. The animation of one step shown in time moments
with gaps ∆t = 0.08 s between them. Dashed line is
reference, the full one represents the actual 4-link.

The advantage of the embedding approach was demon-
strated. By virtue of embedding method, the already de-
veloped high gain observer for the Acrobot was successfully
used for the underactuated angle estimation of the 4-link.

A high gain observer is quite sensitive to a noise. Therefore
its direct connection with real sensors usually failed. How-
ever, the high gain observer could be connect to a Kalman
fiter which eliminates the sensor’s noise.

A numerical test of walking stability using method of
Poincare will be done immediately the multi-step walking
trajectory will be finished. Its design is current scope of
research.
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