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Abstract: Electrical impedance tomography is a portable imaging technique in which the image
represents internal conductivities within a body. Electrical measurements are made at the body
surface, and the internal conductivities are calculated. It is an inverse problem that can be solved
by comparing simulated results obtained from numerical simulations performed by the forward
problem and measured data. In this approach, the forward problem has a very important role.
The forward problem can be solved by the finite element method, and it is mainly influenced by
the mesh creation algorithm and the electrode model. This work proposes a mesh that has more
elements in the boundary and fewer elements in the center. The electrode model is approximately
a rectangular element in which the potentials at the external nodes are considered the same.
This fact can reduce the number of variables as it will be shown. The proposed mesh creation
algorithm is analyzed according to the discretization error theory. It is concluded that meshes
with higher density in the external ring have smaller discretization errors. Copyright c©2014
IFAC.
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1. INTRODUCTION

Electrical impedance tomography (EIT) is an imaging
modality that estimates the electrical conductivity distri-
bution within the body when a low amplitude current
pattern is applied to a body surface and the potential
at determined points of that surface is measured through
electrodes or, alternatively, when a potential is applied and
the current flowing through the surface is measured (Trigo
et al., 2004; Martins et al., 2011, 2012). It is an inverse
problem in which its solution can be determined by com-
paring measured data with simulated ones obtained from
the forward problem. Different objective functions can be
defined (Martins and Tsuzuki, 2013).

The forward problem can be solved by different methods:
finite element method (FEM), finite differences method
and boundary element method. The FEM has been popu-
larly chosen because of its flexibility for representing arbi-
trary geometries. The FEM uses a mesh with discretization
directly related to amount of required memory and the
computational processing time. Inverse problem solution
with high quality is desired; however, the available re-
sources must be kept in balanced (memory and CPU time).
The inverse problem solution quality is mainly influenced
by the electrode model and the internal triangle distri-
bution. It was observed that the current density is more
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intense near the electrode, and consequently a more refined
mesh around the electrode is desirable (Silva, 2012).

This work proposes 1) an algorithm to create EIT circular
meshes and 2) a new electrode model. The mesh is eval-
uated through the discretization error theory. This paper
is structured as follows. Section 2 explains the problem
formulation: forward problem, current patterns and mesh
discretization error. Section 3 explains how different FEM
meshes are created, the electrode model and the con-
ductance matrix calculation. Section 4 shows results and
discussions and, finally, the conclusions are in Section 5.

2. FORMULATION

The typical forward problem in EIT is, given the conduc-
tivity distribution σ and the current J injected through
boundary electrodes, to find the potential distribution φ
within Ω and in particular the resulting potentials at the
measurement electrodes φm. The frequencies used in EIT
are low enough so that the quasi-static approximation
holds, and thus one can ignore capacitive and inductive
effects. Under such quasi-static conditions, the solution of
the forward problem is rather simple as it only requires
solving the Laplace equation

∇ · (σ∇φ) = 0. (1)

At the boundary, currents are injected through electrodes;
thus the current density through the l−th electrode surface
Jl is given by

σ
∂φ

∂n̂
= Jl (2)

where n̂ is the external normal versor and zero elsewhere.
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2.1 Current Patterns

Data is collected by injecting current with a single source
and measuring voltage. Current is injected sequentially
to the body using a pair of electrodes. There are several
ways in which the pair of electrodes is switched and
the voltage measurements are collected in the literature.
Brown and Seagar (1987) suggested a method whereby
electrical currents are sequentially applied to the body
using a pair of adjacent electrodes, and voltages between
adjacent non current-carrying electrodes are measured.
This procedure is repeated, applying current between each
pair of adjacent electrodes to obtain a voltage data set.

2.2 Finite Element Model (FEM)

The inverse problem is formulated as given the injected
currents J and the potentials at measurement electrodes
φm, find the electrical conductivity distribution σ within
Ω. In practice, only a finite number of potential measure-
ments is made through the electrodes, so the Dirichlet
boundary condition is incomplete (Moura et al., 2010). For
an irregular domain and isotropic media, analytical solu-
tion to the Laplace equation (1) with boundary condition
(2) are unknown; thus, the partial differential equations
were approximated by the FEM, the domain is discretized
with triangular linear elements with constant conductivity.
The virtual potential principle associated with the Laplace
equation provides the local element matrices.

When the local element matrices are stated in terms of
global coordinates of the mesh, the global conductivity ma-
trix (Trigo et al., 2004), which includes electrode contact
impedance effects, is obtained; then the following relation
holds

K ·Φ = J (3)
where K(σ) ∈ <s×s is the conductivity matrix calculated
at a given particular distribution σp, Φ is a matrix contain-
ing nodal potentials corresponding to each applied current
pattern, and J represents p linearly independent current
patterns.

2.3 Discretization Error Theory

The inverse problem, where the objective is to find the
conductivity distributionK given applied current patterns
J and measured potentials Φ, can be solved as an op-
timization problem of the forward problem. The inverse
problem solution is directly affected by the insufficiently
refined mesh used in the forward problem. A correction
error can be used to overcome the insufficiently refined
mesh and simultaneously improve the inverse problem
solution quality.

Silva (2012) proposed a formulation that follows the theory
found in (Kaipio and Somersalo, 2004). Consider solving
the forward problem using a very refined mesh. The result
is a map of electric potentials to every node, and it
can be considered accurate. In other words, this mesh is
considered so refined that errors due to discretization are
negligible, and this is referenced as “observation model”.
One can use

Φ = f(ρ) (4)
where Φ are the accurate electric potentials, calculated
with the observation model, and ρ defines the state in

which the experiment occurred. Now, let f(ρ, h) represent
the accurate observation model, depending on the state ρ
and on the mesh refinement h. The smaller h is, the more
refined is the mesh. Finally, consider an additive error Φε,
produced by non-modeled phenomena. Now, the electric
potential Φ becomes

Φ = f(ρ, h) + Φε (5)

Consider a “reduced observation model”, defined by a
dimensionally reduced ρr and a coarser mesh with a larger
discretization parameter hr. The non-modeled phenomena
induced error becomes εr and, thus, the electric potentials
calculated for this reduced model becomes

Φr = f(ρr, hr) + Φr
ε . (6)

Manipulating (5) by adding and subtracting Φr, one has

Φ = f(ρ, h) + Φε + Φr −Φr

= f(ρ, h) + Φε + (f(ρr, hr) + Φr
ε)− (f(ρr, hr) + Φr

ε)

= f(ρr, hr) + (f(ρ, h)− f(ρr, hr)) + Φε

and using ν = (f(ρ, h)− f(ρr, hr)) + Φε, one has

Φ = f(ρr, hr) + ν. (7)

And now the accurate electric potentials can be computed
from a reduced model f(ρr, hr) using a coarse mesh,
using ν as discretization error correction factor. This
discretization error ν can be computed by solving forward
problem with a very refined mesh (the observation model)
and coarse meshes (the reduced models). The non-modeled
error will be considered zero, for simplicity.

3. FINITE ELEMENT METHOD MESH

In this section, the proposed mesh representation with
two distinct regions (internal circle and external ring) is
explained. The external ring includes the electrode model,
which is also explained in this section.

3.1 Mesh Creation

A mesh with two regions is proposed: external ring and
internal circle. The definition of two regions allows the use
of distinct mesh densities. The external ring is directly
connected to the electrode model. If more elements are
desired in the external ring then the electrode model
must allow variable number of elements as well. Both
the internal circle and the electrodes have independent
and controllable refinement levels. The external ring is a
transition region between the electrode and the internal
circle.

The electrodes refinement level is controlled by the number
of nodes on its base. Fig. 1(b) shows an electrode with just
three nodes in its base. On the other hand, Fig. 2(b) shows
an electrode with a highly refined base.

The internal circle refinement level is determined by the
number of nodes on its boundary, which can be arbitrarily
set. In Fig. 1(a), a mesh with a high density internal circle
is shown, but low density electrodes. In Fig. 2(a), a mesh
with a low density internal circle is shown, but high density
electrodes. In Fig. 2.(b), the difference in density between
both regions is clear, and the difference between this mesh
and the mesh shown in Fig. 1.
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(a)

(b)

Fig. 1. (a) A mesh with 30, 216 nodes, with a high
density internal circle and simple electrodes. (b) The
difference in refinement between regions in detail, for
the mesh shown in (a).

(a)

(b)

Fig. 2. (a) A mesh with 29, 074 nodes, with high density
electrodes and a low density internal circle. (b) The
difference in refinement between regions in detail, for
the mesh shown in (a).

A third mesh, with nodes more evenly distributed between
all regions, is show in Fig. 3. All these meshes have around
30 thousand nodes, but their external ring-internal circle
node distribution is different and they illustrate different
possibilities in node density for mesh creation.

(a)

(b)

Fig. 3. (a) A mesh with 29, 517 nodes, with medium density
internal circle and electrodes. (b) The difference in
refinement between regions in detail, for the mesh
shown in (a).

A2

A1

A3

P

V3 = (x3, y3)

V2 = (x2, y2)
V1 = (x1, y1)

x

y

Fig. 4. Triangular isoparametric element, the nodes are
counter clockwise enumerated.

3.2 Conductivity Matrix Determination

For triangular elements, we can define the following inter-
polation function

φe(x, y) = a+ bx+ cy (8)

where a, b and c are unknown constants to be determined.
Thus, the electrical potential on nodes 1, 2 and 3 of the
triangular element (see Fig. 4) becomes[

φe1
φe2
φe3

]T
=

[
a
b
c

]T
·

[
1 1 1
x1 x2 x3
y1 y2 y3

]
(9)

And, after some algebraic operations, (8) becomes

φe(x, y) =
1

2‖A‖

[
φe1
φe2
φe3

]T [
x2y3 − x3y2 y23 x32
x3y1 − x1y3 y31 x31
x1y2 − x2y1 y12 x21

][
1
x
y

]

where xij = xi − xj and yij = yi − yj , φei is the electrical
potential in a given node and ‖A‖ is the the element area.
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1 2 3

BA C

Fig. 5. Electrode model, for 3 base nodes.

And, finally, the elements of the conductivity matrix for a
single triangular element, are defined as

ke11 =
σ · h
4‖A‖

[
y223 + x232

]
, ke22 =

σ · h
4‖A‖

[
y231 + x231

]
(10)

ke33 =
σ · h
4‖A‖

[
y212 + x221

]
(11)

ke12 = ke21 =
σ · h
4‖A‖

[y23 · y31 + x32 · x13]

ke13 = ke31 =
σ · h
4‖A‖

[y23 · y12 + x32 · x21]

ke32 = ke23 =
σ · h
4‖A‖

[y31 · y12 + x13 · x21]

The global conductivity matrix K can be defined as K =∑
ke. This matrix is symmetric and singular.

3.3 Electrode Model

The electrode is modelled as shown in Fig. 5. There is a
metallic plate in contact with the upper surface, making
nodes A, B and C have the same electrical potential. The
number of triangular elements in the electrode is controlled
by one the refinement parameters mentioned above. From
(3), for the mesh shown in Fig. 5 the following linear
system is defined

kAA kAB 0 kA1 kA2 0
kBA kBB kBC 0 kB2 kB3

0 kCB kCC 0 0 kC3

k1A 0 0 k11 k12 0
k2A k2B 0 k21 k22 k23
0 k3B k3C 0 k32 k33




φA
φB
φC
φ1
φ2
φ3

 =


JA
JB
JC
J1
J2
J3

 (12)

Considering φb := φA = φB = φC , one has

φb(kAA + kAB) + φ1kA1 + φ2kA2 = JA

φb(kBA + kBB + kBC) + φ2kB2 + φ3kB3 = JB

φb(kCB + kCC) + φ3kC3 = JC

φbk1A + φ1k11 + φ2k12 = J1

φb(k2A + k2B) + φ1k21 + φ2k22 + φ3k23 = J2

φb(k3B + k3C) + φ2k32 + φ3k33 = J3
Thus, (12) becomes kbb kb1 kb2 kb3k1b k11 k12 0

k2b k21 k22 k23
k3b 0 k32 k33


 φbφ1φ2
φ3

 =

 JA + JB + JC
J1
J2
J3

 (13)

where

kbb = kAA + 2kAB + kBB + 2kBC + kCC
kb1 = k1A, kb2 = kA2 + kB2, kb3 = kC3 + kB3

Therefore, the electrode model can be simplified to the
model shown in Fig. 6. The number of variables is reduced,
and consequently the computational load is also reduced.

1 2 3

b

Fig. 6. Simplified electrode model, with 3 base nodes.

C D M N

i j

A B

1 2 3 4

· · ·

Fig. 7. A generic electrode model.

M N

ji

e1

e2

Fig. 8. An electrode subdivision.

3.4 Electrode Model with Multiple Number of Elements

The electrode with multiple number of elements is mod-
elled as shown in Fig. 7. There is a metallic plate in contact
with the upper surface, making all nodes on such surface
– A, B, C, D and so on – have the same electric poten-
tial. Consider the electrode subdivision shown in Fig. 8.
A complete electrode is formed by this subdivision, and
the number of these cells is controlled by the external
ring parameter. This subdivision contains two triangular
elements, and the following linear system is defined kMM kMN kMi kMj

kNM kNN 0 kNj
kiM 0 kii kij
kjM kjN kji kjj


 φMφNφi
φj

 =

 JMJNJi
Jj

 (14)

Considering φb := φM = φN and that kab = kba, (14)
becomes [

kbb kbi kbj
kbi kii kij
kbj kij kjj

][
φb
φi
φj

]
=

[
JM + JN

Ji
Jj

]
(15)

where

kbb = kMM + 2kMN + kNN , kbi = kMi, kbj = kMj + kNj .

Considering that all upper nodes from Fig. 7 – A, B, C and
so forth – have the same electrical potential, one can reduce
the number of variables, reducing the size of the matrix
and, thus, reducing the computational cost. Therefore, the
electrode model can be simplified to the model shown in
Fig. 9.

4. RESULTS

As explained previously, the meshes have two regions:
external ring and internal circle. Fig. 10 shows the number
of nodes range representing the domain space of the
studied meshes. On the x-axis, the number of nodes in
the external ring is shown. On the y-axis, the number of
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b

1 2 3 4 n· · ·

Fig. 9. Simplified electrode model.
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Fig. 10. Explored space of meshes, considering the external
ring and internal circle regions nodes number. N NER
= Number of nodes in the external ring, N NIC =
Number of nodes in the internal circle. Color indicates
the total number of nodes.

nodes on the internal circle. The color indicates the total
number of nodes.

200 meshes were analyzed, with a total number of nodes
ranging from 606 to 186, 477. The external ring-internal
circle ratio ranges from 0.08 to 46.29. An additional more
refined mesh, with 459, 624 nodes, is created to be used as
reference, as described by the discretization error theory.
The domain is considered to have a saline solution and
the electrode conductivity is 20 times the saline solution
conductivity.

The current is applied to the model in “jump-three”
patterns, that is, the current is applied on electrodes that
are separated by three electrodes. The electric potential
distribution determined by the forward problem, for the
reference mesh, is shown in Fig. 11. The electric potential
measured at each of the 31 electrodes is shown in Fig. 12. It
is important to note that the current is applied on the first
electrode, escaping from the fifth. The 32− th electrode is
not shown, as it is taken as the ground node.

As previously explained, the ground is considered as node
32 in all meshes. The ground is an arbitrary potential
value chosen to equalize the potentials among different
meshes. It can be chosen such that the difference between
the electrode potentials from the observation model and
the reduced model is minimized. The equalization is rep-
resented as the minimization of φε formulated as

min
φε

{
Σ32
i=1(φi − φri − φε)2

}
= Σ32

i=1

∂(φi − φri − φε)2

∂φε
= 0.

Fig. 11. Electrical potential distribution for the reference
mesh.
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Fig. 12. 31 Electrodes and their electrical potentials for
the reference mesh.
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Fig. 13. Graph showing the relation between the mesh total
number of nodes (horizontal) and the ratio between
external and internal nodes (vertical). Color indicates
the module of ν (mV).
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Fig. 14. Graph showing the potential errors (in color) from
the current injecting electrodes associated with the
number of nodes from the external ring (vertical) and
the internal circle (horizontal).

For all meshes created, the module of ν (see (7) – quadratic
error between the observation model – reference mesh –
and the reduced model – coarse mesh) was calculated
and it is compared with the total number of nodes, and
the ratio between external and internal region number of
nodes, refer to Fig. 13. As it can be seen, higher ratios
indicate smaller errors, although this fact is not conclusive.

In a comparison between those three meshes shown in
Figs. 1, 2 and 3, the quadratic error was, respectively,
43.61, 21.3 and 38.33. The mesh most refined on the
external ring has the smallest error, whereas the mesh most
refined on the internal ring has the largest error. These
three meshes are indicating that it is more important to
analyze each region separately instead of globally at once.

Figure 14 shows the potential errors between the current
injecting electrodes at each mesh classified according to
the number of nodes from the external ring and the
internal circle. The color represents the error value range.
It is clear that averagely the number of nodes in the
external ring reduces the potential error between current
injecting electrodes. Fig. 15 shows a similar result for the
no current injecting electrodes. The result shows a very
noisy influence where almost no tendency can be observed.

5. CONCLUSIONS AND FUTURE WORKS

Based on the results under the explored families of meshes,
it is possible to conclude that the external ring influences
the current injecting electrode potential. Thus, properly
choosing the refinement levels in the internal circle and
exterior ring can effectively reduce the number of nodes
needed to achieve a desired quality level. By reducing the
total number of nodes the computational cost also reduces.
It is a balance between quality and resource usage. A
possible mesh evaluation metrics is the potential error for
the current injecting electrode. The ground equalization
where ν is minimized showed consistent results. The
determination of which mesh is suitable for the EIT inverse
problem is left as future work.
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Fig. 15. Graph showing the potential errors (in color) from
the no current injecting electrodes associated with the
number of nodes from the external ring (vertical) and
the internal circle (horizontal).
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