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Abstract: In this paper the regulation problem for linear continuous-time systems by linear
state-feedback under linear state and/or control constraints is investigated. This problem, named
the Linear Constrained Regulation Problem, has been extensively studied when the regulation
concerns an equilibrium situated in the interior of the domain of admissible states. In this paper
the case when the desired equilibrium state is on the boundary of the domain of admissible
states is considered. The tools used for the analysis and design of this kind of control problems
are the conditions of positive invariance of polyhedral sets, Lyapunov-like polyhedral functions,
LMI methods and eigenstructure assignment techniques.
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1. INTRODUCTION

The Linear Constrained Regulation Problem (LCRP)
(Bitsoris and Vassilaki, 1990), namely the regulation of
linear systems by linear state-feedback under linear state
and/or control constraints has been the object of intensive
research work for both continuous-time and discrete-time
systems since the early publications on this subject (Gut-
man and Hagander (1985), Vassilaki et al. (1988), Ben-
jaouia and Burgat (1988), Blanchini (1991)). For the case
of continuous-time systems, the problem has been faced
by applying optimization methods (Vassilaki and Bitsoris,
1989), eigenstructure assignment approaches (Castelan
and Hennet (1993), Tarbouriech and Burgat (1994)) or
Lyapunov function based methods (Gutman and Hagan-
der, 1985). For the stability analysis, both quadratic and
polyhedral Lyapunov functions has been used (Bitsoris
(1991), Castelan and Hennet (1994)). In all these pub-
lications, the regulation is made around an equilibrium
state situated in the interior of the region of the set where
the state constraints are respected. In many engineering
problems however, the regulation around an equilibrium
lying on the boundary of this set is necessary. For this
kind of problems the classical methods cannot be applied
and design control methods are missing. The object of
this paper is to present new results on the LCRP for
continuous-time systems concerning the regulation around
an equilibrium situated on the boundary of domain de…ned
by the state constraints. The tools used for the analysis
and design of this kind of control problems are the condi-
tions of positive invariance of polyhedral sets, Lyapunov-
like polyhedral functions, LMI methods and eigenstructure
assignment techniques.

The paper is organized as follows: In Section 2, the
notations adopted in this paper and the problem statement
are presented. In Section 3, conditions guaranteeing the
existence of a state-feedback control making the whole
region de…ned by the state constraints an admissible
domain of attraction are established. It is shown that
if such a control exists then it can be determined by
solving a linear programming problem. In the following
sections, we investigate the case when a control resulting
to the maximal admisssible domain of attraction does not
exists. Two particular cases are considered: In section 4, we
consider the case when the cone on which the equilibrium
is situated can become positively invariant and in Section
5. the case when no linear state-feedback control making
this cone positively invariant exists. For both cases design
techniques for the determination of a solution to the LCRP
are proposed.

2. THE LINEAR CONSTRAINED REGULATION
PROBLEM

In this paper, capital letters denote real matrices, lower
case letters denote column vectors or scalars, T denotes
the time set T = [01), R denotes the real -space, R+
(R¡) is the nonnegative orthant (non positive orthant) of
the real -space, R£ the set of real  £  matrices. 
denotes the £  identity matrix, 0£ denotes the £ 
matrix with zero elements and  2 R is the vector  =
[ 1 1 ¢ ¢ ¢ 1 ] . For two real vectors  = [1 2  ]



and  = [1 2  ]
 ,    ( · ) is equivalent

to    ( · )  = 1 2  . Similar notation
is applied for real matrices. A matrix  = () with
nonnegative elements, that is  ¸ 0 for all  and , is
said to be a nonnegative matrix while a square matrix
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 = () with nonnegative o¤-diagonal elements, that is
 ¸ 0 for all  6= , is said to be a Metzler matrix. Finally,
for square matrices  2 R£,  Â 0 ( º 0) means that
 is positive de…nite (positive semi-de…nite).

If  2 R£ and  2 R then P() denotes the
polyhedral set

P() 4= f 2 R  :  · g
and C() denotes the polyhedral proper cone

C() 4= f 2 R  :  · 0g
In the case when  2 R£ and det 6= 0, C() is
said to be a simplicial proper cone. If  2 R£ is a
positive de…nite matrix and  is a positive real number,
then Q() denotes the ellipsoidal set

Q( ) 4= f 2 R :  · g
Finally, if () is a continuous function  : R ! R+, and
 2 R, then R( ) denotes the set

R( ) 4= f 2 R : () · g
We consider linear continuous-time systems described by
di¤erential equations of the form

_() = () +() (1)
where  2 R is the state vector,  2 R is the input
vector,  2 T is the time variable and  2 R£.  2
R£.

The state vector has to satisfy linear constraints of the
form

 ·  (2)
where  2 R£ and  2 R+. The control input  has
also to satisfy linear constraints of the form

 ·  (3)
where  2 R£ and  2 R+.
The Linear Constrained Regulation Problem (LCRP) con-
sists in the determination of a linear state feedback control
law  =  and of a domain of attraction D µ P()
such that for all initial states 0 2 D the corresponding
trajectories (;0) of the resulting closed-loop system

_() = (+ )() (4)
converge to the equilibrium asymptotically while respect-
ing the linear state and/or control constraints (2) and/or
(3) respectively. Such a set D is said to be an admissible
domain of attraction.

The notions of positively invariant and linearly controlled
invariant sets de…ned below play an important role in the
investigation of the LCRP.

De…nition 1: The subset D ½ R of the state space
of the autonomous system ( + 1) = () is positively
invariant if all trajectories (;0) starting from D remain
in it, that is (;0) 2 D for all 0 2 D and  2 T .
De…nition 2: The subset D ½ R of the state space of
system _() = ()+() is linearly controlled invariant
if there exists a linear state-feedback control  =  such
that D is a positively invariant set of the resulting closed-
loop system _() = (+ )().

Set conditions for a linear state feedback control law
together with a domain D ½R to be a solution to the
LCRP are given by the following theorem:

Theorem 1: The control law  =  is a solution of the
LCRP if and only if there exists a positively invariant set
D ½ R of the resulting closed-loop system (4) such that

D µ P() (5)
D µ P( ) (6)

lim(;0) = 0 80 2 D
In the case when the origin is an interior point of the set
P() and the pair () is stabilizable, this problem
has always a solution because any stabilizing control
together with a su¢ciently small positively invariant set
(e.g. an ellipsoidal set D = Q( )) constitute a solution
to the LCRP. Thus the interest is to derive the control law
 =  that results to the largest admissible domain of
attractionD, or/and to an admissible domain of attraction
D with guaranteed performance. This problem has been
extensively investigated. However, in the case when the
desired equilibrium  = 0 is on the boundary of the
set P() the stabilizability of the pair () does not
guarantee the existence of a solution to the LCRP. In this
case, the methods developed when desired equilibrium is
an interior point of set P() cannot be applied. The aim
of this paper is to develop methods for solving the LCRP
when the desired equilibrium  = 0 is on the boundary
of the set P().

3. MAXIMAL DOMAINS OF ATTRACTION

If the desired equilibrium state  = 0 is on the boundary
of the set P() then at least one of the boundary
hyperplanes   =  of the set P() passes through
the origin, that is  = 0. In order to simplify the
notation, we assume that the desired equilibrium  = 0
of the closed-loop system (4) is situated on the boundary
hyperplanes   =   = 1 2     . Then
 = 0  = 1 2   and   0  = + 1 + 2  .
Thus, the inequality  ·  which de…nes the polyhedral
set P() is written as

1 · 0
2 · 2

with

1
4
=

26664
11
12
...
1

37775 =
26664
1
2
...


37775  2 4=
26664
21
22
...
2

37775 =
26664
+1
+2
...


37775 

2
4
=

2664
21
22
...

2(¡)

3775 =
2664
+1
+2
...


3775
Thus,

P() = C(1) \ P(2 2)
where C(1) denotes the polyhedral proper cone de…ned
by inequality 1 · 0.
We …rst investigate the case when there exists a state-
feedback control  =  making the whole region
P() = C(1) \ P(2 2) an admissible domain of
attraction.

Theorem 2: If the set C(1)\P(2 2) is bounded and
for a matrix  2 R£ there exist a real number , two
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nonnegative matrices 21 2 R(¡)£ and  2 R£ and
two Metzler matrices11 2 R£ and22 2 R(¡)£(¡)
satisfying the relations

1(+ ) = 111 (7)

2(+ ) = 211 +222 (8)

222 · ¡2 (9)

  0 (10)



·
1
2

¸
=  (11)



·
0
2

¸
·  (12)

 ¸ 0 (13)
then the set D = C(1) \ P(2 2) is an admissible
domain of attraction of the resulting closed-loop system
(4).

Proof: It is su¢cient to prove that all the hypotheses
of Theorem 1 are satis…ed. By virtue of Farkas lemma,
conditions (11)-(13) are equivalent to the set relation
P(1 0) \ P(2 2) µ P( ) or, equivalently, to the
set relation C(1) \ P(2 2) µ P( ). To complete
the proof, we shall prove that  =  is a stabilizing
control in D = C(1) \ P(2 2) and C(1) \ P(2 2)
is positively invariant. Condition (7) together with the
hypothesis that matrix 11 is Metzler imply the positive
invariance of the polyhedral cone C(1). Therefore, 0 2
C(1) implies that (;0) 2 C(1) 8 2 T . Let () be
the continuous function de…ned by relation

()
4
= max
1··¡

½
(2)
2

¾
4
= max
+1··

½
 



¾
(14)

We de…ne the total-time derivative _()(4) of function ()
with respect to system (4) as

_(())(4) = lim
!0+

sup
[(+ )]¡ [()]



where () denotes the trajectory of system (4). The
function () is positive de…nite in C(1)\P(2 2), that
is (0) = 0 and ()  0 for all  2 C(1)\P(2 2) and
 6= 0. This holds because otherwise there would exist
a  2 C(1) \ P(2 2) ,  6= 0 such that 2 · 0.
Then for any   0 it would follow that 1() · 0 and
2() · 0  2 which would contradict the hypothesis
that set C(1) \P(2 2) is bounded.
For a  2 C(1) \ P(2 2) let   = 1 2  ¹ be the
indices 1 ·  · ¡  for which

()
4
= max
1··¡

½
(2)
2

¾
=
(2)
2

Then,
(2) = ()2  = 1 2  ¹ (15)

(2)  ()2  = 1 2  ¹  6=  (16)

1 · 0 (17)
and

_(())(4) = max
1··¹

½
(2 _())
2

¾
Therefore, from (8)-(9) it follows that

_(())(4) = max
1··¹

½
(2 _())
2

¾
= max
1··¹

½
(2(+ ))

2

¾
= max
1··¹

½
((211 +222))

2

¾
· max
1··¹

½
(222)
2

¾
because 1 · 0 and 21 ¸ 0. Furthermore, from (15)
and (16) it follows that

(222) · ()(222)
because the matrix has nonnegative o¤-diagonal elements.
Therefore,

_(())(4) · max
1··¹

½
()(222)

2

¾
· max
1··¹

½
(¡2
2

¾
() = ¡()

Thus, _(())(4) is negative de…nite in C(1) \ P(2 2)
because   0. This, in turn, implies that lim

!1(;0) = 0

for all 0 2 C(1) \ P(2 2) because the function ()
is continuous. In addition, from _(())(4) · ¡() for
all 0 2 C(1) \ P(2 2) and the fact that C(1) is
positively invariant it follows that C(1)\P(2 2) is also
positively invariant. Thus, all the hypotheses of Theorem
1 are sati…ed. Consequently, the set C(1)\P(2 2) is
an admissible domain of attraction. ¥
Remark 1: A polyhedral set can be viewed as the
intersection of translated polyhedral proper cones. If these
cones are positively invariant then the polyhedral set
is also positively invariant. This condition is su¢cient
but not necessary. In Theorem 2 however, it has been
shown that in the case when the origin is a vertex of a
polyhedral set then the positive invariance of the cone
C(1) corresponding to this vertex is a necessary condition
for the positive invariance of the polyhedral set. This is
expressed by condition (7) and the hypothesis that 11 is
a Metzler matrix. ¤
Using the result established in Theorem 1, we can deter-
mine a control law  =  corresponding to a maximal
admissible domain of attraction D = C(1)\P(2 2) If
such a control law exists, it can be determined by solving
the linear programming problem

max
112122

fg (18)

under constraints (7)-(13).

a) If argmaxfg  0 and the set C(1) \ P(2 2)
is bounded, then the so obtained control  =  is a
stabilizing one and C(1) \ P(2 2) is an admissible
domain of attraction. This is also true in the case when
the set C(1)\P(2 2) is unbounded provided that the
resulting closed-loop matrix  +  is Hurwitz. In both
cases, the so obtained control law provides the greatest
rate of convergence if the distance from the origin of a
state  2 C(1) \ P(2 2) is measured by (), ()
being the scalar function de…ned by (14).
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b) If argmaxfg = 0 then the set C(1) \ P(2 2) is
positively invariant and is also an admissible domain of
attraction provided that matrix + is Hurwitz.

c) Finally, if the optimization problem (18) is not feasible
or is feasible but argmaxfg  0 then there does not
exist any control law making the set C(1) \ P(2 2)
positively invariant and as a result neither an admissible
domain of attraction. This means that the maximal set
C(1) \ P(2 2) cannot be an admissible domain of
attraction. Therefore, in these cases, if the LCRP has a
solution, then the admissible domain of attraction will
be a strict subset the polyhedral set P() = C(1) \
P(2 2). These cases are investigated in the following
sections of the paper.

4. DOMAINS OF ATTRACTION OF THE FORM
D = C(1) \D2, D2 ½ P(22)

We …rst consider the case when the maximal set C(1) \
P(2 2) cannot be an admissible domain of attraction
but a control  =  rendering the cone C(1) positively
invariant exists. Then a set of the form D = C(1) \ D2
with D2 ½ P(2 2) may be an admissible domain of
attraction.

Conditions for the existence of a stabilizing control  =
 rendering the cone C(1) positively invariant are
established in the following theorem:

Theorem 4: There exists a control  =  that stabilizes
the system (1) and renders the cone C(1) positively
invariant if and only if there exist a Metzler matrix
11 2 R£ and two matrices  2 R£,  =  and
 2 R£, satisfying the relations

1+1 = 111 (19)
¡ Á 0 (20)

 +   ++ Á 0 (21)
Proof : a) Su¢ciency: If relation (20) is satis…ed, then
 6= 0. Thus, setting

 =  ¡1 (22)
from (19) it follows that 1( +  ) = 111 which
implies the positive invariance of the cone C(1) with
respect to the closed-loop system _() = (+ )() be-
cause, by hopotheses, 11 is a Metzler matrix. Moreover,
taking into account that matrix  is symmetric, from (21)
it follows that ( +¡1  ) + (+¡1) Á 0
or equivalently

( +  ) + (+ ) Á 0 (23)
because, by (22),  ¡1 =  . Finally, from (20) it follows
that matrices  and ¡1 are positive de…nite and thus
relation (23) is equivalently written as (+  )¡1 +
¡1(+  ) Á 0. This means that () = ¡1 is a
Lyapunov function for the system _() = ( +  )().
Therefore  = ¡1 is the gain matrix of a stabilizing
linear state-feedback control for system (1).

b) Necessity: If there exists a stabilizing control  = 
then there also exists a symmetric positive de…nite matrix
 that satis…es the Lyapunov matrix inequality

(+ ) +  (+ ) Á 0 (24)
Since matrix  is positive de…nite their inverse exists and
is also positive de…nite. Therefore, there exists a matrix

 such that  =   and thus relation (24) is written as
 (¡1+ )+ (¡1+ ) Á 0 or, equivalently,
(¡1+ ) +(¡1+ ) Á 0. Setting  = ¡1 we
obtain condition (21).

If, in addition, the control law  =   =  ¡1 renders
the cone C(1) positively invariant, then by virtue of
Theorem 2, there exists a Metzler matrix 11 such that
1(+  ) = 111 or 1(+¡1) = 111 or,
…nally, 1(+ ) = 111.¥
By solving relations (19)-(21), we obtain not only a sta-
bilizing control  =  ¡1 that renders the cone C(1)
positively invariant, but also a Lyapunov function () =
¡1 for the resulting unconstrained closed-loop sys-
tem. This or any other quadratic Lyapunov function
() =  for the resulting closed-loop systen can then
be used for the construction of an admissible domain of at-
traction of the formD = C(1)\D2 where D2 = Q( ), 
being a positive scalar such that C(1)\Q( ) ½ C(1)\
P(2 2). Admiisible domains of attraction can also be
obtained by simply determining a polyhedral positively in-
variant set P(¤2 ¤2) for the resulting closed-loop system
such that C(1) \ P(¤2 ¤2) ½ C(1) \ P(2 2)These
approaches require the determination of a solution of
a nonlinear problem which, generally is not easy to be
solved. In the following subsection we show how this can
be done in the case when the equilibrium is situated on one
boundary hyperplane of the state constraint set P().

4.1 Equilibrium on one boundary hyperplane

In the usual case when only one boundary hyperplane of
the polyhedral set P() = C(1) \ P(2 2) passes
through the origin, the matrix 1 is a line vector 11
and thus C(1) degenerates to a half space de…ned by the
relation 11 · 0. Then, the necessary and su¢cient con-
ditions (19)-(21) for the existence of a stabilizing control
 = ¡1 rendering the half-space 11 · 0 positively
invariant become

11+ 

11 = 11


11 (25)

 +   ++ Á 0 (26)
11  0 (27)
¡ Á 0

Conditions (25) and (27) mean that 11 is a left eigenvector
of matrix  + ¡1 =  +  associated with a
nonnegative eigenvalue 11. Therefore, there exists an
admissible domain of attraction of the form C(11)\2 if
and only if there exists a stabilizing control that assignes
11 as a left eigenvector of matrix + . In such a case,
11  0. Consequently, if a stabilizing control  =  that
assigns 11as a left eigenvector of matrix  +  exists,
then its gain matrix  = ¡1 can be determined by
solving the parametrized convex problem (25) and (26)
with a negative scalar parameter 11.

Having computed a stabilizing control making the half-
space C(11) positively invariant, the next step is the
determination of an admissible domain of attraction. Two
approaches are proposed:

4.1.1 Mixed polyhedral-ellipsoidal domains of attraction
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We …rst establish a method for determining admissible
domains of attraction of the form D = C(11) \ Q( ),
that is domains that are the intersection of the half
space C(11) and of an ellipsoid de…ned by an inequality
 · . The elipsoidal set Q( ) is constructed
by determining a matrix  so that () =  is
a Lyapunov function for the stable closed-loop system.
Such a matrix is the matrix  = ¡1, where  is the
positive de…nite matrix resulting from the parametrized
LMI problem (25)-(26). Any other positive de…nite matrix
 satisfying the relation (+ )+ (+ ) Á 0may
also be used. By Theorem 1, the value of parameter  must
be chosen so that C(11) \ Q( ) ½ C(11) \ P(2 2)
and C(11) \ Q( ) ½ P( ). These relations are
satis…ed if Q( ) ½ P(2 2) and Q( ) ½ P()
or, equivalently (S. Boyd et al, 1994), if

2
¡12 · 2  = 1 2  ¡  (28)

and
( ) 

¡1( ) ·   = 1 2  (29)
Thus, by solving the linear programming problem

maxfg (30)

under constraints (28) and (29) we determine the maxi-
mal hyperellipsoid Q( ) included in the sets P(2 2)
and P( ). Since all sets Q( ) for   0 are attrac-
tive, the set D = C(1) \Q( ̂) with ̂ = argmaxfg is
an admissible domain of attraction.

4.1.2 Polyhedral domains of attraction

The second approach consists in determining a polyhedral
admissible domain of attraction of the form D = C(11) \P(¤2 ¤2), that is a domain of attraction which is the
intersection of the half space C(11) and of a polyhedral
set P(¤2 ¤2). To this end, by applying one of the well
known methods of construction of polyhedral positively
invariant sets for stable linear systems (Bitsoris (1991),
Castelan and Hennet (1994), Tarbouriech and Burgat
(1994), Blanchini and Miani (2007)) we determine a poly-
hedral positively invariant set P(¤2 ¤), ¤2 2 R¤£,
for the resulting asymptotically stable system (4). Since
all polyhedral sets P(¤2 ¤) with   0, by scaling
the set P(¤2 ¤), are also positively invariant, by virtue
of Theorem 1, for constructing an admissible domain of
attraction it is su¢cient to determine a  such that

C(11) \ P(¤2 ¤) ½ C(11) \ P(2 2) (31)

C(11) \ P(¤2 ¤) ½ P( ) (32)
This can be achieved by using the following result:

Theorem 5: The set relations (31) and (32) are satis…ed
if and only if there exist matrices 1 2 R(¡)£, 2 2
R(¡)£¤ and  2 R£(1+¤) such that ̂ = ¡1

1

11 +2

¤
2 = 2 (33)

2¤ · ̂2 (34)



·
11
¤2

¸
=  (35)



·
0
¤

¸
· ̂ (36)

 ¸ 0  ¸ 0  = 1 2

Proof : The set relation (31) and (32) are equivalent
written as·

11
¤2

¸
 ·
·
0
¤

¸
)
·
11
2

¸
 ·
·
0
2

¸
·
11
¤2

¸
 ·
·
0
¤

¸
)  · 

By Farkas Lemma, these relations are satis…ed if and only
there exist nonnegative real matrices  2 R£(1+¤) and
 2 R£(1+¤) such that



·
11
¤2

¸
=

·
11
2

¸
and 

·
0
¤

¸
·
·
0
2

¸
(37)



·
11
¤2

¸
=  and 

·
0
¤

¸
·  (38)

Partitioning matrix  as follows

 =

·
1 2
3 4

¸
with 1 2 R 2 2 R1£¤ 3 2 R£ and 4 2 R£¤,
relations (37) are equivalently written as

1

11 +2

¤
2 = 


11

3

11 +4

¤
2 = 2

2¤ · 0
4¤ · 2

These relations are satis…ed for 2 = 0 1 =  and
3


11 + 4

¤
2 = 2 and 4¤ · ̂2, ̂ = ¡1. Thus,

setting 1 = 3 and 2 = 4, we obtain conditions (33)
and (34).¥
According to this theorem, starting from a positively
invariant set P(¤2 ¤) = P(¤2 ̂¡1¤) for the resulting
closed-loop system we can obtain an admissible polyhedral
domain of attraction P(¤2 ¤) = P(¤2 ̂¡1¤) by
solving the linear programming problem

min
12̂

f̂g (39)

under constraints (33)-(28) and  ¸ 0  ¸ 0  =
1 2. It is clear that the so obtained admissible domain
D = C(1)\P(¤2 ¤) is not unique because the asymp-
totically stable linear system (4) possesses many positively
invariant polyhedral sets P(¤2 ¤). It is however possible
to enlarge an initially determined admissible domain of
attraction not by scaling but by using the recently estab-
lished approach of enlargement of positively invariant set
with speci…ed complexity (Athanasopoulos et al. 2014)

5. DOMAINS OF ATTRACTION OF THE FORM
 = (¤1) \2, (¤1) ½ (1)

We consider now the case when there does not exist
any stabilizing gain matrix  and nonnegative matrix
11 satisfying condition (7). This means that the cone
C(1) cannot be positively invariant and thus its faces
cannot be boundary hyperplanes of an admissible domain
of attraction. A "quadratic" approach consisting in the
determination of a paraboloidal positively invariant set
R( 0) ½ C(1) with R( 0) being a set de…ned by
a second order polynomial inequality () · 0 where
() =  + . is naturally excluded if C(1) is a
proper cone. It can be shown that it is also excluded in
the case when the cone C(1) is degenerated to a half
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space 11 · 0. Therefore a natural candidate admissible
domain of attraction will be of the form D = C(¤1) \ D2
with C(¤1) µ C(1).
For a set D = C(¤1) \ D2 to be an admissible domain of
attraction it is necessary that the cone C(¤1) is positively
invariant and C(¤1) µ C(1). This is equivalent to the
existence of two matrices ¤11 2 R£ and  2 R£
such that

¤1(+ ) = 
¤
11

¤
1 (40)

¤ ¸ 0   = 1 2    6=  (41)
¤1 = 1 (42)
 ¸ 0 (43)

Relations (40) and (41) guarantee the positive invariance
of the proper cone C(¤1) and relations (42) and (43) are
equivalent to the set relation C(¤1) µ C(1).
The determination of a gain matrix  and of a cone
C(¤1) with ¤1 satisfying relations (40)-(43) is in general
a nonlinear problem which however for some special but
important cases can be solved by convenient eigenstructure
assignment approaches. In the following subsection, the
important particular case when only one boundary hyper-
plane of the set passes through the origin is considered.

5.1 Equilibrium on one boundary hyperplane

As already mentioned, when only one boundary hyper-
plane of set C(1) \ P(2 2) passes through the origin,
the cone C(1) is degenerated to a half space de…ned by
relation 11 · 0.
If the pair () is controllable then by an eigenvalue
assignment we can determine a gain matrix  such that
all eigenvalues  of matrix  +  are distinct and
negative. Each eigenvalue is associated with a real left
eigenvector ¤1  The vectors 

¤
1 can be combined so that

a nonnegative vector  2 R ,  = [ 1 2 ¢ ¢ ¢  ]
satisfying the relation

1
¤
11 + 2

¤
21 + + 

¤
1 = 


1

can be determined. Such a vector  exists because the
vectors ¤1  ¡ 1 2   are linearly independent and if
¤11 is a left eigenvector then this also true for the vector
¡¤11 . Then, setting ¤1 = [ ¤11 ¤12 ¢ ¢ ¢ ¤1 ]  we get

¤1(+ ) = 
¤
11

¤
1 (44)

¤1 = 

1 (45)

where¤11 is the Metzler matrix¤11 = (1 2  ).
Then relation (44) guarantees the positive invariance of the
cone C(¤1) and relation (45) together with  ¸ 0 imply
that C(¤1) µ C(1 ). Moreover, from (44) it follows that
 =  is a stabilizing control because by construction
the matrix ¤11 has stable eigenvalues and ¤1 = .

The next step is to determine a subset D¤2 ½ P(2 2)
such that D = C(¤1) \ D¤2 is positively invariant andC(¤1) \ D¤2 ½ P( ). This can be done by applying
one of the approaches established in subsections 4.1.1 and
4.1.2.

6. CONCLUSION

The Linear Constrained Regulation Problem around an
equilibrium situated on the boundary of the polyhedral

region where the state constraints are satis…ed has been
investigated. It has been shown that the control leading
to the maximal admissible domain of attraction can be
determined by solving a linear programming problem. For
the cases when such a control does not exist, appropri-
ate design approaches based on LMI and/or eigenstruc-
ture assignment methods for determining stabilizing lin-
ear state-feedback controllers and corresponding admis-
sible domains of attraction have been proposed. These
domains of attraction can also be viewed as the starting
domains in the application of recently developed itera-
tive approaches of enlargment of admissible domains of
attraction (Athanasopoulos et al., 2014). It should also be
noticed that all these results can be also established for
discrete-time systems (Bitsoris and Olaru, 2013).
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