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Abstract: The paper introduces the Wavestar wave energy converter and presents the
implementation of model predictive controller that maximizes the power generation. The ocean
wave power is extracted using a hydraulic electric generator which is connected to an oscillating
buoy. The power generator is an additive device attached to the buoy which may include
damping, stiffness or similar terms hence will affect the dynamic motion of the buoy. Therefore
such a device can be seen as a closed-loop controller. The objective of the wave energy converter
is to harvest as much energy from sea as possible. The straight forward solution to this
maximization problem is achieved by maximizing the instantaneous range of motion of the
buoy. The buoy as a single degree of freedom oscillator will undergo its maximum movements
when it is in resonance with the sea state. Hence the best solution to the problem is achieved
by forcing this condition. In the paper the theoretical framework for this principal is shown.
The optimal controller requires information of the sea state for infinite horizon which is not
applicable. Model Predictive Controllers (MPC) can have finite horizon which crosses out this
requirement. This approach is then taken into account and an MPC controller is designed for
a model wave energy converter and implemented on a numerical example. Further, the power
outtake of this controller is compared to the optimal controller as an indicator of the performance
of the designed controller.

Keywords: Wave Energy, Buoy, Model Predictive Control, Optimal Control.

1. INTRODUCTION

Various types of Wave Energy Converters (WEC) have
been designed in the last decades with the aim of extract-
ing energy of the waves in different sea states [1]. These
designs spread over a wide range of concepts. Neverthe-
less most of them extract energy from the varying sea
surface elevation. For example the Pelamis Wave Power
Ltd. (2013) uses several submerged tubes interconnected
with hinges which have hydraulic power take-off systems
inside and convert the relative motion of the joints to the
electricity. Oyster WEC has a flap connected to a base at
sea bed through two hydraulic pistons which pump water
with high pressure to a conventional hydroelectric turbine
which finally converts the pressure to electric power, cf.
Aquamarine Power (2011). A wavestar device has floaters
on the surface of the sea extracting energy using hydraulic
pumps connected to an electricity generator Wavestar A/S
(2013).

The focus of this paper is on modelling and maximization
of the power outtake of a Wavestar point energy converter.
The device uses a controller device to convert the motion of
its buoy to electrical power. In principal a point absorber
can be modelled as a Single Degree Of Freedom (SDOF)
oscillating system which oscillates in response to the
external loads caused by the change of the sea surface

elevation. The power outtake of the device is proportional
to its Range Of Motion (ROM) i.e. larger range of motion
will result in higher power outtake. Clearly a SDOF
oscillator will have its maximum ROM when it is in
resonance with its excitation. Therefore the maximum
power outtake of the device is obtained when device is
in resonance with the sea state.

Sea surface elevation is in principal an irregular process
in time and space. Therefore the hydrodynamic load on
the device is a stochastic process. This inculcates that
stochastic control strategies may be used in order to
control the motion of the device and maximize its Power
Take Off (PTO). This is elaborated in this paper and
results have been presented. Several control strategies for
maximization of the electrical power outtake of the point
WECs have been proposed in Nielsen et al. (2013); Sichani
et al. (2013). Nielsen et al. (2013) have shown that the
global optimal power outtake of the device can be obtained
once the total information of the incoming waves are
available i.e. a controller with infinite horizon. However
since this is not a practical assumption a sub-optimal
controller is proposed in Sichani et al. (2013) which uses a
closed loop control system and utilizes only the available
information of the system states at each time.
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Fig. 1. Schematic view of the buoy. a) Static equilibrium,
b) Dynamic equilibrium.

On the other hand a Model Predictive Controller (MPC)
has the ability to use the sea state prediction in order
to maximize the power during the prediction horizon.
Requirements for sea state prediction is widely discussed
in Schoen et al. (2011). In Fusco and Ringwood (2012)
and Fusco and Ringwood (2010), different prediction algo-
rithms for short term wave forecasting are presented. Lin-
ear and non-linear MPC for different types of wave energy
absorbers are introduced in Cretel et al. (2011); Brekken
(2011); Hals et al. (2010); Richter et al. (2013), where it
is indicated that the MPC is a promising controller for
increasing the power outtake of WECs.

In this paper, the PTO of MPC is compared to that
of the conventional gain controller as well as a global
optimal controller. The comparison is also made for MPC
with different prediction lengths to justify the benefit of
applying MPC. The results show that the PTO for MPC
with prediction horizon of 10s and longer will be very close
to the PTO of the optimal controller that produces 10%
more power than the conventional gain controller.

This paper is organized as follows. In section 2, the model
of the Wavestar WEC is presented. The implementation
of the model predictive controller is explained in section 3.
Section 4 describes the optimal control law, and the section
4 compares the achieved results by means of simulation.

2. MODELING OF WAVE ENERGY CONVERTER

The schematic model of the WEC is shown in figure 1.
The equation of motion of the WEC is written around the
static equilibrium point where equation (1) applies, c.f.
figure 1.a,

Mg = fb,0 − fc,0
fb,0 = ρV (v(0))g

(1)

where fb,0 is the buoyancy force where the device is resting
at the Mean Water Level (MWL); V is the volume of the
displaced water; ρ is the density of the water; g is the
acceleration of gravity and fc,0 is a possible force from
the controller at this position. Invoking the D’Alambert’s
principal, c.f. figure 1.b, and assuming the viscous force on
the buoy is negligible the equation of motion reads

Mv̈(t) = fh(t)− fc(t)
fh(t) = fe(t) + fr(t) + fb(t)

(2)

where M is the mass of the WEC, fc(t) is the control
force; fh(t) is the summation of the hydrodynamic forces;
fe(t) is the external excitation force due to the incident
waves; fr(t) is the radiation force of the buoy due to its
oscillations in the water and fb(t) is the buoyancy force
of the buoy which is equal to the weight of the displaced
water by the device. Note that once the buoy is completely
immersed in water the buoyancy force is constant. Lets

introduce ϑ as the immersion displacement of the buoy i.e.
the value of v(t) for which the buoy is completely immersed
in water. As long as v(t) > ϑ the buoyancy force is written
as

fb(t) = −ρ
(

V (v(t)) − V (v(0))
)

g = r(v(t)) (3)

where g is the acceleration of gravity. This is a nonlinear
buoyancy force, a linear approximation of which can be
achieved assuming that the cross section of the buoy does
not change with v(t), hence

fb(t) = −ρAgv(t) = −kv(t) (4)

where A is the cross sectional area of the buoy. The total
buoyancy force then becomes

fb(t) =

{

−kv(t) , v(t) > ϑ
−kϑ , v(t) ≤ ϑ

(5)

Next, the radiation force can be written as a convolution of
the radiation Impulse Response Function (IRF) e.g. hrv̇(t)
with the velocity of the device v̇(t)

fr(t) = −

∫

∞

−∞

hrv̇(t− τ)v̇(τ)dτ (6)

Since the radiation IRF is causal i.e. fr(t) = 0 , t < 0,
pivoting on the reality of the radiation IRF which results
in Hrv̇(−ω) = H∗

rv̇(ω) where Hrv̇(ω) is the FRF of the
radiation force, the following is satisfied

hrv̇(t) =















2

π

∫

∞

0

Re
(

Hrv̇(ω)
)

cos(ωt)dω

−
2

π

∫

∞

0

Im
(

Hrv̇(ω)
)

sin(ωt)dω

, t ≥ 0

(7)
In general the Kramers-Kroning relations requires that
lim

ω→∞

Hrv̇(ω) = 0 which is not satisfied by the introduced

FRF, Falnes (2002). Therefore, a modified FRF H̃r(ω)
is introduced. The real and imaginary parts of the ra-
diation FRF are related to the Hydrodynamic radiation
damping, Cr(ω), and Hydrodynamic added mass, Mr(ω),
as Hrv̇(ω) = Cr(ω) + iωMr(ω), i.e.,

Cr(ω) = Re
(

Hrv̇(ω)
)

, Mr(ω) =
1

ω
Im

(

Hrv̇(ω)
)

(8)

Since the hydrodynamic damping converges to zero, the
modification is only necessary for the hydrodynamic added
mass, see Fig. 2. The modified hydrodynamic added mass
is proposed as M̃r(ω) = Mr(ω)−Mr(∞) and consequently

the modified radiation FRF becomes H̃r(ω) = Cr(ω) +

iωM̃r(ω). Next, defining V ′(ω) as the Fourier transform of
the velocity of the device, the radiation force is obtained,
cf. (6), as

Fr(ω) = −Hrv̇(ω)V
′(ω)

= −
(

H̃r(ω) + iωMr(∞)
)

V ′(ω)
(9)

which can readily be converted to time domain by taking
inverse Fourier transform, Faltinsen (1993), i.e.,

fr(t) = −

∫

∞

−∞

h̃rv̇(t− τ)v̇(τ)dτ −Mr(∞)v̈(t) (10)

Fig. 2 shows the real and imaginary parts of the radiation
FRF, used in the numerical model in this article. This
FRF is extracted from the WAMIT software, which is
based on Boundary Element Method (BEM) as explained
in WAMIT Inc. (2011). Clearly the imaginary part of
Hrv̇(ω) is not converging toward zero which is cured by the

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11160



0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10
x 10

4

0 0.5 1 1.5 2 2.5 3
−10

−5

0

5
x 10

4

ω [rad/s]

ω [rad/s]

R
e
(

H
r
v̇
(ω

))

Im
(

H
r
v̇
(ω

))

Fig. 2. Real and imaginary parts of the radiation FRF
Hrv̇(ω).
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Fig. 3. Magnitude and phase of the excitation FRF
Heη(ω).

modification (9). Substituting (4) and (10) in (2) results
in the following equation of motion for the WEC

m v̈(t) +

∫

∞

−∞

h̃rv̇(t− τ)v̇(τ)dτ + kv(t) = −fc(t) + fe(t)

m = M +Mr(∞)
(11)

which can be easily solved using any numerical time
integration scheme. The external wave force on the buoy
can be calculated as the convolution of its IRF, heη(t),
with the wave elevation η(t). It is well-known that heη(t)
is non-causal hence the information of the wave in front
of the buoy is needed to calculate the wave force Falnes
(2002). The FRF of the external excitation, Heη(ω) , for
the buoy under study in this paper is shown in Fig. 3. In
order to finalize the modeling part of the paper a stochastic
model for the wave elevation, η(t), should be available.
Here the one-sided JONSWAP spectrum by Hasselmann
et al. (1973) and Det Norske Veritas (2010) is used

Sη(ω) = AγSPM (ω)γ
exp

(

−0.5
(

ω−ωp

σωp

)

2

)

(12)

SPM (ω) =
5

16
H2

sω
4
pω

−5exp

(

−
5

4

( ω

ωp

)

−4
)

(13)

Aγ = 1− 0.287ln(γ) (14)

γ = 3.3 (15)

σ =

{

0.07 , ω ≤ ωp

0.09 , ω > ωp
(16)

The parameters of the wave spectrum are chosen as
the peak frequency of the wave ωp = 0.8434 [s] and
the significant wave height of Hs = 3 [m]. The model
parameters are chosen ρ = 1025 [kg/m3] and A = 154 [m2].

3. MODEL PREDICTIVE CONTROL

The transfer function of the radiation damping is obtained
by fitting a rational function to the frequency response
function of radiation damping. The state-space realization
of this transfer function will be of the form

ξ̇(t) = Arξ(t) +Br v̇(t)

f̃r(t) = Crξ(t) +Dr v̇(t),
(17)

where ξ(t) ∈ R
l is the radiation damping state vector,

f̃r(t) is the convolution term in (11), and Ar, Br, Cr,
and Dr are the state-space matrices. Substituting (17) in
(11), the state-space model of the WEC becomes:

d

dt

[

v(t)
v̇(t)
ξ(t)

]

=







0 1 0

−
k

m
−

1

m
Dr −

1

m
Cr

0 Br Ar







[

v(t)
v̇(t)
ξ(t)

]

+







0

−
1

m
0






fc(t) +







0
1

m
0






fe(t)

y(t) =

[

1 0 0
0 1 0

]

[

v(t)
v̇(t)
ξ(t)

]

,

(18)

The state-space can be discretized using zero-order-hold
rule resulting in

z(k + 1) = Az(k) +Bu(k) +Ed(k)

y(k) = Cz(k),
(19)

where z(k) = [v(k) v̇(k) ξ(k)T ]T , z(k) ∈ R
l+2, u(k) =

fc(k) is the control force, and d(k) = fe(k) is the wave
excitation force. The excitation force can be written as
sum of the prediction d̂(k) and the prediction error d̃(k),

d(k) = d̂(k)+d̃(k). The prediction of the excitation force is
obtained from the convolution of heη(t) by the short-term
wave elevation forecasting η̂(t), as explained in Fusco and

Ringwood (2012). The prediction error d̃(k) is assumed to
be a zero mean Gaussian white noise.

The states of the radiation damping are not measurable.
However, the radiation damping can be realized as an
observable state-space in (17) which makes it possible to
design an observer for those states. Thus, an observer for
the system (19) will be of the form

ẑ(k+1) = (A−LC)ẑ(k)+Bu(k)+Ed̂(k)+Ly(k), (20)

where L can be designed as a Kalman gain to minimize
the second norm of the estimation error, see Grewal and
Andrews (2001). The predictions of the states can be
achieved by iterating the model description (19) given by

ẑ(k + i|k) = Aiẑ(k) +
i−1
∑

j=0

AjBu(k + j)

+
i−1
∑

j=0

AjEd̂(k + j) for i = 1, 2, ..., Hp,

(21)

in which Hp is the prediction horizon. Thus, the stacked
predicted states will be

ẑ = F ẑ(k) + Pu+Dd̂, (22)

with

ẑ = (ẑ(k + 1|k)T ẑ(k + 2|k)T ... ẑ(k +Hp|k)
T )T (23)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11161



u = (u(k) u(k + 1) ... u(k +Hp − 1))T (24)

d̂ = (d̂(k) d̂(k + 1) ... d̂(k +Hp − 1))T (25)

and the matrices F , P , and D are defined as

F =
[

AT A2T · · · AHT
p

]T

P =









B 0 · · · 0

AB B · · · 0

...
...

. . .
...

AHp−1B AHp−2B · · · B









D =









E 0 · · · 0

AE E · · · 0

...
...

. . .
...

AHp−1E AHp−2E · · · E









.

(26)

Once the state predictions are computed as a function
of control inputs, we can use these predictions in the
formulation of the optimization problem.

3.1 Control Objective

The control objective for the WEC system is to maximize
the average power outtake during a a time interval T that
is of interest. Thus, the objective function will be in the
form of

P̄a =
1

T

∫ T

0

Pa(t)dt, (27)

where Pa(t) is the instantaneous produced mechanical
power given by

Pa = fc(t)v̇(t). (28)

The MPC objective function can be formulated as the
discrete form of the integral (27) as

P̄a ≈
Ts

T

k+T/Ts
∑

i=k

z(i)Su(i), (29)

where S = [0 1 0]T and Ts is the sampling time. It is also
assumed that T is chosen such that T/Ts is an integer.
As the future values of z(k) and u(k) are not known, the
MPC can be formulated such that the prediction of those
variables are used in the objective function, i.e.,

J = ẑT S̄u, (30)

in which

S̄ =









S 0 · · · 0

0 S · · · 0

...
...

. . .
...

0 0 · · · S









is a (l + 2)Hp × Hp matrix. The maximization problem
of the objective function (30) is a Linear Program (LP)
with the state prediction (23) as its equality constraint.
However, the equality constraint can be substituted in the
objective function (30), resulting in a Quadratic Program
(QP) of the form

J = uT Q̄u+ qTu, (31)

where Q̄ = P T S̄ and qT = ẑ(k)TF T S̄ + d̂
T
DT S̄. The

vector q is known at each sampling time, since ẑ(k) is

provided by the state estimator and d̂ is provided from

the forecast of the excitation force. The matrix Q̄ + Q̄
T

is negative definite (Q̄ + Q̄
T
≺ 0), which means that the

QP optimization problem has a maximum. The physical
interpretation of this concave optimization problem is that
the control force and the velocity should act in opposite
directions in order to have power outtake. Increasing or
decreasing the control force to infinity will end up moving
the buoy in the direction of the control force, and thus,
resulting in power consumption.

In practice, control force fc(t) is limited within a threshold
(fc,min ≤ fc(t) ≤ fc,max), which must be implemented
as the inequality constraint of the optimization problem.
Thus, the optimization problem to be solved at each
sample time will be

maximize uT Q̄u+ qTu
subject to F c,min ≤ u ≤ F c,max,

(32)

where F c,min = [fc,min fc,min · · · fc,min]
T , F c,min ∈ R

Hp

and F c,max = [fc,max fc,max · · · fc,max]
T , F c,max ∈ R

Hp .

4. OPTIMAL CONTROL

The optimal control with a finite horizon for the WEC sys-
tem can be achieved by solving the following optimization
problem

maximize
1

T

∫ T

0

fc(t)Sx(t)dt

subject to ẋ(t) = f (x(t), fc(t), t)
x(0) = x0,

(33)

where x(t) ∈ R
l+2 is

x(t) =

[

v(t)
v̇(t)
ξ(t)

]

, (34)

and the vector function f is

f(x(t), fc(t), t) =






v̇(t)
1

m
(−r(v(t)) −Drv̇(t)−Crξ(t) + fe(t)− fc(t))

Arξ(t) +Brv̇(t)






.

(35)
The optimization problem (33) can be solved by following
the Maximum Principle Pontryagin et al. (1964); Boyd and
Vanderberghe (2004). The Hamiltonian function is then
defined as

H(x(t), fc(t),λ(t), t) = fc(t)Sx(t)+λ(t)Tf (x(t), fc(t), t),
(36)

where λ(t) = (λ1(t) λ2(t) λ3(t)
T )T ∈ R

l+2 is the co-state
vector. Assuming that Hamiltonian is differentiable with
respect to the control, the first order conditions to the
Hamiltonian are obtained by differentiating Hamiltonian
with respect to control, state, and co-state variables as
follows

∂H

∂fc
= 0 Stationarity condition, (37)

ẋ(t) =
∂H

∂λ
Equation of motion for x(t), (38)

λ̇(t) = −
∂H

∂x
Equation of motion for λ(t), (39)

λ(T ) = 0 Transversality condition. (40)

Using (35) and (36) in the stationarity condition (37) will
result in

λ2(t) = mv̇(t). (41)
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The equation of motion for λ(t) will be obtained from (39)
as

λ̇1(t) = −
∂H

∂v
= −

d

dv
r(v(t))

λ2(t)

m
(42)

λ̇2(t) = −
∂H

∂v̇
= −(fc(t) + λ1(t)−Dr

λ2(t)

m
−BT

r λ3(t))

(43)

λ̇3(t) = −
∂H

∂ξ
= −AT

r λ3(t) +CT
r

λ2(t)

m
. (44)

Substituting (41) in (42), we will get

λ̇1(t) = −
d

dv
r(v(t))v̇(t) = −

d

dt
r(v(t)). (45)

The solution of this differential equation has to satisfy the
transversality condition (40) resulting in

λ1(t) = r(v(t)) − r(v(T )). (46)

By substituting (41) and its derivative as well as (46) into
(43), the control force can be obtained as
{

fc(t) = −mv̈(t)− r(v(t)) + r(v(T )) +Dr v̇(t) +BT
r λ3(t)

λ̇3(t) = −AT
r λ3(t) +CT

r v̇(t).
(47)

The terminal condition v(T ) = 0 is chosen to erase the
static control force r(v(T )), and thus, keep the static
equilibrium point as explained in (1). Furthermore, the
transversality condition (40) should be satisfied for λ3(T ).
Thus the optimal control force can be written in convolu-
tion form as

fc(t) = −mv̈(t)−r(v(t))+

∫ T

t

(Cre
−Ar(t−τ)Br+Dr)v̇(τ)dτ.

(48)
By substituting (48) into the equation of motion (11), we
can obtain the convolution term as

∫ T

t

(Cr e−Ar(t−τ)Br +Dr)v̇(τ)dτ = fe(t)

−

∫ t

0

(Cre
−Ar(t−τ)Br +Dr)v̇(τ)dτ.

(49)

This will form the optimal control law as














fc(t) = −mv̈(t)− r(v(t)) + r(v(T )) + fe(t)
−Dr v̇(t)−BT

r λ3(t)

λ̇3(t) = −AT
r λ3(t) +CT

r v̇(t)
v̇(0) = v̇0

(50)

5. RESULTS

Three controllers are implemented on the buoy wave
energy absorber model (2)-(11) of the Wavestar WEC:
The model predictive controller as explained in section
3, the optimal control law as explained in section 4, and
a velocity feedback controller fc(t) = Ccv̇(t), where the
optimal gain Cc is obtained in Nielsen et al. (2013). The
comparison is done for one generated time series of wave
elevation. The instantaneous generated power is compared
in Fig. 4 for three controllers. The comparison shows
that optimal control law, which maximizes the power,
produces more negative values compared to MPC. The
negative values can be interpreted as the power that is
consumed by the absorber to produce a specific force.
In other words, the negative power is the one that is
fed to the buoy from the hydraulic generator making
the buoy both producer and user of the energy. The
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Fig. 4. Instantaneous power of the WEC with different
controllers; a) Optimal controller, b) MPC, c) Opti-
mal gain controller
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Fig. 5. Convergence of the harvested power of the WEC
with different controllers; blue: Optimal controller
, green: MPC with Hp = 50, red: Optimal gain
controller, dashed lines: mean power

feedback controller does not consume energy from the
generator since it has only a dissipative term Ccv̇(t) that
absorbs the power from the wave, i.e., P (t) = fc(t)v̇(t) =
Ccv̇(t)

2. Another interesting result, is that MPC has the
lower peak instantaneous power compared to the optimal
controller. This is an important factor when sizing the
generator for a wave absorber. The mean and cumulative
produced power for three controllers are shown in Fig. 5.
The MPC with prediction horizon of 50 samples (with
sampling time of 0.1s) is used in this comparison. The
mean generated power by the optimal controller is shown
to be the highest, whereas the mean generated power for
feedback controller is slightly higher than the MPC with
prediction horizon of 50. In Fig. 6, the performance of the
optimal controller is compared to MPC with three different
lengths of prediction horizon: 10, 50, and 100 samples. It
is observed that the mean produced power in MPC will
be very close to that of the optimal controller when MPC
has a long prediction horizon. Eventually, an statistical
analysis of the MPC performance for different lengths of
prediction horizon is done. Fifty random realizations of
the sea state of length 200s are generated. All 50 sea
states are tested for 41 predictive controllers with different
prediction horizons and the statistical results of 2050 tests
are revealed in Fig. 7. Each point in this figure is the
average of the mean power production in 50 random sea
states. The results show that long prediction horizons will
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Fig. 7. Average of the mean power in 50 different sea states
for MPC with different prediction horizons.

result in high profit. However, Hp ≥ 100 samples will not
result in a significant benefit in terms of produced power.

6. CONCLUSION

In this paper, a model predictive controller is compared to
the optimal controller for wave energy converter in order
to justify what prediction horizons are suitable for a finite
horizon MPC. The results of the implemented MPC on
a Wavestar absorber showed that the power outtake for
prediction horizon of 10 seconds is very close to that of
the optimal controller and longer prediction horizons does
not make a significant change in the power outtake. The
optimal controller showed to be able to produce 10% more
power than the conventional gain controller. Since the
optimal controller with infinite horizon is not practically
feasible, the finite horizon MPC seems to be a qualified
candidate for this type of WEC.
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