
A Continuous-time Markov Decision
Process Based Method on Pursuit-Evasion

Problem

Jia Shengde ∗ Wang Xiangke ∗ Ji Xiaoting ∗ Zhu Huayong ∗

∗ College of Mechantronic Engineering and Automation, National
University of Defense Technology, Changsha, China (e-mail:

jia.shde@gmail.com,xkwang@nudt.edu.cn,xiaotji@nudt.edu.cn).

Abstract: This paper presents a method to address the pursuit-evasion problem which
incorporates the behaviors of the opponent, in which a continuous-time Markov decision process
(CTMDP) model is introduced, where the significant difference from Markov decision process
(MDP) is that the influence of the transition time between the states is taken into account.
By introducing the concept of situation, the probabilities addressing average behaviors are
obtained. Furthermore, these probabilities are introduced to construct the transition matrix in
the CTMDP. A policy iteration method for solving the CTMDP is also given. To demonstrate
the CTMDP method for pursuit-evasion, examples in a grid environment are computed. The
CTMDP-based method presented in this paper offers a new approach to pursuit-evasion
modeling and may be extended to similar problems in the sequential decision process.

Keywords: Pursuit-Evasion, Continuous-time Markov Decision Process, Transition Rates
Matrix, Dynamic Programming, Policy Iteration.

1. INTRODUCTION

Pursuit-evasion is a family of problems in the control
theory and computer science, in which one group at-
tempts to track down the members of another group in
an environment. Due to the various applications of the
ground mobile robots and unmanned aerial vehicles and
so on, the existing literature on pursuit-evasion is vast in
volume [Isler and et al., 2005, Virtanen et al., 2004]. The
problem is difficult and usually considered as a dynamic,
stochastic, continuous-space, continuous-time or discrete-
time discrete-space game [Shedied, 2002].

The optimal control technique provides an efficient tool
for the analysis of pursuers decisions when the dynamics
of the pursuer are known. The main advantage of this
method is that if a real-time solution exists, then it can
be obtained by a set of difference equations [LaValle,
2006]. The optimal control technique is always used to
address the problem with continuous-time and continuous-
space, but the used differential equations may not actually
represent the complex behaviors of the players and the
solution will not be feasible while uncertainty exists in
opponents and the environment. As the discretization of
time and space represents another perspective, dynamic
programming [Bertsekas and Tsitsiklis, 1996] theories pro-
vide a common architecture, and this discrete form suits
more the calculation on computers. Through constructing
a value function to be optimized and a space of states,
there are two major approaches of solution well known
as value iteration and policy iteration. In order to deal
with the uncertainties as well as dynamics in pursuit-
evasion, the dynamic programming-based techniques need
to be extended. These methods that have emphasized the

probabilities of addressing average behaviors will be a
good choice. The description of the evaders behavior allows
incorporating probabilities in opponent locations, intents
and/or sensor observations.

If the probability between the states has been defined, as-
suming they obey the property of Markovian, the dynamic
programming technique becomes a Markov decision pro-
cess. The MDP is now widely accepted as a preferred frame
for decision-theoretic planning [LaValle, 2006, Russell and
Norvig, 2010]. Some researches using fuzzy reinforcement
learning are mentioned in [Faiya et al., 2012]. It is always
considered that in the context of MDP, only the states have
an impact on the transition probabilities and the expected
reward function, but the transition time between states is
not considered. However, in a pursuit-evasion process, it is
obvious that the combating result will be sensitive to time,
i.e., a shorter transition time span and a longer one might
lead to different results. To address this issue, the CTMDP
will provide a more natural model. A brief description of
the CTMDP method will be presented in Section 2 as it
will be used to model an air combat strategy process.

The rest of the paper is organized as follows. Section 2
gives a brief description of the CTMDP, in which the
definition of a CTMDP model and a policy algorithm
of solution are presented. The dynamics of the pursuer
and the evader are presented in Section 3. Section 4
describes the main contributions of this paper, in which the
behavior of the opponent is modeled and a novel method
for obtaining the transition rates matrix is presented.
The presented method is demonstrated by some numerical
examples in Section 5. And finally, concluding remarks are
given in Section 6.

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 620

2. THE CONTINUOUS-TIME MARKOV DECISION
PROCESS

A CTMDP model can be presented as a five tuple:

{S, S0, (A(i), i ∈ S), q(j|i, a), r(i, a)}
The state space S is a finite set of fully observable states of
the system, S0 represents the initial state that belongs to
S, A(i) denotes a family of measurable subsets of actions
applicable in i ∈ S, q(j|i, a) is the transition rate of State
j after performing action a ∈ A(i) in State i, which can
satisfy q(j|i, a) ≥ 0 and i ̸= j, and r(i, a) ∈ R is a reward
function such that r(i, a) becomes the immediate reward
for being in State i with Action a. In addition, two most
important assumptions shall be kept in mind for this case.
Firstly, the transition rate is conservative, i.e.∑

j∈S

q(j|i, a) = 0. (1)

Secondly, there is a stable condition that can be expressed
as:

supa∈A(i)q(i|i, a) < ∞,∀i ∈ S.

With these assumptions, the unique solution of the prob-
ability matrix for the CTMDP can be generated [Guo,
2009]. Furthermore, the transition probability matrix and
the transition rates matrix satisfy the Kolmogorovs for-
ward and backward equations [Stroock, 2005]:

dP (t;µ)

dt
= P (t;µ)Q(µ) and

dP (t;µ)

dt
= Q(µ)P (t;µ) (2)

The policy µ consists of all the actions which had been
selected in every State i, i.e. µ = {a1, a2, ..., a|S|}, where
ai ∈ A(i) and |S| represents the number of total states in
S. The reward function r(i, a) ∈ R is the immediate reward
while selecting Action a in State i. Then, the expected
reward function Jα at i under policy µ, which is required to
be maximized, is defined as the sum of the future rewards
over an infinite horizon, as discounted by Parameter α:

Jα(i, µ) :=

∞∫
0

e−αt
∑
j∈S

pi,j(t, µ(i))r(j, µ(j))dt. (3)

According to Theorem 4.6 in in Guo [2009], there exists
an optimal policy µ∗ that makes Jα to be maximized. By
the definition of the value function Jα, Guo [2009] offers a
policy iteration algorithm that can be used to obtain the
optimal policy which is described as Algorithm 1.

3. PROBLEM STATEMENT

A given pursuit-evasion case can be modeled as a
continuous-time markov process. In this section, a simple
discrete pursuit-evasion example will be introduced and
then the details to construct the CTMP will be described.

3.1 Dynamics

Consider the environment as a discrete grid of 2 dimension
plane, in which two robots try to track and evade from
each other. For simplicity, the robots move simultaneously
step by step. Each step of the movement is called an
action. In this context, the robots are considered to have

Algorithm 1 Policy Iteration Algorithm

1: Pick an arbitrary µ. Let k = 0 and take µk = µ.
2: (Policy evaluation).
3: Obtain R(µk) = [r(1, µk(1)), ..., r(|S|, µk(|S|))]T
4: Obtain Jk = [αI −Q(µk)]

−1R(µk).
5: (Policy improvement). Obtain a policy

µk+1 = a1, a2, ..., a|S| that provides r(i,ai)
α+q(i|i,ai)

+
1

α+q(i|i,ai)

∑
j ̸=i q(j|i, ai) > Jk(i), for ∀i ∈ S.

6: if µk+1 = µk then
7: stop
8: else
9: go to Step 2

10: end if

Fig. 1. The environment and the actions of robots

three available actions a ∈ {L,R, S}, namely “turn left”,
“turn right” and “go straight”(Fig. 1). What the present
paper focuses on is how to find successive actions for the
blue robot, which finally makes him arrive in the back
region of the red robot. The environment is represented as
Ω = {(x, y)|x, y ∈ N}. The state of the robot’s dynamic
consists of the position and the velocity information.
As an example, the state vector of the blue robot is
represented as xb = (xb, yb, vbx, v

b
y), and the entries of xb

denote the horizontal and vertical positions and velocities
respectively. Assuming that (xb, yb) ∈ Ω and (vbx, v

b
y) ∈

{vbx + vby = 1 and vbx, v
b
y = 0, 1}, the dynamic of the robots

can be written as Algorithm 2:

3.2 Combat-States, Goal and Rewards

The pursuit-evasion process can be considered as a com-
bating process. In the previous subsection, the dynamics
of a single robot have been introduced, in which only the
single side is considered, while the opponent is ignored. In
order to depict the combating process, the Combat-States
in relation to the dynamics of both robots are defined.

The Combat-State is represented as xc = [d,AA,ATA],
where d is the Manhattan distance(It will be more suitable
for the discrete environment in this paper), and ATA and
AA are described in Fig. 2. Given dynamic states xb and
xr of the blue and red robots, these elements in Combat-
State can be obtained as shown in (4).

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

621

Algorithm 2 Robots Dynamics

1: if action =“turn left”(a = L) then
2: if [vx(k), vy(k)] = [0, 1] then
3: x(k + 1) = [x(k)− 1, y(k) + 1,−1, 0]
4: else if [vx(k), vy(k)] = [−1, 0] then
5: x(k + 1) = [x(k)− 1, y(k)− 1, 0,−1]
6: else if [vx(k), vy(k)] = [0,−1] then
7: x(k + 1) = [x(k) + 1, y(k)− 1, 1, 0]
8: else if [vx(k), vy(k)] = [1, 0] then
9: x(k + 1) = [x(k) + 1, y(k) + 1, 0, 1]

10: end if
11: else if action =“turn right”(a = R) then
12: if [vx(k), vy(k)] = [0, 1] then
13: x(k + 1) = [x(k) + 1, y(k) + 1, 1, 0]
14: else if [vx(k), vy(k)] = [1, 0] then
15: x(k + 1) = [x(k) + 1, y(k)− 1, 0,−1]
16: else if [vx(k), vy(k)] = [0,−1] then
17: x(k + 1) = [x(k)− 1, y(k)− 1,−1, 0]
18: else if [vx(k), vy(k)] = [−1, 0] then
19: x(k + 1) = [x(k)− 1, y(k) + 1, 0, 1]
20: end if
21: else if action =“go straight”(a = S) then
22: x(k + 1) = x(k) + [2vx(k), 2vy(k), 0, 0]
23: end if

d = |xb − xr|+ |yb − yr|

ATA = ±arccos
(vbx, v

b
y) · (xr − xb, yr − yb)

|(vbx, vby)| · |(xr − xb, yr − yb)|

AA = arccos
(vrx, v

r
y) · (xr − xb, yr − yb)

|(vrx, vry)| · |(xr − xb, yr − yb)|

(4)

This group of equations above offers a description of the
Combat-States as represented by the dynamic states of
the two robots. The size of the problem is limited by
integer N , where it provides that |xr − xb| ≤ N and
|yr − yb| ≤ N . It is obviously to see that AA is mainly
depends on the red robot and ATA is the blue one. The
range of d belongs to [1, 2N], AA is set to [0, π] and
ATA is set to [−π, π). Because if the range of ATA is
[0, π], it is impossible to distinguish which side of LOS
for vb has been located. From the direction of the LOS
to vb, if the direction is counter-clockwise then ATA > 0,
otherwise, ATA < 0,which can help to calculate the next
position with the selected action in the algorithm of the
reward function(see.Alg.2). However in the calculation of
the likelihood functions and transition rates,whether ATA
is positive or negative is ignorable and the range of ATA
will be set to [0, π].

To achieve this goal, the reward functions are necessary
for obtaining a solution in the mathematic model.The
outcome in State i is represented as g(i), which consists
of two parts, namely the goal zone reward function gpa(i)
and the scoring function S(i) McGrew et al. [2010]. The
outcome with the weight ωg ∈ [0, 1] can be defined as:

g(i) = ωggpa(i) + (1− ωg)S(i). (5)

Firstly, we define a goal zone, and reward the states that
make the red robot drop in the goal zone and punish the
failing one. The goal zone of the blue robot is assumed
to be the four blocks in front of the robot, see Fig.3. If
the opponent is in the goal zone, one unit of rewards can
be obtained which provides (gpa(i) = 1); otherwise zero

b
v

r
v

L
O
S

AA

0ATA

0ATA

Fig. 2. The geometrical relationship of robots

b
v

Fig. 3. The goal zone and gpa

(gpa(i) = 0). Furthermore, it is also helpful for getting a
better solution by defining a scoring function. The scoring
function is an expert heuristic function, which reasonably
captures the relative merits of every possible state in
the adversarial game McGrew et al. [2010]. The scoring
function can be evaluated by the elements of the Combat-
State i, as shown in 6. Where d̄ denotes the expected
distance between the robots, which is set to d̄ = 3. The
constant K is a factor to adjust the relative effect of the
range and the angle, in this paper it is set to K = 1/π.

S(i) =
(1− |ATA|

π) + (1− |AA|
π)

2
exp (

−|d− d̄|
πK

) (6)

The reward functions r(i, a) can be obtained through
Algorithm 3.

4. CONSTRUCTION OF TRANSITION RATES
MATRIX

As the Combat-States, actions, and rewards have been
depicted, modeling the pursuit-evasion process into a CT-
MDP with especial attentions on construction of the tran-
sition rates will be described in this section.

4.1 Combating Situations

Different from the MDP,in a pursuit-evasion process, it is
obvious that the time of spent for transition will infect
the combating situation to a great extent. Thus it is more
reasonable if consideration is given to the connection be-
tween the transition probability and time. The transition
probability p(j|i, a) is replaced by p(j|i, a; t), which mirrors

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

622

Algorithm 3 The reward function r(i, a)

1: Given the action a of the blue robot in the current
Combat-State i = [d,AA,ATA].

2: Assuming the red robot movies immobile, obtain ī =
[d̄, ĀA, ¯ATA].

3: d̄ = d and ĀA = AA
4: if a = L then
5: if ATA > π

2 then

6: ¯ATA > 3π
2 −ATA

7: else
8: ¯ATA = −π

2 +ATA
9: end if

10: end if
11: if a = R then
12: if ATA < −π

2 then

13: ¯ATA = 3π
2 +ATA

14: else
15: ¯ATA = −π

2 +ATA
16: end if
17: end if
18: if a = S then
19: ¯ATA = ATA
20: end if

the probability of transferring from State i to State j after
time period t.

There are so many Combat-States that make the problem
hard to be solved. Classifying these states may be not a
bad choice. Similar with the cases in Virtanen et al. [2006,
2004], basing on the relative geometry of the states of
the two robots, the concept of combating situation will
be introduced here. The possible outcomes of combating
situation in Step k are divided into four classes, which
are neutral, defined by θk = Θ1; advantage, defined by
θk = Θ2; disadvantage, defined by θk = Θ3; and mutual
disadvantage, defined by θk = Θ4. Situation θk is a random
variable that satisfies the following equation:

4∑
l=1

p(θk = Θl) = 1.

The four above-mentioned combating situations are illus-
trated in Fig. 4. To be more specifical, in the neutral
situation, the two robots are located far from each other,
and in a not long future, the influence of the actions
selected by both sides can be negative. There is no obvious
intention that can be observed (Fig. 4(a)). Secondly, in the
advantage situation, the blue robot occupies a dominated
place, or in other words, the red robot is located in front
of the blue one and the distance is at a middle level
(Fig. 4(b)). Thirdly, the disadvantage situation is just to
the contrary, in which the roles of both sides are exchanged
(Fig. 4(c)). Finally, in the mutual disadvantage situation,
the two robots move against to each other, and both of
them are in disadvantage locations (Fig. 4(d)).

4.2 Likelihood Functions Depended on Situation

After the probability of the situation node is depicted,
the transition probability p(j|i, a; t) can be deduced by
the Bayesian theorem, which provides a method for calcu-
lating the probability using the likelihood function of the
situation:

p(j|i, a; t)

:= p(j(t)|i, a) =
4∑

k=1

p(θi = Θk|i)p(j|θi = Θk, a)

=
4∑

k=1

p(θi = Θk)p(i|θi = Θk)∑4
l=1 p(θi = Θl)p(i|θi = Θl)

p(j|θi = Θk, a)

(7)

It is assumed that the elements of Combat-State are inde-
pendent in the given situation, which can be represented
as:

p(j|θi) = p(d|θi)p(ATA|θi)p(AA|θi). (8)

Except for the neutral situation, items d,AA, andATA are
considered obeying the Gaussian distribution. The details
of these distributions are listed in Table 1.

In the neutral situation Θ1, there are no special preferences
on the distribution of variables d, AA, and ATA. They
could be any value as long as it belongs to the reasonable
intervals. Thus, their likelihood functions are average
distributions.

In the advantageous situation Θ2, the blue robot is in dom-
ination, and a reasonable assumption is that the greater
advantage the blue robot has, the smaller Variable d will
be and to a greater extent the AA, and ATA will become
close to the sight of line (LOS). It is assumed that these
random variables obey 0-mean Gaussian distributions with
different variances.

Contrastively, in the disadvantageous situation Θ3, the
variables also take the Gaussian form but the mean value
ofAA, and ATA are both set to π.

Finally in the mutual disadvantageous situation Θ4, the
distribution of Variable d keeps the same and the mean
value of AA, and ATA are set to π and 0 respectively.

Table 1. The conditional distributions on en-
tries of Combat-State

d ∈ [1, 2N] AA ∈ [0, π] ATA ∈ [0, π]

Θ1
1

2N−1
1
π

1
π

Θ2
1√

2πδd
e

−d2

2δ2
d 1√

2πδa
e
−AA2

2δ2a 1√
2πδa

e
−ATA2

2δ2a

Θ3
1√

2πδd
e

−d2

2δ2
d 1√

2πδa
e
− (π−AA)2

2δ2a 1√
2πδa

e
− (π−ATA)2

2δ2a

Θ4
1√

2πδd
e

−d2

2δ2
d 1√

2πδa
e
− (π−AA)2

2δ2a 1√
2πδa

e
−ATA2

2δ2a

4.3 Construction of Q

According to Stroock [2005], the solution of the Kol-
mogorov equation can be represented as follows:

P (t) = etQ =
∞∑

m=0

tmQm

m!
, t ∈ [0,∞]. (9)

Considering the extremely limited neighbor domain of
t = 0, it can be obtained that the first order Taylor
series expansion is P (t) ≈ I + tQ, and then it can be

inferred that Q = dP (t)
dt . On the other side, from (7) the

probability can be constructed by the method depicted
in the previous section. Thus, given i and j with i ̸= j,

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

623

(a) Neutral situation (b) Advantage situation (c) Disadvantage situation (d) Mutual situation

Fig. 4. Four different situations in combating process

Probability p(j|i, a; t) can be written as the weight sum of
the condition probabilities

p(j|i, a; t) =
4∑

l=1

wi,lp(j|θi = Θl, a) (10)

in which

wi,l =
p(θi = Θl)p(i|θi = Θl)∑4
ι=1 p(θi = Θι)p(i|θi = Θι)

. (11)

From (2) and (10), it can be obtained that

q(j|i, a) = dp(j|i, a; t)
dt

=
d

dt

4∑
l=1

wi,lp(j|θi = Θl, a) (12)

Equation (10) can be written into the first order Taylor
series expansion, and then it can be found that the value of
q(j|i, a) is equal to the sum of the coefficients of monomial
terms in the expansion of p(j|θi = Θl, a). It is easy to
note that the monomial term of p(j|θi = Θ1, a) is zero.
p(j|θi = Θ3, a) is used as an example to show how to get
Q. Based on table 1, it can be obtained as following:

p(j|θi = Θ3, a) =
1√

8π3δdδ2a
exp(

(d+ kd3(a)t)
2

−2δ2d
)

· exp((π −AA− kAA
3 (a)t)2

−2δ2a
)

· exp((π −ATA− kATA
3 (a)t)2

−2δ2a
)

(13)

If we define that

∇l(a) = [kdl (a)/δ
2
d, k

AA
l (a)/δ2a, k

ATA
l (a)/δ2a], l = 2, 3, 4

and C0 = 1√
8π3δdδ2a

and xc(j) = [d,AA,ATA], then we have

that:

p(j|θi = Θ2, a) = C0(1−∇2(a)xc(j)
T t)

· exp(− d2

2δ2d
− AA2

2δ2a
− ATA2

2δ2a
),

(14)

p(j|θi = Θ3, a) = C0(1−∇3(a)(xc(j)− [0, π, π])T t)

· exp(− d2

2δ2d
− (π −AA)2

2δ2a
− (π −ATA)2

2δ2a
),

(15)

p(j|θi = Θ4, a) = C0(1−∇4(a)(xc(j)− [0, π, 0])T t)

· exp(− d2

2δ2d
− (π −AA)2

2δ2a
− ATA2

2δ2a
).

(16)

And define

Kl(a) = [kdl (a), k
AA
l (a), kATA

l (a)], for l = 2, 3, 4,

as the change rates dependent on the maneuvering capabil-
ities in d, AA, ATA. The transition rate can be represented
as:

q(j|i, a) = −C0{wi,2 · λ2 · ∇2(a)x
T
c (j)

+wi,3 · λ3 · ∇3(a)(xc(j)− [0, π, π])T

+wi,4 · λ4 · ∇4(a)(xc(j)− [0, π, 0])T }
(17)

Where

λ2 = exp(− d2

2δ2d
− AA2

2δ2a
− ATA2

2δ2a
)

,

λ3 = exp(− d2

2δ2d
− (π −AA)2

2δ2a
− (π −ATA)2

2δ2a
)

and

λ4 = exp(− d2

2δ2d
− (π −AA)2

2δ2a
− ATA2

2δ2a
).

To provide the CTMDP a solution, it is needed to sustain
the assumption of the conservativeness (1),i.e.

q(i|i, a) =
∑
j ̸=i

q(j|i, a). (18)

5. NUMERICAL EXAMPLES

To verify the effectiveness of our proposed CTMDP-based
method on the pursuit-evasion problem, some numerical
experiments are recorded in this section. Here the size
of the combating window is set to be N = 5, and the
parameters selected in numerical examples are listed in
table 2.

5.1 Keep-Straight Situation

In the first numerical example, the predetermined path
of the red robot is linear. The position and direction are
initialized to xr(0) = [5, 5,−1, 0]. The x-y coordinates are
[5,5], and the direction is left. For the blue robot, there are
four different initial states, where xb(0) is set to [7,7,-1,0],
[7,3, 1,0], [3,1, -1,0], and [3,9, 1,0].

The problem with the CTMDP is solved by the method
given in the previous sections, and an efficient policy can
thus be obtained to ensure the blue robot respond to the
red ones actions (See Fig. 5). It is shown that the policy
helps the blue robot catch up with the red one in a short
path under the four different initial states respectively.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

624

-25 -20 -15 -10 -5 0 5 10
0

1

2

3

4

5

6

7

8

9

10

123456789101112131415

1

2

3456789101112131415

(a)

-25 -20 -15 -10 -5 0 5 10
0

1

2

3

4

5

6

7

8

9

10

123456789101112131415

1

2

3456789101112131415

(b)

-25 -20 -15 -10 -5 0 5 10
0

1

2

3

4

5

6

7

8

9

10

123456789101112131415

1

2

3

4

56789101112131415

(c)

-25 -20 -15 -10 -5 0 5 10
0

1

2

3

4

5

6

7

8

9

10

123456789101112131415

1

2

3

4

56789101112131415

(d)

Fig. 5. The numerical results in keep-straight situation

-6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

12345

6

7

8

9

10

11 12 13 14 15

16

17

18

19

20

21

1

2

3456

7

8

9

10

11

12

13

14 15 16

17

18

19

20

21

(a)

-6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

12345

6

7

8

9

10

11 12 13 14 15

16

17

18

19

20

21

1

2

3

4

56

7

8

9

10

11

12

13

14 15 16

17

18

19

20

21

(b)

Fig. 6. The numerical results in keep-turning situation

5.2 Keep-Turning Situation

In this section, the red robot moves in a circle, as shown
in Fig. 6. The initial state of the red one is also set
to xr(0) = [5, 5,−1, 0]. Two typical states for xb(0) are
selected: one inside the circle and the other outside, which
are [7,7,-1,0] and [3,1, 1,0], respectively. Fig. 6 shows that
the blue robot is trying to track the red one as soon as
possible, or in other words, trying to locate the red one in
the goal zone of the blue one.

Table 2. The parameters used in numerical
examples

Parameter Value

[wi,2, wi,3, wi,4] [0.25,0.25,0.25]

[wg , d̄, α] [0.5, 3, 0.8]

[δd, δa] [3, 5π/18]

[KT
2 (a = 1),KT

2 (a = 2),KT
2 (a = 3)]

[-3, -3, -3.6
−5π/18, −5π/18, 0
−5π/18, −5π/18, 0]

[KT
3 (a = 1),KT

3 (a = 2),KT
3 (a = 3)]

[-3, -3, -3.6
5π/18, 5π/18, 0
5π/18, 5π/18, 0]

[KT
4 (a = 1),KT

4 (a = 2),KT
4 (a = 3)]

[-3, -3, -6
5π/18, 5π/18, 0

−5π/18, −5π/18, 0]

6. CONCLUSION

In this paper, the pursuit-evasion process is modeled into
a continuous time Markov decision process. Based on the
situations, a Bayesian approach is used to describe the
transition probability matrix, and an efficient method is
presented to address how to construct transition rates in
such a context.

In both numerical examples, the successive control deci-
sions of the blue robot are made appropriately. The results
indicate that this method provides a feasible solution. The
future work would focus on extending it to a 3-D form. A
potential difficulty in achieving this goal will be caused
by the fact that the size of pursuit-evasion will certainly
increase, which will be accompanied by the increase in
the number of state variables and that of control actions.
Consequently, the method for developing a policy in the
CTMDP should be extended to a more complicated one.

REFERENCES

Bertsekas, D. and Tsitsiklis, J. (1996). Neuro-Dynamic
Programming. Anthropological Field Studies. Athena
Scientific.

Faiya, B., Carleton University. Dissertation. Engineering,
E., and Computer (2012). Learning in Pursuit-evasion
Differential Games Using Reinforcement Fuzzy Learn-
ing. Carleton University.

Guo, X.P. (2009). Continuous-Time Markov Decision
Processes. Heidelberg: Springer.

Isler, V. and et al. (2005). Roadmap based pursuit-evasion
and collision avoidance.

LaValle, S. (2006). Planning Algorithms. Cambridge
University Press.

McGrew, J.S., How, J.P., Williams, B., and Roy, N.
(2010). Air combat strategy using approximate dynamic
programming. AIAA Journal on Guidance, Control,
and Dynamics, 33(5), 1641–1654.

Russell, S. and Norvig, P. (2010). Artificial Intelligence:
A Modern Approach. Prentice Hall series in artificial
intelligence. Prentice Hall.

Shedied, S.A. (2002). Optimal Control for a Two Player
Dynamic Pursuit Evasion Game; The Herding Problem.
Ph.D thesis, Virginia Polytechnique Institute and State
University, Virginia, USA.

Stroock, D.W. (2005). An Introduction to Markov Process.
Heidelberg: Springer.

Virtanen, K., Karelahti, J., Raivio, T., and Ccc, T. (2006).
Modeling air combat by a moving horizon influence
diagram game. Journal of Guidance, Control, and
Dynamics, 29(5), 1080–1091.

Virtanen, K., Raivio, T., and Hamalainen, R.P. (2004).
Modeling pilot’s sequential maneuvering decisions by
a multistage influence diagram. Journal of Guidance,
Control, and Dynamics, 27, 665–677.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

625

