
Optimal Sequence-Based Tracking Control
over Unreliable Networks

Jörg Fischer ∗ Maxim Dolgov ∗ Uwe D. Hanebeck ∗

∗ Intelligent Sensor-Actuator-Systems Laboratory (ISAS),
Institute for Anthropomatics and Robotics,

Karlsruhe Institute of Technology (KIT), Germany.
(email: Joerg.Fischer@kit.edu, Maxim.Dolgov@kit.edu,

Uwe.Hanebeck@ieee.org)

Abstract: In networked control systems, sequence-based controllers are used to compensate
for transmission delays and losses in unreliable data networks. For this purpose, the controller
sends not only the current control input to the actuator but also a sequence of predicted control
inputs. The additional inputs can be used when subsequent transmissions get delayed or lost.
In this paper, the sequence-based method is applied to the problem of trajectory tracking over
an unreliable network and an optimal sequenced-based tracking controller is derived. The main
advantage of the presented approach is that future information on the reference trajectory can
optimally be embedded in the predicted control sequences. Furthermore, the controller can be
implemented offline. An interesting result is that the optimal controller can still be separated
into a feedback part and a feedforward part (as in standard optimal tracking control) despite of
both the unreliable network and the sequence-based method. The performance of the derived
tracking controller is demonstrated by Monte Carlo simulations with an inverted pendulum.
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1. INTRODUCTION

Using general purpose networks (such as Ethernet TCP-
IP) and wireless networks (including WLAN, Bluetooth,
and ZigBee) for control purposes allows the realization of
highly flexible control structures at low costs. However,
these networks are subject to time-varying transmission
delays and/or transmission losses. Used within a control
loop, measurement and control data can be delayed and/or
lost, which is known to have a highly negative impact on
the performance and stability properties of the controlled
system (Zhang et al. (2001)).

Therefore, the research area of Networked Control Systems
(NCS) investigates new control methods to cope with these
network-induced effects. The proposed methods mainly
concentrate on the problem of stabilizing a possibly un-
stable system over an unreliable network (see Hespanha
et al. (2007) and Zhang et al. (2013) for an overview). The
task of tracking control, however, has received much less
attention. In tracking control, the objective is to design
the controller such that the output of the closed-loop
system follows a time-varying trajectory. Generally, this
problem is more challenging than the stability problem
since the closed-loop system not only has to be stabilized
but also has to follow a defined trajectory (Slotine and

? This work is supported by the German Science Foundation (DFG)
within the Priority Programme 1305 “Control Theory of Digitally
Networked Dynamical Systems” and within the Research Training
Group RTG 1194 “Self-organizing Sensor-Actuator-Networks”.

Controller

Network Network

Sensor ActuatorPlant

z-1

x
k

u
k

y
k

Y
k

U
k

z0:K
ref

z
k µ

k

Fig. 1. Considered setup of the Networked Control System.

Li (1991)). This is even more true in the networked setup
where control data can be delayed or lost.

Recent work that addresses the problem of tracking control
over unreliable networks is, e.g., van de Wouw et al.
(2010); Gao and Chen (2008); Wang and Yang (2008);
Yu et al. (2011). The controller is designed such that the
tracking error dynamics are guaranteed to be input-to-
state stable (van de Wouw et al. (2010)) or the tracking
error is minimized with respect to the H∞-norm (Gao and
Chen (2008); Wang and Yang (2008)), or the H2-norm (Yu
et al. (2011)). In all these approaches, the controller only
sends a single control input per data transmission to the
actuator.
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To further improve tracking performance, it is possible
to apply a predictive control strategy called sequence-
based control (among others also known as packet-based
control) (Bemporad (1998); Liu et al. (2004); Tang and
de Silva (2006); Polushin et al. (2008); Findeisen and
Varutti (2009); Liu (2010); Quevedo and Nešić (2011);
Fischer et al. (2013b)). The idea of this method is that
in addition to the current control input the controller also
sends predicted control inputs applicable at future time
steps. The predicted inputs can be applied by the actuator
in case subsequent transmissions get lost or delayed. A
highly valuable advantage of the sequence-based method
in context of tracking control is that information on the
future reference trajectory can already be incorporated in
the predicted control sequences. This is interesting, e.g.,
for robot path planning where reference trajectories are
planned ahead and are available for control.

Existing sequence-based control methods for tracking
tasks are either based on a Model Predictive Control
(MPC) approach (Bemporad (1998); Tang and de Silva
(2006)) or on the extension of a nominal controller that
is designed by neglecting the networks (Liu (2010)). In
the first approach, an optimization problem has to be
solved online at each time step which is a time consuming
task that restricts its applicability. The latter approach is
not applicable if there are external stochastic disturbances
affecting the plant. Furthermore, this approach is not
optimal even if the nominal controller is constructed by
an optimization-based method.

In this paper, we present an optimal sequence-based track-
ing controller that minimizes the quadratic tracking error
between a reference trajectory and the exogenous output
of a non-directly observable linear plant that is perturbed
by additive measurement and process noise. The consid-
ered setup is depicted in Fig. 1. For the network between
controller and actuator, we make the assumption that a so
called TCP-like protocol is used which provides idealized
acknowledgment signals for successful data transfers (see
Sec. 2 for more details). The derived tracking controller
not only optimally considers transmission delays and losses
induced by the networks but is also able to optimally
incorporate information on the future reference trajectory
(if such information is available). As will be shown, the
control law can be computed offline and thus does not
require the online solution of an optimization problem.
An interesting result of this paper is that, despite of the
unreliable networks and the sequence-based method, the
optimal solution can be separated into a feedback and a
feedforward part. This extends results obtained in Yüksel
et al. (2006) where the separation was shown to hold for
NCS with limited quantization capacity.

1.1 Key Idea

The key contribution of this paper is to optimally com-
bine the optimal sequence-based control approach that
compensates for network-induced time delays and losses
(as derived in our previous work Fischer et al. (2013b))
with the idea of tracking control under usage of reference
preview. If information on the future reference trajectory
is available, this is a natural extension of the optimal
sequence-based control approach as the controller already

sends sequences of predicted control inputs to the actu-
ator. Embedding preview information does not result in
additional communication costs but highly increases the
tracking performance.

1.2 Outline

In the following section, the system setup and the
sequence-based control method are described, and the
tracking problem is formulated. The optimal sequence-
based tracking controller is derived in Sec. 3 and its
applicability demonstrated by means of a Monte Carlo
simulation with an inverted pendulum in Sec. 4.

1.3 Notation

Throughout the paper, deterministic quantities are in
normal lettering (a). Random variables are written in
bold face letters (a) where a ∼ f(a) means that a
is characterized by its probability density function f(a).
Furthermore, vector-valued quantities are underlined (a),
matrices are denoted by bold face capital letters (A), and
the notation ak refers to the quantity a at time step k.
The identity matrix is denoted by I, a matrix consisting
only of zeros by 0, the expectation operator by E{·}, the
trace operator by tr(·), the Moore-Penrose pseudoinverse
of a matrix A by A†, and the set of all natural numbers
including and excluding zero by N0 and N>0, respectively.

2. PROBLEM FORMULATION

In this paper, we consider the NCS setup depicted in Fig. 1.
It is assumed that all components of the NCS are time-
triggered and synchronized. The dynamics of the plant and
the sensor are given by

xk+1 = Axk + Buk +wk ,

y
k

= Cxk + vk ,

zk = Mxk ,

(1)

where xk ∈ Rn is the state of the plant, uk ∈ Rm
the control input applied to the plant by the actuator,
y
k
∈ Rp the measurement of the state obtained by the

sensor, and zk ∈ Rs the output considered for the tracking
task. The matrices A,B,C, and M are of appropriate
dimensions and assumed to be known. Model uncertainties
and exogenous disturbances affecting system dynamics are
represented by mutually independent stationary i.i.d. zero-
mean Gaussian noises wk ∼ f(wk) and vk ∼ f(vk) with
covariances

W = E
{
wkw

>
k

}
and V = E

{
vkv

>
k

}
.

The initial plant state is also assumed to possess Gaussian
distribution with

x0 = E {x0} and X0 = E
{

(x0 − x0)(x0 − x0)>
}
.

The sensor and the actuator are colocated with the plant.
For communication between sensor and controller (SC-
link) and between controller and actuator (CA-link) a
digital network is used. Data is transmitted over the
network in time-stamped packets that can be subject to
stochastic time delays and stochastic losses. The links
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are modeled as two different stochastic networks 1. It is
assumed that the delays τCAk ∈ N0 induced by the CA-
link and the delays τSCk ∈ N0 induced by the SC-link
are mutually independent and possess known stationary
probability distributions f(τCAk ) and f(τSCk ), respectively.
In this model, packet losses are considered as infinite
time delays. Furthermore, the CA-link satisfies following
assumption.

Assumption 1. It is assumed that the CA-link acknowl-
edges successful transmissions to the controller and these
acknowledgments experience no time delay or loss.

Networks that satisfy Assumption 1 are called TCP-like
networks 2. Although such an assumption is restrictive,
analysis of NCS with TCP-like networks can provide
insights into the far more complex control of NCS with
networks that employ the real TCP/IP.

As described in the introduction, the controller generates
and transmits sequences of control inputs Uk to the
actuator. Each sequence consists of the current control
input and N − 1 predicted control inputs so that

Uk =
[
u>k|k u

>
k+1|k . . . u

>
k+N−1|k

]>
.

The first part of an index k+i|k with i ∈ {0, 1, . . . , N − 1}
identifies the time step when the control input is intended
to be applied to the plant. The second part of the index
refers to the time step of generation of the control input.
The actuator is equipped with a buffer that stores the
control sequence with the most recent information (among
all received sequences). At each time step, the actuator
selects the appropriate control input from the buffered
sequence and applies it to the plant. If the buffer runs
empty, the actuator applies a default control input ud = 0.

Remark 1. The default control input is chosen to ud = 0
only for the brevity of control law derivation. Other
values for ud or a so called hold input strategy (Schenato
et al. (2007)) can also be considered within the described
framework.

The measurements y
k

are transmitted to the controller
over the stochastic SC-link. Thus, it is possible that the
controller receives none, one, or several measurements at
a time step. The set of measurements received by the
controller at time step k will be denoted by Yk.

In this paper, the considered control task is to choose
the control sequences Uk such that the exogenous plant
output zk optimally tracks a known reference trajectory

zref0:K ,K ∈ N>0.

Remark 2. For the derivation of the control law in Sec. 3
we will assume that zref0:K is fixed. However, as we will see
later, the control law can be separated into two parts. If
the reference trajectory changes during operation, only one
of these parts has to be recomputed.

We define the tracking error at time step k as the difference

between the reference value zrefk and the plant output zk
1 This modeling approach represents that in real-world applica-
tions information transmission from a base station to a subscriber
(downlink) and transmission from the subscriber to the base station
(uplink) often have different characteristics.
2 The term TCP-like does not refer to a real TCP/IP protocol. Its
usage only indicates that the network provides acknowledgments.

∆k = zk − z
ref
k .

Our goal is to calculate the controller that minimizes the
cost function

JK0 = E

{
∆>KQK∆K +

K−1∑
k=0

[
∆>k Qk∆k + u>k Rkuk

]∣∣∣∣∣ I0
}

(2)
that measures performance w.r.t. the quadratic tracking
error and the energy consumed by the control. In (2),
K ∈ N>0 is the considered horizon length, Qk ∈ Rs×s
is positive semidefinite, and Rk ∈ Rm×m is positive
definite. Further, Ik denotes the information available to
the controller at time step k with

Ik =
{
x0,X0, z

ref
0:K ,Y1:k, U0:k−1, θ0:k−1

}
.

The term θk ∈ {0, . . . , N} represents the age of the control
sequence buffered by the actuator at time step k, i.e., the
difference of the current time k and the time step at which
the buffered sequence was generated. This information
is available to the controller due to Assumption 1. In
conclusion, for optimally tracking the reference trajectory,
we seek to solve following optimization problem

J∗0 = min
U0:K−1

JK0 . (3)

The solution to this problem is given in the next section.

3. DERIVATION OF THE CONTROL LAW

In this section, we solve the optimization problem (3). For
this purpose, we first express the optimization problem in a
recursive formulation in Sec. 3.1 and model the considered
NCS as a Markov Jump Linear System (MJLS) in Sec. 3.2.
Finally, in Sec. 3.3, the optimization problem is solved and
the main results of this paper are summarized.

3.1 Reformulation of the Optimization Problem

To solve the optimization problem (3), we use the dynamic
programming algorithm and, therefore, divide the complex
optimization problem into several recursively coupled sub-
problems. This is provided by the following proposition.

Proposition 1. The optimal cost J∗0 of the problem (3) is
equal to C0 given by the last step of the following recursion

CK = E
{
∆>KQK∆K

∣∣∣ IK} ,

Ck = min
U0:K−1

E
{
∆>k Qk∆k + u>k Rkuk + Ck+1

∣∣∣ Ik} ,
(4)

which proceeds backwards in time from time step K to
time step zero.

Proof 1. Prop. 1 is a direct application of Bellman’s prin-
ciple of optimality that an optimal solution to an op-
timization problem consists of optimal solutions of its
subproblems (Bertsekas (2000)).

Definition 1. The costs Ck in (4) are referred to as mini-
mal costs-to-go (from time step k to K).

3.2 System Modeling

As mentioned in Sec. 2, the age θk of the buffered sequence
is known by the controller. In Fischer et al. (2013b), it is
shown that θk can be modeled as the state of a Markov
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chain such that the considered NCS can be expressed as
a special kind of a MJLS. The transition matrix of the
Markov chain that governs the evolution of the MJLS is
denoted by T and satisfies

T =



p00 p01 0 0 · · · 0
p10 p11 p12 0 · · · 0
p20 p21 p22 p23 . . . 0
...

...
...

...
. . . 0

...
...

...
... p(r−1)(r)

pr0 pr1 pr2 pr3 · · · prr


,

with

pji = Prob [θk+1 = i|θk = j] , r = N + 1 .

The transfer probabilities pji can be calculated by

pji =


1−

i∑
s=0

qs for i = j + 1 ,

qi for i < j ≤ N + 1 ,

1−
N∑
s=0

qs for i = j = N + 1 ,

where qs denotes the probability that a transmission is
delayed for s ∈ N0 time steps. These probabilities can be
computed since the density f(τCAk ) is known.

Due to the stochastic nature of the CA-link, it is necessary
to consider control inputs from previously sent sequences
that still can be applied to the plant. Therefore, we
introduce the augmented state of the MJLS according to

ξ
k

=



xk
[u>k|k−1 u>k+1|k−1 · · · u>k+N−1|k−1]>

[u>k|k−2 u>k+1|k−2 · · · u>k+N−2|k−2]>

...
[u>k|k−N+1 u>k+1|k−N+1]>

uk|k−N


.

The dynamics of the MJLS are then given by

ξ
k+1

= Âkξk + B̂kUk + ŵk ,

with

Âk =

[
A BHk

0 F

]
, B̂k =

[
BJk
G

]
, ŵk =

[
wk
0

]
,

where

F =



#columns: n︷︸︸︷ n(N−2)︷︸︸︷ n︷︸︸︷ n(N−3)︷︸︸︷ n︷︸︸︷ n︷︸︸︷
0 0 0 0 · · · 0 0
0 I 0 0 · · · 0 0
0 0 0 I · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · I 0


#rows:

}n(N−1)
}n(N−2)
}n(N−3)

}n

,

G =

[#columns: n︷︸︸︷ n(N−1)︷︸︸︷
0 I
0 0

]#rows:
}n(N−1)
}n(N−1)(N−2)

2

,

Jk =
[#columns: n︷ ︸︸ ︷ n(N−1)︷︸︸︷
δ(θk,0) I 0

]
, δ(θk,i) =

{
1 , if θk = i
0 , if θk 6= i

,

Hk =
[#columns: n︷ ︸︸ ︷ n(N−2)︷︸︸︷ n︷ ︸︸ ︷ n(N−3)︷︸︸︷ n︷ ︸︸ ︷
δ(θk,1) I 0 δ(θk,2) I 0 · · · δ(θk,N−1) I

]
.

For detailed derivation of the MJLS, the reader is referred
to Fischer et al. (2013b). Finally, we can express the costs-
to-go (4) in terms of the augmented state ξ

k
according

to

CK = E
{
(MxK − z

ref
K )>QK(MxK − z

ref
K )

∣∣∣ IK}
= E

{
(zrefK )>QKz

ref
K + ξ>

K
Q̂KξK− 2(zrefK )>QKξK

∣∣∣IK},
(5)

Ck = E
{
(Mxk − z

ref
k )>Qk(Mxk − z

ref
k )

+ u>k Rkuk + Ck+1

∣∣ Ik}
= E

{
(zrefk )>Qkz

ref
k + ξ>

k
Q̂kξk − 2(zrefk )>Qkξk

+ U>k R̂kUk + Ck+1

∣∣∣ Ik} , (6)

with

Q̂K =

[
M>QKM 0

0 0

]
, Q̂k =

[
M>QkM 0

0 H>k RkHk

]
,

QK = [QKM 0] , Qk = [QkM 0] , R̂k = J>k RkJk ,
(7)

Hence, the cumulated cost function (2) can be written as

JK0 = E
{
(zrefK )>QKz

ref
K + ξ>

K
Q̂KξK − 2(zrefK )>QKξK

+

K−1∑
k=0

[
(zrefk )>Qkz

ref
k + ξ>

k
Q̂kξk − 2(zrefk )>Qkξk

+U>k R̂kUk

]∣∣∣ I0} .

3.3 Optimal Tracking Control Law

Having expressed the considered NCS as a Markov Jump
Linear System, we apply dynamic programming theory to
calculate the optimal control law.

Remark 3. The optimal tracking control problem of MJLS
with reference trajectory preview has also been investi-
gated in Nakura (2008). However, these results cannot be
applied directly as the mode of the MJLS is assumed to
be known only with a delay of one time step. In addition,
the augmented weighting matrices (7) are not positive-
definite and, finally, we consider that measurements can
get delayed or lost.

The main results of this paper are summarized in the
following theorem.

Theorem 1. Consider the problem of minimizing the ex-
pected cumulative cost function (2) subject to the setup
described in Sec. 3.2. Then,

1. for the minimal expected cumulated costs it holds

J∗0 = E
{
ξ>
0

P0ξ0

∣∣∣ I0}+

K−1∑
k=0

E
{
ε>k Pkεk

∣∣ I0}+ s0

− 2 · σ>0 E
{
ξ
0

∣∣∣ I0}+

K−1∑
k=0

E
{
ŵ>k Pk+1ŵk

∣∣∣ I0} ,

2. the optimal control law that minimizes (2) is

Uk = −
(

E
{
R̂k + B̂>k Pk+1B̂k

∣∣∣ Ik})† (8)

·
[
E
{
B̂>k Pk+1Âk

∣∣∣ Ik} · E{ξk∣∣∣ Ik}− E
{
B̂>k σk+1

∣∣∣ Ik}],
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Fig. 2. Structure of the optimal sequence-based controller.

with

εk = ξ
k
− E

{
ξ
k

∣∣∣ Ik} ,

PK = Q̂K , PK = 0 ,

σK = Q
>
Kz

ref
K , sK = (zrefK )>QKz

ref
K ,

(9)

Pk = E
{
Q̂k + Â>k Pk+1Âk

∣∣∣ Ik}−Pk , (10)

Pk = E
{
Â>k Pk+1B̂k

∣∣∣ Ik} · (E
{
R̂k + B̂>k Pk+1B̂k

∣∣∣ Ik})†
· E

{
B̂>k Pk+1Âk

∣∣∣ Ik} , (11)

σk = E
{
Â>k σk+1

∣∣∣ Ik}+ Q
>
k z

ref
k − E

{
Â>k Pk+1B̂k

∣∣∣ Ik}
·
(

E
{
R̂k + B̂>k Pk+1B̂k

∣∣∣ Ik})† · E{B̂>k σk+1

∣∣∣ Ik} ,
(12)

sk = E {sk+1| Ik}+ (zrefk )>Qkz
ref
k − E

{
σ>k+1B̂k

∣∣∣ Ik}
·
(

E
{
R̂k + B̂>k Pk+1B̂k

∣∣∣ Ik})† · E{B̂>k σk+1

∣∣∣ Ik} .

(13)

Proof 2. The proof of Theorem 1 and the instruction how
to calculate the expected values of the involved matrices
are given in Appx. A and B.

According to Theorem 1, the optimal control law can
therefore be computed by first solving the coupled recur-
sions given by (10) - (13) and then using (8) to calculate
the control input sequence. In the following, we analyze
the structure of this optimal controller and discuss some
further implications of Theorem 1.

Investigating the optimal control sequence (8), it can be
seen that it is possible to separate Uk into a feedback term

Ufbk and a feedforward term Uffk such that

Uk= Ufbk + Uffk .

The feedforward term is given by

Uffk = −
(

E
{
R̂k + B̂>k Pk+1B̂k

∣∣∣ Ik})†· E{B̂>k σk+1

∣∣∣ Ik} ,
and only depends on the reference trajectory (via σk+1) as
well as the acknowledgment signal of the CA-link. Hence,

Uffk is independent of the augmented system state. On the

other side, the feedback term Ufbk satisfies

Ufbk =−
(

E
{
R̂k + B̂>k Pk+1B̂k

∣∣∣ Ik})†
· E

{
B̂>k Pk+1Âk

∣∣∣ Ik} · E{ξk∣∣∣ Ik} ,
(14)

and only depends on the acknowledgment signal of the
CA-link as well as the augmented state but not on the
reference trajectory. The structure of the optimal tracking
controller and an overview of the controlled system are
depicted in Fig. 2.

The feedback term (14) consists of two parts. The first part
is an estimator that computes the conditional expectation
of the augmented system state E{ξ

k
|Ik}. The second

part is an optimal sequence-based feedback regulator with
feedback matrix

Lk=−
(

E
{
R̂k + B̂>k Pk+1B̂k

∣∣∣ Ik})†·E{B̂>k Pk+1Âk

∣∣∣ Ik},
that explicitly depends on the acknowledgment θk−1 of the
CA-link. The feedback regulator is identical to the con-
troller derived in our previous work Fischer et al. (2013b)
on the optimal sequence-based stabilization problem. The
stability properties of this controller have been investi-
gated in Fischer et al. (2013a) for the infinite horizon
case.

The feedback matrix Lk can be calculated offline for all
time steps of the optimization horizon. In addition, if the
reference trajectory is known before operation, also the

feedforward term Uffk can be calculated in advance. Thus,
the complete controller can be designed offline. In case the
reference trajectory is only available during operation or
the trajectory changes, only the feedforward control term
has to be adjusted. The feedback control (14) remains
unchanged.

Before we demonstrate the performance of the proposed
tracking controller in simulations, we shortly discuss how
E{ξ

k
|Ik} can be calculated. As the control inputs included

in the augmented state at time step k are part of the
information set Ik, the problem of calculating E{ξ

k
|Ik}

reduces to calculating E{xk|Ik}. According to estimation
theory, E{xk|Ik} is equivalent to the minimum mean
squared error (MMSE) estimate of the state xk. This
estimation problem has already been optimally solved
in Schenato (2008) where the author uses a time-varying
Kalman filter that is extended by a measurement buffer to
incorporate delayed measurements.
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Mass of the cart 0.5 kg
Mass of the pendulum 0.5 kg
Friction of the cart 0.1 N/(m · s)
Length to pendulum center of mass 0.3 m
Inertia of the pendulum 0.006 kg · m2

Sampling time 0.1 s

Table 1. Parameters of the inverted pendulum
used in the simulation.
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Fig. 3. Probabilities of transmission delays in the network
connections considered in the simulation. Transmis-
sion losses correspond to infinite time delays.

4. SIMULATION

In this section, we demonstrate the applicability of the pro-
posed tracking controller by simulation with an inverted
pendulum on a cart. Modeling the inverted pendulum as
described in Anderson (1989), the state is given by

x(t) =
[
s(t) ṡ(t) φ(t) φ̇(t)

]>
,

where s(t) is the position of the cart and φ(t) the angle
of the pendulum. With the parameters of the pendulum
chosen as shown in Table 1, the matrices of the discrete-
time state space model (1) become

A =

1.0000 0.0200 0.0015 0.0000
0 0.9964 0.1550 0.0015
0 −0.0001 1.0103 0.0201
0 −0.0105 0.0343 1.0103

 ,

B =

0.0004
0.0358
0.0011
0.1054

 , C =

[
1 0 0 0
0 0 1 0

]
.

We choose the covariances of the disturbances, the initial
condition, and the weighting matrices to

W = V = diag
[
0.0052, 0, (0.2 · π/360)2, 0

]
,

x0 =

 0
0.2
0

0.2

 , X0 = diag
[
0.012, 0, 0.012, 0

]
,

Q = R = M = I .

In the considered setup, measurements of s(t) and φ(t)
are sent over the same network to the controller. The
computed control sequence is then sent to the pendulum
over another network. We assume that packet losses and
transmission delays occur in both networks independently
with probabilities according to Fig. 3. Based on this setup
and considering the reference trajectory (as plotted in
Fig. 4), the proposed tracking controller is computed for
different control sequence lengths. The proposed controller
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−100
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/
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φ
(t
)
in

◦
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φ̇
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)
in

◦
/
s

Time in seconds

Fig. 4. Example of state trajectory for a simulation with
control sequence length of N = 4 for proposed
controller (—) and control appproach of Liu (2010)
(−−) when tracking the reference trajectory (− · −).

is compared with the sequence-based controller described
in Liu (2010). The nominal controller required in the
approach of Liu (2010) is implemented as an optimal
linear quadratic tracking controller (Anderson and Moore
(1990)). To estimate the state in presence of possibly
delayed or lost measurements, the time-varying Kalman
filter of Schenato (2008) is used.

Fig. 4 shows example state trajectories for each of the
controllers tracking the depicted reference trajectory. The
length of the control sequence is set to N = 4. At the
beginning, the behavior of both controllers is very similar
as they move the cart from the initial position s0 to the
actual reference value of 50. Then, after four seconds,
the proposed controller already orientates towards the
new reference value of -50 that will be active not before
another second. By doing so, the controller prevents the
high amplitudes in the angle and angular velocity as they
appear with the approach of Liu (2010).

Furthermore, for different control sequence lengths, we
conduct 100 Monte Carlo simulation runs over 500 time
steps and calculate the average costs according to (2).
The results are depicted in Fig. 5. It can be seen that the
average costs of both controllers decrease with increasing
sequence length. This demonstrates the advantage of the
sequence-based method for tracking control over unreli-
able networks in general. The figure also shows that the
proposed tracking approach leads to lower costs than the
approach of Liu (2010) that is even unstable if the sequence
length is below N = 3.
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Fig. 5. Comparison of the cumulated average costs over
different length of the control sequence for 100 Monte
Carlo simulation runs.

5. CONCLUSION

We presented a sequence-based approach for tracking con-
trol over unreliable networks that are subject to stochastic
time delays and transmission losses. The proposed tracking
controller minimize the quadratic tracking error and simul-
taneously sends sequences of predicted control inputs to
compensate for the network effects. In contrast to former
work, future information on the reference trajectory can
be optimally incorporated in the sequence-based controller
design. In simulations with an inverted pendulum, we
experienced an improvement of the tracking performance
by a factor of three. Furthermore, the proposed track-
ing controller optimally considers stochastic process and
measurement noises and can be calculated offline.

Future work concentrates on the case where the net-
work connections do not provide acknowledgments (UDP-
protocol) and on an event-triggered implementation of the
controller to reduce communication between controller and
actuator. Furthermore, we investigate the stability of the
tracking error when the reference trajectory is the output
of a linear system.
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Appendix A. PROOF OF THEOREM 1

To derive the results summarized in Theorem 1, we ap-
ply stochastic dynamic programming. Using (5) and the
definitions (9), the expected costs-to-go at time step K
are

C∗K =E
{
(zrefK )>QKz

ref
K + ξ>

K
Q̂KξK− 2(zrefK )>QKξK

∣∣∣ IK}
= sK + E

{
ξ>
K

PKξK

∣∣∣ IK}− 2 · σ>KE
{
ξ
K

∣∣∣ IK} .

(A.1)
In the next step we use that the augmented state ξ

k
is

conditionally independent of the mode θk−1 and that

E
{
E
{
g(ξ

k+1
)
∣∣∣ Ik+1

}∣∣∣ Ik} = E
{
g(ξ

k+1
)
∣∣∣ Ik}

holds for any function g(·). With these facts and plug-
ging (A.1) into (6), the expected costs-to-go at time
step K − 1 can be written as

CK−1 = E
{
ξ>
K−1

(
Q̂K−1+ Â>K−1PKÂK−1

)
ξ
K−1

∣∣∣ IK−1}
+ U>K−1E

{
R̂K−1 + B̂>K−1PKB̂K−1

∣∣∣ IK−1}UK−1
+ 2 · E

{
ξ>
K−1

∣∣∣ IK−1}E
{
Â>K−1PKB̂K−1

∣∣∣ IK−1}UK−1
− 2 ·

[
σ>KE

{
ÂK−1

∣∣∣ IK−1}+ (zrefK−1)>QK−1

]
· E

{
ξ
K−1

∣∣∣ IK−1}− 2 · σ>KE
{
B̂K−1

∣∣∣ IK−1}UK−1
+ (zrefK−1)>QK−1z

ref
K−1+ E

{
ŵ>K−1PKŵK−1

∣∣∣ IK−1}
+ sK . (A.2)

Differentiation of (A.2) w.r.t. UK−1 and setting the result
to zero yields

UK−1 = −E
{
R̂K−1 + B̂>K−1PKB̂K−1

∣∣∣ IK−1} †
·
[
E
{
B̂>K−1PKÂK−1

∣∣∣ IK−1}E
{
ξ
K−1

∣∣∣ IK−1}
−E

{
B̂>K−1

∣∣∣ IK−1}σK] . (A.3)

Plugging (A.3) in (A.2) and using the definitions (10) -
(13), the minimal costs-to-go at time step K − 1 are

C∗K−1 = E
{
ξ>
K−1PK−1ξK−1

∣∣∣ IK−1}
− 2 · σ>K−1E

{
ξ
K−1

∣∣∣ IK−1}
+ E

{
ε>K−1PK−1εK−1

∣∣ IK−1}+ sK−1

+ E
{
ŵ>K−1PKŵK−1

∣∣∣ IK−1} . (A.4)

Considering one more time step, the expected costs-to-
go (6) at time step K − 2 with (A.4) are given by

CK−2 = E
{
ξ>
K−2

(
Q̂K−2+Â>K−2PK−1ÂK−2

)
ξ
K−2

∣∣∣ IK−2}
+ U>K−2E

{
R̂K−2 + B̂>K−2PK−1B̂K−2

∣∣∣ IK−2}UK−2
+ 2 · E

{
ξ>
K−2

∣∣∣ IK−2}E
{
Â>K−2PK−1B̂K−2

∣∣∣ IK−2}UK−2

−2 ·
[
E
{
σ>K−1ÂK−2

∣∣∣ IK−2}+ (zrefK−2)>QK−2

]
· E
{
ξ
K−2

∣∣∣ IK−2}− 2 · E
{
σ>K−1B̂K−2

∣∣∣ IK−2}UK−2
+ E

{
ε>K−1PK−1εK−1

∣∣ IK−2}+ (zrefK−2)>QK−2z
ref
K−2

+ E {sK−1| IK−2}+

K−1∑
k=K−2

E
{
ŵ>k Pk+1ŵk

∣∣∣ IK−2} .

(A.5)

The minimal expected costs-to-go C∗K−2 can be calculated
analogously to C∗K−1 as the structure of (A.4) and (A.5) is
the same. Therefore, if we proceed with the minimization,
we obtain the recursive solution given in Theorem 1.

Appendix B. COMPUTATION OF EXPECTATIONS

The expected values E {· | Ik} of the matrices in (8)
and (10) - (13) can be computed by conditioning on the
mode θk−1 = j. This is possible since θk−1 = j is part
of the information set Ik and will be available to the
controller at time step k. For a matrix Xk(θt) and a
vector xk(θt) that depend on the random variable θt,

we introduce the notations X
[i,t]
k and x

[i,t]
k to denote the

resulting quantities when θt = i, i.e., X
[i,t]
k = Xk(θt = i).

Furthermore, we define

Ξk =

(
N∑
i=0

pji

[
R̂

[i,k]
k +

(
B̂

[i,k]
k

)
>P

[i,k]
k+1B̂

[i,k]
k

])†
.

The expected values can then be calculated by the law of
total expectation and are given by

L
[j,k−1]
k = −Ξk ·

(
N∑
i=0

pji

[(
B̂

[i,k]
k

)
>P

[i,k]
k+1Â

[i,k]
k

])
,

P
[j,k−1]
k =

N∑
i=0

pji

[
Q̂

[i,k]
k +

(
Â

[i,k]
k

)
>P

[i,k]
k+1Â

[i,k]
k

]
−

(
N∑
i=0

pji

[(
Â

[i,k]
k

)
>P

[i,k]
k+1B̂

[i,k]
k

])
·Ξk

·

(
N∑
i=0

pji

[(
B̂

[i,k]
k

)
>P

[i,k]
k+1Â

[i,k]
k

])
,

σ
[j,k−1]
k =

(
N∑
i=0

pji

[(
σ

[i,k]
k+1

)
>Â

[i,k]
k

])
+
(
zrefk

)
>Qk

−

(
N∑
i=0

pji

[(
σ

[i,k]
k+1

)
>B̂

[i,k]
k

])
·Ξk

·

(
N∑
i=0

pji

[(
B̂

[i,k]
k

)
>P

[i,k]
k+1Â

[i,k]
k

])
,

s
[j,k−1]
k =

(
N∑
i=0

pjis
[i,k]
k+1

)
−

(
N∑
i=0

pji

[(
σ

[i,k]
k+1

)>
B̂

[i,k]
k

])

· Ξk

(
N∑
i=0

pji

[(
B̂

[i,k]
k

)
>σ

[i,k]
k+1

])
+
(
zrefk

)
>Qkz

ref
k .

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3783


