
Learning chronicles signing multiple
scenario instances

A. Subias1,3 L. Travé-Massuyès1,2 E. Le Corronc1,4

1CNRS, LAAS, 7, avenue du Colonel Roche, F-31400 Toulouse, France
2Univ de Toulouse, LAAS, F-31400 Toulouse, France

3Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France
4Univ de Toulouse, UPS, LAAS, F-31400 Toulouse, France

subias,louise,elecorro@laas.fr

Abstract: Chronicle recognition is an efficient and robust method for fault diagnosis. The
knowledge about the underlying system is gathered in a set of chronicles, then the occurrence
of a fault is diagnosed by analyzing the flow of observations and matching this flow with a set of
available chronicles. The chronicle approach is very efficient as it relies on the direct association
of the symptom, which is in this case a complex temporal pattern, to a situation. Another
advantage comes from the efficiency of recognition engines which make chronicles suitable for
one-line operation. However, there is a real bottleneck for obtaining the chronicles. In this
paper, we consider the problem of learning the chronicles. Because a given situation often
results in several admissible event sequences, our contribution targets an extension to multiple
event sequences of a chronicle discovery algorithm tailored for one single event sequence. The
concepts and algorithms are illustrated with representative and easy to understand examples.

Keywords: temporal pattern, chronicle, learning, data mining, event abstraction.

1. INTRODUCTION

Chronicles are temporal patterns well suited to capture the
behavior of dynamic processes at an abstract level based
on events. They are among the formalisms that can be
used to model timed discrete event systems. Chronicles
may represent the signatures of specific situations, and
are hence very efficient for diagnosis. They may also be
associated to decision rules specifying which actions must
be undertaken when reconfiguration is needed.

The chronicle approach has been developed and used in a
large spectrum applications (Cordier and Dousson, 2000):
in the medical field for ECG interpretation and cardiac
arrhythmia detection (Carrault et al., 1999), in intrusion
detection systems (Morin and Debar, 2003), in telecom-
munication networks (Laborie and Krivine, 1997). More
recently, chronicles have been used in the context of web
services (Cordier et al., 2007; Pencolé and Subias, 2009).
Chronicles are also applied on activity recognition in the
setting of unmanned aircraft Systems and unmanned aerial
vehicles operating over road and traffic networks (Fessant
et al., 2004).

Among the challenges raised by the chronicle approach
is the problem of acquiring the chronicles. On one hand,
model based chronicle generation approaches have been
developed. For instance, in (Guerraz and Dousson, 2004)
the patterns are built from Petri net models of the situa-
tion to recognize. Nevertheless, most of the works address-
ing this problem are data driven. They rely on analyzing
logs and extract the significant patterns by temporal data
mining techniques (Mitsa, 2010).

The objective of temporal data mining techniques is to
discover all patterns of interest in the input data, by
means of an unsupervised approach. There are several
ways to define the relevance of a pattern. Among them, the
frequency criterium is widely used (Dousson and Duong,
1999; Cram et al., 2012). One can distinguish two main
frameworks: sequential patterns (Agrawal and Srikant,
1994) and frequent episodes (Mannila et al., 1997).

• The sequential pattern framework is based on the
discovery in a collection of sequences of all possible
time ordered sets of event (i.e. sequence of events)
with sufficient number of occurrences w.r.t a user-
defined threshold. The number of occurrences of a
set of events is defined as the number of times
the set of events can be observed in the collection.
Further, a sequence of events is said to be maximal
if it involves the highest possible number of events.
Sequential pattern discovery relies on the systematic
search of maximal sequences that have a number
of occurrences at least equal to the a user-defined
threshold. Many methods for unearthing sequential
patterns are designed along the lines of the Apriori
algorithm (Agrawal and Srikant, 1994).

• Frequent episode framework uses a single (long) se-
quence and considers the discovery of temporal pat-
terns, called episodes, that occur with sufficient fre-
quence in the sequence. An episode is a partially
ordered set of event types. Similarly to the case of
sequential patterns, the notion of frequent episode
and sub-episode are defined. In Mannila et al. (1997)
episode discovery focusses on two types of episodes:
serial episodes when the order between the event

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 10397

types is total and parallel episodes when there is only
partial order between the events types.

Chronicles are designed to afford for total order and partial
order temporal patterns but also patterns combining the
two types. Moreover, chronicles consider temporal con-
straints between event type occurrences.

One of the main difficulties of chronicle discovery is to
guarantee robustness to variations. The chronicle discovery
approach proposed in this paper aims at discovering fre-
quent chronicles common to multiple sequences represent-
ing variations of a unique situation, that is to say chroni-
cles that are frequent in each sequence of a collection. This
is motivated by the fact that the event sequences arising
from the same situation generally present variants that
must be accounted for.

Our contribution precisely targets an extension to multi-
ple event sequences of the chronicle discovery algorithm
proposed by Cram et al. (2012), which is tailored for one
single event sequence. Moreover, we target to discover the
chronicles not only for a given frequency but for all the
possible frequencies higher than a specified threshold.

The paper is organizes as follows. Section 2 provides
the concepts and definitions underlying the proposed ap-
proach. Section 3 first presents the algorithm for building
a database representing the sequences at hand. It then
presents the chronicle learning algorithm that uses the
constructed database. Section 4 summarizes and concludes
the work.

2. CONCEPTS AND DEFINITIONS

In this section, the concepts that underly our chronicle
mining algorithm are presented and formalized. Chroni-
cles have been introduced as a way to express temporal
information about a domain (Dousson et al., 1993).

The domain is assumed to be described through a set of
features whose values change over time with the evolutions
of the domain.

The data samples are hence given in terms of the set of
features {χ1, . . . , χn}. Every χj takes its value in the set
U j , called the domain of χj . The universe U = U1 ×
· · ·×Un is defined as the Cartesian product of the feature
domains. Therefore any sample can be represented by a
vector x = (x1, . . . , xn)T of U , so that every component
xj corresponds to the feature value χj qualifying the object
x. The subset of U formed by these vectors is called the
database.

When samples need to be indexed by time, a sample taken
at time ti is represented by a vector xti = (x1ti , . . . , x

n
ti)
T .

The value taken by the feature χj across time can be
considered as a random variable xjt , t ∈ Z. The correspond-
ing time series, taken from time ti to time tf is noted
Xti−tf = {xt, t = ti, . . . , tf} = 〈xti , . . . ,xtf 〉.
The concept of event type expresses a change in the value
of a given domain feature or set of features. Let us define
E as the set of all event types and define the concept of
event.

Definition 1. (Event). An event is defined as a pair (ei, ti),
where ei ∈ E is an event type and ti is an integer called
the event date.

Time representation relies on the time point algebra and
time is considered as a linearly ordered discrete set of
instants whose resolution is sufficient to capture the en-
vironment dynamics.

Definition 2. (Temporal sequence). A temporal sequence
on E is an ordered set of events denoted S = 〈(ei, ti)〉i∈Nl

=
{(ei, ti)}i∈Nl

such that ei ∈ E, i = 1, . . . , l and ti <
ti+1, i = 1, . . . , l − 1, where l is the dimension of the
temporal sequence S.

The size of a sequence S is the number of events in S:
|S| = l. The temporal sequence typology is the set of event
types E′ ∈ E that occur in S.

To represent specific domain evolutions, we consider that
event dates may be constrained. A time interval I is
expressed as a pair Iij = [t−, t+] corresponding to the
lower and upper bound on the temporal distance between
two time points ti and tj , i ≤ j. Given two event dates
ti and tj , we express temporal constraints τij of the form
tj − ti ∈ [t−, t+]. Consider two events (ei, ti) and (ej , tj),
then if their dates ti and tj satisfy the temporal constraint
tj − ti ∈ [t−, t+], we write ei[t

−, t+]ej and say that the
events are temporally constrained by τij . Iij = [t−, t+] is
called the support of τij , or equivalently of the pair of event
types (ei, ej).

Definition 3. (Chronicle). A chronicle is a pair C = (E , T)
such that E ⊆ E and T = {τij}16i<j<|E|. E is called
the typology of the chronicle and T is the set of temporal
constraints of the chronicle.

Example: Figure 1 gives the time constraints satisfaction
graph associated to a chronicle C. The nodes of the graph
are associated to the event types, and the edges are labeled
by the time constraints. C is defined by E = {A,B,C,D}
and T = {τAB , τAC , τBD, τCD}. Moreover, IAB = [1, 3],
IAC = [2, 5], IBD = [4, 6] and ICD =]0,+∞[.

Diagnosis from Chronicles: an overview of related
challenges

Audine Subias
CNRS; LAAS; 7 avenue du colonel Roche F-31400 Toulouse, France

Univ of Toulouse, INSA, LAAS, F-31400 Toulouse, France
subias@laas.fr

Abstract—Chronicle recognition is an efficient method to
address the problem of diagnosis and more generally the problem
of situation recognition. Several researches have investigated this
direction to develop approaches for dynamic complex systems.
But chronicle recognition gathers other interesting research topics
related notably to the field of machine learning and to timed
transition systems modeling. This article gives a picture of
different theoretical and applicative works connected to chronicle
recognition which is an active research area.

Index Terms—Diagnosis - Chonicle recognition- Diagnosability
analysis - Chronicle learning

I. CHRONICLES WORLD

A. What are chronicles ?

Most of the works on chronicles are issued from the French
community. [29] has initially developed this model to capture
automatically the evolutions or partial evolutions of dynamic
systems. The evolutions to monitor are described in terms of
temporal patterns called chronicles. A chronicle is not a simple
execution trace of the system it is a discriminant observable
part allowing to recognize a particular situation. Chronicles are
expressed in a specific language and then translated into time
constraints satisfaction graphs. The nodes of the graphs are
associated to the events, and the edges are labeled by the time
constraints (see Fig 1).

A

B

C

D
[1, 3]

[4, 6]

[2, 5]

]0,+∞[

Fig. 1: A chronicle

This kind of approach assumes that a time stamp or
occurrence date can be assigned to each event. A chronicle is
therefore a temporal pattern described in terms of events and
time constraint between event occurrence dates.

In [29] the chronicle language is based on the notion of
predicate. A predicate defines the events required for the
recognition and the events which must be discarded. A chronicle
is recognized if all the predicates are satisfied. The major
predicates that have been defined are:

- event(E,t): an event type E is stamped with t the date
of its occurrence.

- noevent(E, [α, β]): this predicate defines a forbidden
event. No event E occurs between α and β time units.

- occurs((m, n), E, [α, β]) : at least m and at most
n occurrences of an event E between α and β time
units.

A notion of domain attribute is also defined by a couple
E : e where E is the attribute name and e is a possible value
of the attribute. The set of possible values defines the domain
of the attribute. A domain attribute as a unique value at each
time instant t. In this way, the predicate event(E : (e1, e2), t)
models a change in the value of domain attribute E from e1
to e2 at time t and the predicate noevent(E : (e1, e2), [α, β])
forbids the change of value of E between α and β time units.

Finally, a set of actions can be launched and some events
can be emitted when a chronicle is recognized. Fig 2 gives two
simple examples of chronicles according Dousson’s language
description.

Chronicle SequenceAB {

event(A, t1)
event(B, t2)

0 ≤ t2 - t1 ≤ 2 -- sequence within 2s

when recognized emit event(C, t2)

}

Chronicle Noevent_In_AB {

event(A, t1)
event(B, t2)
noevent(C, (t1 t2)

0 ≤ t2 - t1 ≤ 2 -- sequence within 2s

when recognized emit event(D, t2)

}

Fig. 2: Chronicle of sequence AB in [0, 2] (left) and no event
C in AB (right).

Chronicle based approaches can be related to other methods
to represent situations stressing on the temporal dimension
such that situation calculus introduced by [55], the event
calculus [51] or the temporal interval of Allen [5],[6]. All these
methods are commonly used in the Artificial Intelligence field
for representing and reasoning about temporal information. One
major advantage of chronicles compared to these approaches
is the rich formalism allowing one to describe the observable
patterns corresponding to behaviors one wants to detect. In
particular, chronicles account for partial orders between events
easily and are also able to the lack of events via forbidden events.
Another advantage lies on the efficiency of the recognition
system which makes chronicles suitable for real-time operation

1

Fig. 1. A chronicle example

A chronicle C represents an evolution pattern involving a
subset of event types E and a set of temporal constraints
T linking event dates. Chronicles are a special type of
temporal pattern, where the temporal order of events is
quantified with numerical bounds and reflects the repre-
sented piece of temporal evolution.

The episodes of Mannila et al. (1997) are a particular
type of chronicle. A parallel episode is a collection of
event types that occur in a given partial order whereas
the event types of a serial episode are totally ordered. In
the case of episodes, temporal constraints do not specify

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10398

precise numerical temporal bounds but are just precedence
constraints of the form tj−ti ∈ [0,+∞[or tj−ti ∈]−∞, 0].
Conversely, chronicles are parallel episodes with additional
temporal information.

The occurrences of a given chronicle C in a temporal
sequence S are denoted by subsequences called chronicle
instances.

Definition 4. (Chronicle instance). An instance of C =
(E , T) in a temporal sequence S is a subset of event types
E ′ of S such that E ′ is isomorphic to E , in other words
|E ′| = |E| and the event types of E ′ satisfy all temporal
constraints T of the chronicle C.
Definition 5. (Frequency of a chronicle). The frequency of
a chronicle C in a temporal sequence S, noted f(C|S), is
the number of instances of C in S.

In the literature, it is hardly the case that all the instances
of a given chronicle are returned by a chronicle recognition
engine. Additional constraints are generally used to form
a recognition criterion γ. For example, Mannila et al.
(1997) returns the shortest instances in the sense of the
instance duration in the sequence. Dousson and Duong
(1999) returns all the recognized at the earliest disjoint
instances, i.e. all the instances that do not overlap in
the sequence and that occur earliest in the sequence. The
frequency of a chronicle C in a temporal sequence S can
be defined according to the recognition criterion γ and it
is then noted fγ(C|S).

Given a set of event types E, the space of possible
chronicles can be structured by a generality relation.

Definition 6. (Generality relation among chronicles). A
chronicle C = (E , T) is more general than a chronicle C′ =
(E ′, T ′), denoted C v C′, if E ⊆ E ′ or ∀τij ∈ T , τij ⊇ τ ′ij .
Equivalently, C′ is said stricter than C.
Definition 7. (Monotonicity). A frequency fγ is said to be
monotonic for the relation v if and only if C v C′ implies
that fγ(C|S) > fγ(C′|S) for any temporal sequence S of
events.

Definition 8. (Minimal and maximal chronicles of a set).
Given a set of chronicles C, the subset of minimal and
maximal chronicles of C are defined by:

Min(C) = {C ∈ C|∀C′ ∈ C, C v C′ ⇒ C = C′},
Max(C) = {C ∈ C|∀C′ ∈ C, C′ v C ⇒ C = C′}.

3. AN ALGORITHM FOR LEARNING GENERAL
CHRONICLES FROM MULTIPLE TEMPORAL

SEQUENCES

The chronicle mining process consists in discovering all
chronicles C whose instances occur in a given temporal
sequence S. However, it is often the case that the same
situation does not result in perfectly identical temporal
sequences. In this case, we are interested in learning the
chronicles whose instances occur in all the temporal se-
quences. This problem can be stated as: given a set of
temporal sequence S = {S1, . . . ,Sn} and a minimum fre-
quency threshold fth, find all minimal frequent chronicles
C such that fγ(C) is at least fth in all temporal sequences
of S.

This paper builds on the chronicle learning algorithm
proposed by Cram et al. (2012) and presents an extension
to the case of multiple temporal sequences. The chronicle
learning algorithm by Cram et al. (2012) has two phases:

(1) it builds a constraint database D representing the
temporal sequence S. This is performed with the
Complete Constraint-Database Construction algorithm
(CCDC algorithm).

(2) it generates a set of candidate chronicles starting with
a set of chronicles that were proved to be frequent
and using D to explore the chronicle space. This is
implemented by the Heuristic Chronicle Discovery
Algorithm (HCDA algorithm).

Extending this algorithm to multiple temporal sequences
requires to redesign the first phase so that the constraint
database not only represents one temporal sequence but
all the temporal sequences in the set S.

3.1 Constraint database representing multiple temporal
sequences

The constraint database D is an object in which every
temporal constraint τij = ei[t

−, t+]ej that is frequent
in all the sequences of S is stored. It is organized as a
set of trees Tαij for each pair of event types (ei, ej) with
i, j = 1, . . . , |E|, i 6 j and α = 1, . . . , nij . The nodes of
the trees are temporal constraints and arrows represent
is parent of relations.

Definition 9. (is parent of relation). ei[t
−, t+]ej

is parent of ei[t
−′
, t+

′
]ej iff [t−

′
, t+

′
] ⊂ [t−, t+] and

@ei[t−
′′
, t+

′′
]ej such that [t−

′
, t+

′
] ⊂ [t−

′′
, t+

′′
] ⊂ [t−, t+].

The root of a tree Tαij is hence a temporal constraint

ei[t
−, t+]ej such that the occurrences of 〈(ei, ti), (ej , tj)〉

in all temporal sequences of S are maximal. Unlike in
(Cram et al., 2012), there may be a number nij of such
temporal constraints for the same pair (ei, ej), hence nij
trees. Let us notice that a temporal constraint ei[t

+, t−]ej
actually defines a 2-length chronicle C = (E , T) for which
E = {ei, ej} and T = τij . Then, the root of Tαij is the 2-
length chronicle with topology E = {ei, ej} that is the most
general for all temporal sequences of S and the child nodes
are stricter 2-lengh chronicles with the same typology. DT
is defined as the set of all tree roots.

As we consider multiple temporal sequences, only the pairs
of event types (ei, ej) shared by all the temporal sequences
Si ∈ S are examined.

In a first stage, for each sequence Sk ∈ S and for each
pair (ei, ej) ∈ E2 such that (ei, ti) ∈ Sk and (ej , tj) ∈ Sk,
the set of all the occurrences of the pair in the sequence
Sk (noted Okij) is determined. The set of time interval
durations between the two event types of the occurrences
of Okij is given by Dkij = {dkij = (tj − ti)|〈(ei, ti), (ej , tj)〉 ∈
Okij}. From the frequency fkij of (ei, ej) in each temporal

sequence Sk, we introduce fmax = mink(fkij). fmax is the
maximal number of occurrences for (ei, ej) present in all
the sequences of S.

Example: Let us consider the three temporal sequences of
Figure 2. S = {S1,S2,S3}. For the pair (e1, e2), O1

e1,e2 =

{〈(e1, 3), (e2, 1)〉, 〈(e1, 3), (e2, 4)〉, 〈(e1, 3), (e2, 5)〉},O2
e1,e2 =

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10399

{〈(e1, 2), (e2, 1)〉, 〈(e1, 2), (e2, 3)〉} and finally O3
e1,e2 =

{〈(e1, 2), (e2, 1)〉, 〈(e1, 2), (e2, 3)〉, 〈(e1, 2), (e2, 5)〉}.
Additionally, D1

12 = {−2, 1, 2}, D2
12 = {−1, 1} and D3

12 =
{−1, 1, 3}. Finally the frequencies of the pair (e1, e2) for
each sequence are given by f112 = 3, f212 = 2, f312 = 3,
hence fmax = 2.

1 112 2 2 333 4 45 5

Sequence 1 Sequence 2 Sequence 3

e e eee e e eee1 1 22 222 2 2 e1 2

Fig. 2. Example of multiple sequences

The roots of the trees for the pair (ei, ej) must hence be
such that the number of occurrences 〈(ei, ti), (ej , tj)〉 in all
temporal sequences of S is equal to fmax. The following
explains how to obtain these roots.

Two sets of supports are considered for each sequence Sk:
the set of minimal supports Ikij and the set of maximal

supports Ikij that guaranty exactly fmax occurrences of the
pair (ei, ej) in Sk. Whereas minimal supports are used in
the algorithm of Cram et al. (2012), maximal supports
are a new concept required by our method to deal with
multiple sequences. These sets are defined as follows:

Ikij = {Ikij = [t−, t+]|fkij = fmax

and ∀[t−, t+] ⊆ [t−, t+] fkij < fmax}.

Ikij = {Ikij = [t
−
, t

+
]|fkij = fmax

and ∀[t−, t+] ⊇ [t
−
, t

+
] fkij > fmax}.

Example: On the example of Figure 2, the minimal and
maximal supports that guaranty exactly fmax = 2 for

each sequence are I112 = {[−2, 1], [1, 2]} and I112 = {] −
∞, 1], [−1,+∞[}, I212 = {[−1, 1]} and I212 = {]−∞,+∞[},
I312 = {[−1, 1], [1, 3]} and I312 = {]−∞, 2], [1,+∞[}.
Then, the minimal and maximal supports obtained for
each Sk are combined to obtain all the possibilities for the

whole set of sequences S. Let us denote by Icombij and Icombij
the set of minimal and maximal support combinations,
respectively:

Icombij = {Icombij = {I1ij , · · · , Inij}|Ikij ∈ Ikij , k = 1, · · · , n},

Icombij = {Icombij = {I1ij , · · · , I
n

ij}|I
k

ij ∈ Ikij , k = 1, · · · , n}.

The union of the minimal supports of every combination
of Icombij is a candidate for being a tree root for (ei, ej).
The set of tree root candidates for (ei, ej) is given by:

RCij = {rαij =
⋃
k

Ikij , I
k
ij ∈ Ikij , k = 1, · · · , n,

α = 1, . . . , card(Icombij)}.

However, minimal supports are determined independently
for each sequence. As a consequence, a candidate may
violate the fmax occurrences rule in some of the sequences,
in which case it is not valid.

The validity of a candidate can be assessed thanks to the
maximal supports. Indeed, the intersection of the maximal

supports of every combination of Icombij provides a maximal
common interval, denoted MCI, that guaranties exactly
fmax occurrences of the pair (ei, ej) in all the sequences
Sk ∈ S:

MCIij = {MCIβij =
⋂
k

I
k

ij , I
k

ij ∈ Ikij , k = 1, · · · , n,

β = 1, . . . , card(Icombij)}.
Proposition 1. A tree root candidate rαij of RCij is valid if

∃β such that rαij ⊆MCIβij , where MCIβij ∈MCIij .

A valid tree root candidate for (ei, ej) is denoted Rαij and
the set of such roots is denoted Rij . The cardinal of Rij
is nij .

Example: Let us build the first following combinations
by taking the first elements of the minimal and maximal
supports for each sequence: {[−2, 1], [−1, 1], [−1, 1]} ∈
Icomb12 and {] −∞, 1],] −∞,+∞[,] −∞, 2]} ∈ Icomb12 . The
intersection of the maximal supports provides a maximal
common interval MCI112 that validates the union of the
minimal supports r112, that is:

r112 = [−2, 1] ⊆ MCI112 =]−∞, 1].

Hence, a first valid tree root for pair (e1, e2) is given
by R1

12 = r112 = [−2, 1]. However, about the second

obtained combinations {[−2, 1], [−1, 1], [1, 3]} ∈ Icomb12 and

{] −∞, 1],] −∞,+∞[, [1,+∞[} ∈ Icomb12 , the intersection
of the maximal supports provides this maximal common
interval MCI212 = [1, 1] that do not validate the union
of the minimal supports r212 = [−2, 3]. Hence, r212 is not a
good candidate to be a tree root, it authorizes 3 occurences
in sequences 1 and 3 so it violates the fmax = 2 occurences
rule.

The same procedure is applied for f = fmax− 1 and so on
until f = 1 to find the tree roots in case no candidate is
valid for f + 1 or to find the child nodes of the lower levels
of the trees. The lowest level always corresponds to f = 1
and is never empty because the considered pairs have been
taken as pairs appearing in all the sequences. The trees for
the different pairs (ei, ej) may have a root corresponding
to a different frequency. The root frequency for the trees
of (ei, ej) is denoted frootij .

 [-2,1] [-1,2]

 [-2,-1] [1,1] [1,1] e

e

eee

ee

ee

e1

1

1

1 1 22

2

2

2

Fig. 3. Set of trees for pair (e1, e2)

Example: For the example of Figure 2, two valid tree roots
are found for pair (e1, e2): R1

12 = [−2, 1] and R2
12 = [−1, 2].

The set of trees is illustrated in Figure 3 with froot12 = 2
and n12 = 2.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10400

3.2 Chronicle discovery algorithm

Once the constraint database D has been built to account
for all the sequences in S as presented in section 3.1, the
algorithm for discovering all minimal frequent chronicles
for D, given an input frequency threshold fth, is the
same as the HCDA algorithm of Cram et al. (2012) but
the counting step. This algorithm is hence called HCDA-
modified. The counting step is slightly different because we
want HCDA-modified to provide all the frequent chroni-
cles whose frequency is above the specified threshold. Like
in (Cram et al., 2012), the candidate chronicles are called
D-chronicles.

The principle of HCDAM is to generate a set of candidate
D-chronicles from a chronicle that was proved to be
frequent. The set Candidates is initiated with the set of
root trees DT . The algorithm maintains two lists:

• the list Frequent includes the candidate D-chronicles
that have been proved frequent, i.e. whose frequence
is higher or equal to fth, and strictest,
• the list NotFrequent includes the chronicles that have

been proved not frequent.

Instead of immediately counting a candidate C, i.e. deter-
mining the minimal number of occurences in the sequences
of S, the algorithm first makes use of the generality rela-
tion and monotonicity property to discard or accept the
candidate without counting:

• if there exists a chronicle C′ more general than C in
NotFrequent, then C is not frequent as well,
• if there exists a chronicle C′ stricter than C in Fre-

quent, then C is also frequent.

If none of the two above situations apply, then C is counted,
which is performed with CRS (Chronicle Recognition Sys-
tem) (Dousson et al., 1993).

In our algorithm, the candidate is also counted in the
second situation to determine its actual frequency, which is
necessarily higher than fth and higher than the frequency
of the stricter chronicle C′. Obviously, only maximal chron-
icles are saved in NotFrequent because this set is used
to search for more general chronicles. Conversely, only
minimal chronicles are saved in Frequent.

Example: Consider the following sequences of events.

Sequence 1 Sequence 2 Sequence 3

(e1, 1.049432) (e1, 13.354919) (e5, 7.207688)
(e2, 1.606904) (e1, 14.1784) (e7, 7.36308)
(e3, 1.873512) (e3, 14.377672) (e2, 8.00252)
(e4, 2.18784) (e4, 14.706472) (e3, 8.273512)
(e5, 3.441056) (e5, 15.196873) (e4, 8.482312)
(e6, 5.871024) (e6, 18.395527) (e5, 9.8347435)

(e6, 12.974768)

The algorithm HCDA-modified has been used to learn
the two following chronicles. The second chronicle is a
chronicle of frequency 2, which means that it must be
recognized twice to sign the situation captured by the
three sequences of the exemple. The first chronicle is the
stricter chronicle. It involves the highest set of event with
the tightest temporal constraints. It is of frequency 1.

chronicle Chronicle1
{
event(e5, t1)
event(e2, t2)
event(e6, t3)
event(e3, t4)

t2 − t1 in [−2,−1]
t3 − t1 in [−1.5, 3.5]
t3 − t2 in [0, 5]
t4 − t1 in [−2,−0.5]
t4 − t2 in [0, 0.5]
}

chronicle Chronicle2
{
event(e5, t1)
event(e6, t2)

t2 − t1 in [−1.5, 3.5]
}

4. CONCLUSION

This paper deals with the problem of discovering temporal
patterns in the form of chronicles that are common to a
set of temporal sequences issued from the same situation.
The obtained chronicles then sign the situation and can be
used for situation assessment or diagnosis purposes. The
paper builds on work by Cram et al. (2012) and extends
the proposed algorithm that targets learning the frequent
chronicles for one single sequence to multiple temporal
sequences that represent variants of a unique situation.
This requires to deeply revise the algorithm to generate the
constraint database representing the temporal sequences.
The revised algorithm is illustrated by a simple example
which helps understand the different steps of the method.

Future research includes theoretical as well as applied
work. The complexity of the modified algorithm, including
building the constraint base, should be carefully analyzed
and ways to improve efficiency should be studied. On
the other hand, it is planned to use this work for a real
prognostic problem, applying the algorithm HCDAM to
the observable signals of a pressure regulation valve of a
modern aircraft in different wear situations.

REFERENCES

Agrawal, R. and Srikant, R. (1994). Fast algorithms for
mining association rules. Proc. 20th Int. Conf. on Very
Large Data Bases, Santiago, Chile., 487–499.

Carrault, G., Cordier, M.O., Quiniou, R., Garreau, M.,
Bellanger, J.J., and Bardou, A. (1999). A model-based
approach for learning to identify cardiac arrhythmias. In
W. Horn, Y. Shahar, G. Lindberg, S. Andreassen, and
J. Wyatt (eds.), Proceedings of AIMDM-99 : Artificial
Intelligence in Medicine and Medical Decision Making,
volume 1620 of LNAI, 165–174. Springer Verlag, Aal-
borg, Denmark.

Cordier, M.O., Guillou, X.L., Robin, S., Rozé, L., and
Vidal, T. (2007). Distributed chronicles for on-line
diagnosis of web services. In G. Biswas, X. Koutsoukos,
and S. Abdelwahed (eds.), 18th International Workshop
on Principles of Diagnosis, 37–44.

Cordier, M. and Dousson, C. (2000). Alarm driven mon-
itoring based on chronicles. In 4th Sumposium on
Fault Detection Supervision and Safety for Technical
Processes (SafeProcess), 286–291. Budapest, Hungary.

Cram, D., Mathern, B., and Mille, A. (2012). A complete
chronicle discovery approach: application to activity
analysis. Expert Systems, 29(4), 321–346.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10401

Dousson, C. and Duong, T.V. (1999). Discovering chroni-
cles with numerical time constraints from alarm logs for
monitoring dynamic systems. In IJCAI 99: Proceedings
of the Sixteenth International Joint Conference on Ar-
tificial Intelligence, 620–626. San Francisco, CA, USA.

Dousson, C., Gaborit, P., and Ghallab, M. (1993). Sit-
uation recognition: representation and algorithms. In
IJCAI: International Joint Conference on Artificial In-
telligence, 166–172. Chambéry, France.

Fessant, F., Clérot, F., and Dousson, C. (2004). Mining
of an alarm log to improve the discovery of frequent
patterns. Lecture Note on Artificial Intelligence, 3275,
144–152.

Guerraz, B. and Dousson, C. (2004). Chronicles construc-
tion starting from the fault model of the system to
diagnose. In International Workshop on Principles of
Diagnosis (DX04), 51–56. Carcassonne, France.

Laborie, P. and Krivine, J.P. (1997). Automatic generation
of chronicles and its application to alarm processing in
power distribution systems. In 8th international work-
shop of diagnosis (DX97). Mont Saint-Michel, France.

Mannila, H., Toivonen, H., and Verkamo, A.I. (1997).
Discovery of frequent episodes in event sequences. Data
Mining and Knowledge Discovery, 1, 259–289.

Mitsa, T. (2010). Temporal data mining. CRC Press.
Morin, B. and Debar, H. (2003). Correltaion on intru-

sion: an application od chronicles. In 6th International
Conference on recent Advances in Intrusion Detection
RAID. Pittsburgh, USA.

Pencolé, Y. and Subias, A. (2009). A chronicle-based
diagnosability approach for discrete timed-event sys-
tems: Application to web-services. Journal of Universal
Computer Science, 15(17), 3246–3272.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10402

