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Abstract: This paper presents a new approach to synthesize a nominal constrained model-based
predictive control law which can avoid the ”non-robustness” curse in the presence of model uncertainty.
This approach builds on inverse optimality arguments and shows that the unconstrained control law
and the choice of nominal system are design elements to synthesize a piecewise affine regulator that
guarantees the stability of the polytopic system in a non-degenerate region containing the origin in its
interior. Some advantages of this approach are presented and a series of related problems are discussed.

1. INTRODUCTION

Robust constrained control design remains a challenging prob-
lem, despite having received significant attention over the last
two decades, especially in the so-called robust constrained
model predictive control (RCMPC). Consequently, RCMPC is
still a very active research direction on topics related to the
complexity of solution. It has to be mentioned that there are
well established methodologies in order to solve this problem.
The principle proposed in Kothare et al. [1996] and subse-
quently improved in a series of papers Falugi et al. [2010],
Cuzzola et al. [2002], Ding et al. [2004] leads to a robust
constrained MPC problem in the presence of uncertainties
represented in two different ways: polytopic uncertainty and
structured feedback uncertainty. The solution is obtained using
linear matrix inequalities (LMI). The resulting control law is
linear time-varying and guarantees the robust stability of un-
certain systems, but the state feedback controller synthesis is
solved on-line, so it implies heavy online computation. As a
consequence, this difficulty gives rise to a problem in imple-
menting the regulator. Another less attractive approach from
the computational point of view is the min-max formulation as
proposed early in Campo and Morari [1987] based on the min-
imization of the worst-case tracking error for a linear nominal
model affected by additive disturbance. It was known that this
approach in its basic formulation has restricted stability prop-
erties Bemporad and Morari [1999]. The closed loop min-max
optimal control problem Scokaert and Mayne [1998], Kerrigan
and Maciejowski [2003] was subsequently proposed to cope
with fundamental shortcomings via the dynamic programming
principles. These enhancements require an even more compli-
cated on-line computation. Recently, the tube model predictive
control (TMPC) approach in Raković et al. [2005] and Mayne
et al. [2005] considers the minimal positively invariant set (or
disturbance invariant set) to confine the state to it along the
trajectory of reference model. This approach is very attractive
for linear time-invariant (LTI) discrete system in the presence of
bounded additive disturbances. Its complexity grows however
for model uncertainties as long as a parameterization of the tube
is needed Raković et al. [2012].

In the present paper we want to answer a related problem
to these RCMPC strategies: How to design a nominal MPC
for a linear system affected by polytopic uncertainties which
ensures robust asymptotic stability in a region containing the
origin? The idea is to avoid unwieldy control law synthesis by
exploiting inverse optimality. This will point to two important
aspects: the importance of the nominal model used for the
prediction and secondly the systematic procedure of tuning the
nominal MPC parameters.

Inverse optimality was for the first time proposed in the con-
tinuous case in the classical works of R. E. Kalman in the
middle of the 1960s. Its applications were limited, being seen
as theoretical results. There are however studies pointing to the
use of inverse optimality in connection with MPC. In Rowe
and Maciejowski [2000b] for example, the authors used inverse
problem as a useful tool to replace the terminal state constraint
by choosing an appropriate weighting matrix pair in the cost
function while still guaranteeing the stability of the system.
Following this idea, the same authors built a bridge between H∞

loop-shaping procedure and MPC in Rowe and Maciejowski
[2000a] so that the same robust stability was guaranteed. In
Lovaas et al. [2006] the authors proposed a link between the
minimax optimal control and MPC for a LTI model perturbed
by bounded additive disturbance through inverse minimax opti-
mality, which required an online optimization. Some existence
conditions were presented and solved through an online LMI
problem.

Through the inverse optimality, we would like to make an at-
tempt to establish a bridge between RCMPC and nominal con-
strained MPC, exploiting among other properties its associated
piecewise affine solution as detailed in the next section.
Paper structure: Section II presents the main idea of our ap-
proach with details of the implementation for each step. Section
III will be reserved to present some propositions and discus-
sions around the resulting controller. Finally, section IV pro-
poses some open problems and connections.
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2. METHODOLOGY OF DESIGN

To begin, we need to define the problem by considering poly-
topic uncertain systems of the following form:

x(k+1) = A4x(k)+B4u(k),
y(k) =Cx(k),[

A4 B4
]
∈Ω,

(1)

where u(k) ∈ Rnu is the control input, x(k) ∈ Rnx is the state
variable and y(k) ∈ Rny is the output signal. The set Ω defines
a polytopic set in the parameters’ space:

Ω = Co{[A1 B1], [A2 B2], · · · , [AL BL]}, (2)
where Co denotes the convex hull, if [A B] ∈ Ω there exists
non negative λ1, ...λL satisfying [A B] = ∑

L
i=1 λi [Ai Bi] and

∑
L
i=1 λi = 1. Our idea can be visualized by the block diagram

shown in Figure 1 and can be summarized as follows:

Phase I: Consider the polytopic model [A∆ B∆] and a pair
of weighting terms (Q0,R0) to obtain an unconstrained linear
feedback uk = Krobxk with robustly stabilizing properties via
RCMPC based on LMIs.

Phase II: Select a nominal model
[
Ā B̄

]
∈ Ω - a series of

conditions for this selection will be provided in Section III.

Phase III: Use
[
Ā B̄

]
and Krob to solve an inverse optimality

problem. The solution will be a weighting pair (Q,R).

Phase IV: Use
[
Ā B̄

]
and the weighting terms (Q,R) to solve

a nominal MPC problem and obtain a piecewise affine control
law.

Phase V: Analyze the robustness of the obtained solution.

The dotted connections in Figure 1 represent the steps for
which only partial constructive solutions exist. We will detail
the mathematical description of the steps denoted by the full
arrows in Figure 1 in the next sections.

2.1 Linear state feedback control for polytopic systems based
on LMI

Starting from the uncertain system description in (1), with its
uncertainty described by (2), the first problem will be the design
of unconstrained robust stabilizing linear feedback control law.
We recall here a classical approach in this direction, Kothare
et al. [1996] address this objective by the optimization of the
quadratic criterion (3) and guarantees the stability of uncertain
systems. Furthermore, the constraints can be specified leading
to an adjustment of the robust stabilizing control law with
respect to the component-wise limitations (4).

min
u(k+i|k), i≥0

max
[A(k+i)B(k+i)]∈Ω

J∞(k)

J∞(k) =
∞

∑
i=0

[xT (k+ i|k)Q0x(k+ i|k)+uT (k+ i|k)R0u(k+ i|k)],

(3)

‖ul(k+ i|k)‖2 ≤ ul,max, l = 1..nu,

‖yr(k+ i|k)‖2 ≤ yr,max, r = 1..ny, i> 0,
(4)

where u(k + i|k) ∈ Rnu ,x(k + i|k) ∈ Rnx ,y(k + i|k) ∈ Rny rep-
resent, respectively, the values at time k + i of control, state
variables and measured output as predicted at time k. ‖.‖2
presents the Euclidean squared norm. Q0 � 0,R0 � 0 are given
symmetric matrices.

According to Kothare et al. [1996], this problem can be param-
eterized by the current state and solved using an on-line LMI
approach leading to a linear feedback control law, but due to the
complexity of the on-line computation, we do not pursue this
direction and only retain the off-line LMI approach. Practically,
the control law is obtained by solving the following standard
LMI problem:

min
γ,Z,Y
− logdet(Z), (5)

subject to 
Z ZAT

j +Y T BT
j ZQ1/2

0 Y T R1/2
0

A jZ +B jY Z 0 0
Q1/2

0 Z 0 γI 0
R1/2

0 Y 0 0 γI

� 0

[
u2

l,maxI Yl

Y T
l Z

]
� 0[

Z (A jZ +B jY )TCT
r

Cr(A jZ +B jY ) y2
r,maxI

]
� 0

j = 1...L, l = 1...nu, Yl = Y (l, ·), r = 1...ny, Cr =C(r, ·).
(6)

The state feedback controller gain is obtained explicitly as:
Krob = Y Z−1. (7)

2.2 Inverse problem for linear discrete-time system

The inverse optimality was presented by Kalman in Kalman
[1964] for SISO continuous systems. Some later works focused
on the continuous case (a synthesis is presented in Kong et al.
[2012]), but our interest is in LTI discrete systems. In Anderson
and Moore [1971] (section 5.6), the authors proposed some
comments related to inverse optimal control in the discrete case,
in Larin [2003] and Ostertag [2011] (section 6.3.7) the authors
proposed also algorithms to solve the inverse optimality prob-
lem in both the continuous and the discrete cases, but omitted
the specification of the necessary and sufficient conditions for
the existence of solution. These conditions will be stated in the
next section.

Consider the following nominal discrete system:
x(k+1) = Ax(k)+Bu(k),

y(k) =Cx(k),
(8)

where (A, B) is controllable. A given control law u = −Kx
satisfies the stability of the closed-loop system. We would like
to find a symmetric matrix pair (Q, R) (Q� 0,R� 0) such that
the given control minimizes the following quadratic criterion:

JQ,R =
∞

∑
k=0

(x(k)T Qx(k)+u(k)T Ru(k)). (9)

Now we review an LMI formulation Larin [2003] to solve the
inverse optimality via a LMI standard problem:

min
λ ,S,Y,R,P

λ ,

s.t:
P� 0

AT PA−P−KT RK−KT BT PBK � 0[
Y S
ST I

]
� 0

Y � λ I

S = RK +BT PBK−BT PA.

(10)
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Fig. 1. Block diagram of the proposed control law synthesis

The matrices Q,R,P stem from the Riccati equation:

AT PA−P−KT RK−KT BT PBK +Q = 0.

In fact, the resolution of (10) amounts to an approximation of
the solution instead of the exact one. The Riccati equation is
not solved directly but the error between the left and the right
hand side is minimized. The second LMI in (10) relies on the
assumption that Q� 0. From the solution of Riccati equation:

K = (BT PB+R)−1BT PA,

it follows that S has to be zero, so this LMI problem tries to
minimize λ in order to ensure that S is as close as possible to
zero by the relationship: λ I � Y � SST � 0.

2.3 Multi-parametric quadratic programming

Consider the nominal system (8), the objective is to find a
stabilizing control law by:

min
u

J(x(k),u) = min
u

xT (k+N|k)Px(k+N|k)+
N−1

∑
i=0

xT (k+ i|k)Qx(k+ i|k)+uT (k+ i|k)Ru(k+ i|k),
(11)

subject to:
umin ≤ u(k+ i|k)≤ umax,

ymin ≤ y(k+ i|k)≤ ymax,

x(k+N|k) ∈ X f ,

(12)

where X f is the terminal constraint set. It is supposed that (A,B)
is stabilizable and (Q1/2,A) is detectable. The cost function
minimization (11) can be easily rewritten as follow:

min
u

J(x(k),u) = min
u

uT Hu+ x(k)TY x(k)+ xT (k)Fu,

u = [uT (k) . . . uT (k+N−1|k)]T .
(13)

The solution to the above problem through mp-QP is a piece-
wise affine function u∗ defined over a state space polyhedral
partition X (a set of polytopes) Bemporad et al. [2002]:

X =

Np⋃
i=1

Xi,

upwa(x) = u∗(1 : nu) = Fix+Gi, for x ∈Xi.

(14)

Remark: Note that the constraint set (12) needs to be sym-
metric umax = −umin, ymax = −ymin for the adaptation to con-
straints (4).

3. DISCUSSION AND RELATED PROBLEMS

Along with the discussions and developments of this section,
all the numerical results are carried out with:

A1 =

[
1 1

0.9 0.5

]
A2 =

[
1 1

3.8 0.5

]
B1 = B2 =

[
1
1

]
C = [1 0] .

The nominal system is chosen: A =

[
1 1

1.48 0.5

]
. The weighting

matrices Q0 = I2, R0 = 1 and the prediction horizon N = 5. Fi-
nally, the constraints are chosen as: ymax =−ymin = 0.5, umax =
−umin = 0.2.

3.1 Existence condition

Through the methodology, we see that a solution exists if and
only if the existence conditions of inverse optimality are sat-
isfied. The algorithm for inverse optimality computation was
presented above (the detail is available in Larin [2003]) as an
LMI problem, but the selection of a nominal model was not
discussed. As mentioned in Section II, this selection allows a
certain degree of freedom but it is still open in the present paper.
We state now the existence conditions (the so-called Kalman
conditions) for the discrete case (the continuous counterpart
was presented in Kalman [1964]).
Proposition 1: Consider a nominal system (8) and a stabilizing
state feedback controller uk = −Kxk, the necessary and suffi-
cient conditions for the existence of a matrix Q = QT � 0 such
that uk = −Kxk is the optimal solution to the minimization of
the objective function (9) as JQ,1 are:

i) K(A−BK)−1B > 0,

ii) |1+K(e jω I−A)−1B|> 1
(1+K(A−BK)−1B)1/2 ,

iii) (1 + K(zI − A)−1B)(1 + K(A− BK)−1B)(1 + K(z−1I −
A)−1B) = 1+BT (z−1I−AT )−1Q(zI−A)−1B,

here z is the forward shift operator.
Proof:
→ K is the optimal control law. We have to prove all three con-
ditions. Indeed, from the optimality of K, the Riccati equation
needs to be satisfied:

AT PA−P−KT RK−KT BT PBK +Q = 0, (15)
K = (BT PB+R)−1BT PA. (16)

From (16) we can find after some algebraic transformations that
K(A−BK)−1B = BT PB > 0 (recall here that R = 1), as P is
positive definite, this corresponds to condition i). On the other
hand, (15) is equivalent to:

(z−1I−AT )P(zI−A)+(z−1I−AT )PA+AT P(zI−A)+
AT PB(BT PB+R)−1BT PA = Q.

By pre-multiplying and post-multiplying respectively the above
equation with BT (z−1I−AT )−1 and (zI−A)−1B, we obtain:
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(I +BT (z−1I−AT )−1KT )(R+BT PB)(I +K(zI−
A)−1B) = R+BT (z−1I−AT )−1Q(zI−A)−1B.

Through condition i) and the above equation, condition iii) is
proved with the assignment R = 1. Moreover, with z = e jω the
second condition is proved.
← From three conditions presented above, we have to prove
that the control law K is optimal. Due to the stability of the
closed loop dynamics, with respect to a positive semi-definite
matrix Q, there exists a unique positive definite matrix Popt and
the associated optimal control law Kopt satisfying the Riccati
equation. Kopt satisfies then the three properties above by the
necessary condition.

For an ease of representation, let’s impose:
ε = 1+K(A−BK)−1B,
εopt = 1+Kopt(A−BKopt)

−1B.
Invoking Lemma 2 of Kalman [1964], one can find a control-
lable pair (A,B) in the following basic form:

A =


0 1 0 ... 0
. . . . .
. . . .
0 . . 0 1
−α1 . . −αn−1 −αn

, B =


0
.
.
0
1

 .
We can calculate

1+K(zI−A)−1B = 1+
knzn−1 + kn−1zn−2 + ...+ k1

zn +αnzn−1 + ...+α1
, (17)

similarly,

1+Kopt(zI−A)−1B = 1+
k∗nzn−1 + k∗n−1zn−2 + ...+ k∗1

zn +αnzn−1 + ...+α1
, (18)

where K = [k1...kn]
T and Kopt = [k∗1...k

∗
n]

T .
Suppose that σ(z) and σ∗(z) are respectively the numerator of
the right hand side in (17) and (18). From the third condition
we obtain:

εσ(z)σ(z−1) = εoptσ
∗(z)σ∗(z−1).

One can see that σ(z) has n zeros z1,z2, ...,zn. Then,

εoptσ
∗(z)σ∗(z−1) = εσ(z)σ(z−1)

= ε

n

∏
i=1

(z− zi)
n

∏
i=1

(z−1− zi).
(19)

If zi (i = 1..n) is a zero of σ(z) then it follows from (19):

σ
∗(zi) = 0 or σ

∗(z−1
i ) = 0.

If σ∗(z−1
i ) = 0 then zi is a root of σ∗(z−1) = 0. That means

* z− zi is a factor of σ∗(z−1),
* z−1− zi is a factor of σ∗(z).

It can be observed that deg(σ∗(z)) = n, so the case σ∗(z−1
i ) = 0

can not happen, or σ∗(zi) = 0 for i = 1..n.

As a consequence, we can obtain:

σ(z) =
n

∏
i=1

(z− zi) = σ
∗(z), (20)

and finally it follows that K = Kopt . �
Remark: The conditions summed up in Proposition 1 are only
applicable for SISO and SIMO systems as the proof relies on
the input-output transfer function relationships.

3.2 Robustness analysis

From the design approach proposed in Figure 1 and detailed
in Section II, if a solution exists, the state space partition
associated with the piecewise affine control law will contain a
critical region corresponding with the unconstrained controller
(denoted P0,0 ∈ int(P0)), so the control in this region is linear
( u = Kx ) and its state feedback controller gain is equal to
this one computed by the first step (K = Krob). This has some
implications:

* The stability of the nominal system is guaranteed through
the terminal constraint set. So there exists at least a trajec-
tory which returns to the origin. That means our approach
is viable (which will be stated in the next subsection).

* The region P0 contains the (non-empty) maximal robustly
positively invariant set associated with the unconstrained
robust stabilizing control law.

The LMI unconstrained robust control synthesis provides an
ellipsoidal invariant set defined by E = {x|xT Z−1x≤ 1} where
Z is computed through (5)-(6). This ellipsoid is an invariant
set for the polytopic system, so it is contained in the maximal
invariant ellipsoid for the nominal system (which is defined by
the nominal system and the same unconstrained control), and
included in P0 as seen in Figure 2.

Fig. 2. Maximal invariant ellipsoid for the polytopic system

3.3 Strict robustness guarantee

Let us review a result (Theorem 3.3 from Lombardi et al.
[2012]) which provides a basic local robustness guarantee for
the obtained piecewise control law.
Theorem 1: The nominal MPC control law designed upon a
performance index obtained by inverse optimality with respect
to an unconstrained robust linear feedback is robustly stabi-
lizing for the system (1) and fulfill the constraints in a non-
degenerate neighborhood of the origin.

Two examples to illustrate the implications of this theorem are
the maximal ellipsoidal invariant set computed through the first
step of our approach and the solution of Algorithm 1. This al-
gorithm will be introduced below to prove also the advantage of
our approach for the polytopic system through the construction
of a larger polyhedral robust invariant set (denoted as Xrob)
than the maximal ellipsoidal one. This one is clearly in the
interior of P0 as seen in Figure 3.
Algorithm 1
1: Xrob← P0.
2: X +

rob =
{

x ∈Xrob | x+ = (Ai +BiKrob)x ∈Xrob,∀i = 1...L
}
.

3: If Xrob = X +
rob, stop the loop.
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4: Else Xrob←X +
rob, return to Step 2.

5: End.

Fig. 3. New invariant set for polytopic system

The above algorithm builds only on the closed loop correspond-
ing to the unconstrained robust control law. Thus, this set is
always a subset of P0. With the aim to enlarge the invariant
set for the polytopic systems beyond the unconstrained region
of the state space, we present the next two different approaches
for the computation of the maximal robustly positively invariant
(MRPI) set with respect to the PWA controller obtained from
our procedure u = upwa(x) in (14). They show that such a set is
a polyhedral partition of the state space instead of a polytope.

For the simplification of representation, the MRPI set is denoted
as Prob and X represents the state space partition as the
solution of the proposed procedure.
Algorithm 2 Extensive approach
1: Prob←Xrob.
2: Nx: the number of regions in the state space partition X .
3: Np: the number of regions in the partition Prob.
4: P+

rob← /0.
5: For i1=1:Np
6: For i2=1:Nx
7: P∗

rob = {x ∈X (i2) | A jx+B ju ∈Prob(i1),∀ j = 1...L}.
8: P+

rob←P+
rob
⋃

P∗
rob.

9: End
10: End
11: If Prob\P+

rob = /0 & P+
rob\Prob = /0 1

12: Stop the loop.
13: Else Prob←P+

rob. Return to Step 3.
14: End.
The numerical result is shown in Figure 4. Another construction

Fig. 4. MRPI set through extensive approach

1 Recall that \ denotes the difference operator of two sets. If P,Q are two
arbitrary sets, P\Q := {x | x ∈ P, x /∈ Q}. This notion is extended for two poly-
hedral partitions P =

⋃N1
i=1 Pi and Q =

⋃N2
j=1 Q j as P\Q = ∪N1

i=1(∩
N2
j=1Pi\Q j).

based on a so-called the contractive approach is interpreted
through Algorithm 3.
Algorithm 3 Contractive approach
1: Prob←X .
2: Np: the number of regions in the partition Prob.
3: P+

rob← /0.
4: For i1=1:Np
5: For i2=1:Np

6: P∗
rob = {x ∈Prob(i2) | A jx+B ju ∈Prob(i1),∀ j = 1...L}.

7: P+
rob←P+

rob
⋃

P∗
rob.

8: End
9: End
10: If Prob\P+

rob = /0 & P+
rob\Prob = /0.

11: Stop the loop.
12: Else Prob←P+

rob. Return to Step 2.
13: End.
The result with respect to the same numerical example is shown
in Figure 5.

Fig. 5. MRPI set through contractive approach

Remark: Algorithms 2 and 3 are sensitive with respect to the
description of the polyhedral partition (possible convex region
reduction, degeneracy, etc) and robust numerical procedures
should enable the polytopic computations Baotić [2009].

To conclude this part, as presented early, we state a theorem
about the viability of our approach.
Theorem 2: Given an uncertain system (1), upwa(x) is the
piecewise affine regulator, obtained as the solution of a nominal
MPC:

• for a nominal prediction model satisfying the conditions in
Proposition 1 with respect to a stabilizing controller Krob,

• with weighting parameters obtained via inverse optimal-
ity,

then there exists at least one realization [Ak Bk] ∈Ω (Ω in (2))
such that the feasible set X is positively invariant in closed
loop with upwa(x) and it contains a local region Xrob (or Prob)
which is robustly positively invariant for all [Ak Bk] ∈Ω.
Proof (A,B) describes the nominal system by which the PWA
control law upwa(x) is synthesized. It is easy to conclude that
at least for Ak = A,Bk = B, the feasible set X is positively
invariant while the region P0 contains a robustly positively
invariant set as theoretically stated in Theorem 1 and practically
shown through Algorithms 1, 2, 3. �
Remark: Theoretically, one can easily check the convergence
of Algorithms 1, 2, 3. In fact, after each loop Xrob ⊃X +

rob ⊃
{0} for Algorithm 1, the algorithm thus has to be convergent.
The same conclusion can be obtained for the other algorithms
due to the fact that X ⊃P+

rob ⊃Prob for Algorithm 2 and
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{0} ⊂P+
rob ⊂Prob for Algorithm 3.

Remark: A margin of robustness can be found for the nominal
MPC as a region in parameter space around the nominal [A B].
A generic method for such a calculation has been recently
proposed in Olaru et al. [2013]. We consider for the moment
a simpler computation of such a robustness margin.

For each extreme [Ai Bi] of the polytopic set Ω in (2), consider
the nominal system [A B] and its PWA control law upwa(x)
obtained via our approach, we try to find the maximal value
αi such that the controller upwa(x) stabilizes also systems
[A B] =

[
A B

]
+αi[Ai−A Bi−B]. As a consequence, any sys-

tem inside the set:
[
A B

]
+Co{α1[A1−A B1−B], ...,αL[AL−

A BL−B]} is also stabilized by upwa(x) in the sense that the
feasible region X is robustly invariant. We call this set a ro-
bustness margin associated with the PWA control law upwa(x)
obtained in (14). The above problem can be solved through a
series of L linear programming problems in which (A+BFj)v+
G j ⊂X form the set of linear constraints, here v denotes the
vertices of X j related to the PWA control law uk = Fjxk +G j.

To illustrate this remark, with the weighting matrices obtained
by inverse optimality, a robustness margin is shown in Figure 6

Fig. 6. An example for the calculation of robustness margin for
the nominal PWA control law

4. CONCLUSION AND CONNECTIONS WITH OPEN
PROBLEMS

This note covers only the first steps toward the development
of a new nominal design method with robustness guarantees
in a subset of the feasible region X . There are two important
problems to be solved in order to make it complete:

• Which feasible solution of this approach guarantees the
largest robust stability domain for the polytopic system?
• Suppose a given nominal system with control law K does

not satisfy the Kalman inverse optimality condition. Are
there other ways to chose the weighting pair (Q,R) such
that the control law synthesized by the our procedure can
guarantee the stability of the polytopic system?

To guarantee the robust stability over Ω, a relaxed formulation
with the nominal cost function computed from the inverse opti-
mality and the set of constraints built on their standard formu-
lation over all vertex realizations of Ω needs to be explored.
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M. Baotić. Polytopic computations in constrained optimal
control. AUTOMATIKA, 50(3-4):119–134, 2009.

A. Bemporad and M. Morari. Robust model predictive con-
trol: A survey. Lecture Notes in Control and Information
Sciences, 245:207–226, 1999.

A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos. The
explicit linear quadratic regulator for constrained systems.
Automatica, 38:3–20, 2002.

P. J. Campo and M. Morari. Robust model predictive control.
In Proc.American Contr. Conf, pages 1021–1026, 1987.

F. Cuzzola, J. Geromel, and M. Morari. An improved approach
for constrained robust model predictive control. Automatica,
38:1183:1189, 2002.

B. Ding, Y. Xi, and S. Li. A synthesis approach of on-line
constrained robust model predictive control. Automatica, 40:
163:167, 2004.

P. Falugi, S. Olaru, and D. Dumur. Multi-model predictive
control based on lmi: from the adaptation of the state-space
model to the analytic description of the control law. Interna-
tional Journal of control, 83(8):1548–1563, 2010.

R. E. Kalman. When is a linear control system optimal? Trans.
ASME J. Basic Engr, 86D:51–60, 1964.

E. C. Kerrigan and J. M. Maciejowski. Robustly stable feed-
back min-max model predictive control. In Proc. Amer.
Control Conf, pages 1021–1026, 2003.

H. Kong, G. Goodwin, and M. Seron. A revisit to inverse op-
timality of linear systems. International Journal of Control,
85(10):1506–1514, 2012.

M. V. Kothare, V. Balakrishnan, and M. Morari. Robust
constrained model predictive control using linear matrix
inequalities. Automatica, 32(10):1361–1379, 1996.

V. B. Larin. About the inverse problem of optimal control. Appl.
Comput. Math, 2(2):90–97, 2003.

W. Lombardi, S. Olaru, S. I. Niculescu, and L. Hetel. A
predictive control scheme for systems with variable time-
delay. International Journal of Control, 85(7):915–932,
2012.

C. Lovaas, M. M. Seron, and G. C. Goodwin. Inverse minimax
optimality of model predictive control policies. In Proceed-
ings of the 45th IEEE Conference on Decision and Control
Manchester, 2006.

D. Q. Mayne, M. M. Seron, and S. V. Rakovic. Robust
model predictive control of constrained linear systems with
bounded disturbances. Automatica, 41:219–224, 2005.

S. Olaru, N. A. Nguyen, G. Bitsoris, P. Rodriguez-Ayerbe,
and M. Hovd. Explicit robustness and fragility margins
for discrete-time linear systems with pwa control. In 17th
International Conference on System Theory, Control and
Computing, Sinaia, Romania, 2013.

E. Ostertag. Mono-and Multivariable Control and Estimation:
Linear, Quadratic and LMI Methods. Springer, 2011.
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