
Control of an Industrial Scale Bioreactor
using a PAT Analyser

Stephen Goldrick ∗ Ewan Mercer ∗∗ Gary Montague ∗

David Lovett ∗∗ Barry Lennox ∗∗∗

∗ Biopharmaceutical Bioprocess Technology Centre, Merz Court, Newcastle

University, Newcastle-upon-Tyne. (e-mail: s.goldrick@newcastle.ac.uk)
∗∗ Perceptive Engineering Limited, Vanguard House, Keckwick Lane, Daresbury,

Cheshire.
∗∗∗ Control Systems Group, School of Electrical and Electronic Engineering,

University of Manchester.

Abstract: This work investigates the application of a “Process Analytical Technology” (PAT)
analyser to control the substrate concentration over traditional sequential batch control for an
industrial scale fed-batch penicillin fermentation. A simulation that utilises the historical data
from four batches, where a sequential batch control strategy was implemented, was used as the
benchmark reference for this comparison. The simulation accurately predicts the main outputs
variables of biomass and penicillin, given the inputs from the historical data set. The simulation
includes a PAT analyser, used to build a calibration model with the available off-line substrate
concentration from one of the batches. The prediction from this calibration model was used as
the controlled variable within a proportional integral (PI) controller to manipulate the substrate
feed rate for the three remaining batches. Performance of each control strategy was analysed by
comparing the final penicillin yield of each batch. An increase of 35, 20 and 9% was observed for
the three batches controlled using the PI controller compared with the sequential batch control
strategy.

Keywords: Industrial biotechnology; Microbial technology.

1. INTRODUCTION

Improving product yield and maintaining consistent oper-
ation is the ultimate goal in batch manufacturing. Achiev-
ing this goal in the biotechnology sector has proven to be
difficult, with a major challenge being the ability to design
a robust control strategy that can handle the large varia-
tions associated with batch fermentations. Major sources
of variation include inconsistencies in the properties of the
raw materials and the initial conditions of the batch. These
variations can result in changes to important properties,
such as the biomass or penicillin growth rates, which
are often difficult to identify and compensate for. Fur-
ther complications arise as a result of the limited on-line
measurements available. Important measurements, such as
substrate and product concentration are rarely available in
real-time and developing a control strategy that depends
on off-line measurements generally results in poor control.

Large scale batch fermentations are typically controlled
by sequential, or recipe driven, batch control. This control
strategy is automatic and aims to standardise the total
charge volume for each process input with the overall
aim of reducing variability [1]. However, this rigid control
strategy can often increase variability by not responding
to process disturbances or fluctuations. Also, the perfor-
mance of each batch or the availability of the downstream
processing unit operations is not considered using this
control strategy. These factors have a major influence
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Fig. 1. Typical variation associated with batch fermenta-
tions.

on the batch length of industrial fermentations. Figure 1
summaries these practical considerations.

The current focus of this work is to analyse the benefits
of process control using a PAT analyser. This technology
has been shown to improve the control of batch fermenta-
tions through the timely on-line measurements of critical
process parameters [2]. Similarly, [3] highlighted the use of
near infra-red (NIR) spectroscopy analyser to control the
substrate feed rate in a 3 litre bioreactor. This work com-
pares the application of a simulated Raman spectroscopy
sensor to control the substrate feed rate for an industrial
scale bioreactor. The process control strategy using this
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PAT analyser is compared, using a simulation, against the
substrate feeding rate of four industrial scale fed-batch
fermentations. The simulation accurately describe the in-
dustrial scale fermentations by comparing the predicted
outputs against those recorded in the batch records using
the main process inputs of each industrial batch.

2. MATERIALS AND METHODS

The simulation used in this work is a 1st principles
mathematical model of a fed-batch 100,000 litre penicillin
fermentation that includes a simulated PAT analyser in
the form of a Raman spectroscopy probe. The simulation
referenced as “IndPenSim” uses the model developed by
Goldrick et al. ([4], [5] unpublished) which extends the
penicillin fermentation models developed by Paul and
Thomas [6] and Tiller et al. [7].

The simulation was validated using data collected from
the batch records of 10 industrial scale penicillin fermen-
tations. The results in this paper focus on data from
four batches referenced as Batches 1-4. Which are a good
representation of the results for the majority of the batches
made available for this study. The only batches that pro-
duced inconsistent results were those that had encountered
process faults, leading to batch failure. Further details of
the data is available in [5]. The simulation has five inputs
and six outputs and requires four batch characteristics to
be initialised as summarised in figure 2.

IndPenSim 
Fs

 X0

S
P

Spectral data t

Process outputs

Initial conditions 

V
Fdischarge 

Process inputs
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Fig. 2. Summary of the inputs and outputs for IndPenSim.

The inputs are the substrate feed rate (Fs), discharge
rate (Fdischarge), water for injection rate (Fwater), air
flow rate (Fg), head pressure (Press) and the outputs
are the bioreactor volume (V ), Raman spectroscopy data
(Spectral data) , concentrations of penicillin (P ), biomass
(X), substrate (S), and dissolved oxygen (DO2). The
dynamics of the simulation can be changed by adjusting
the initial conditions of each batch, these include the initial
biomass concentration (X0), the maximum specific growth
rate of biomass (µXmax) and penicillin (µPmax) and the
batch length (t).

2.1 Process inputs for IndPenSim

The process inputs used in this study were taken from four
industrial batch fermentations, shown in figures 3-6. The
discharge rate is not displayed but was calculated from the
volume profile shown in figure 7 for the historical batches.
The graphs represent the typical variation associated with
the process inputs for each batch. The substrate feed was
the main carbon source for the fermentation and was
controlled by sequential batch control that was manually

adjusted by the operator to maximise production of peni-
cillin while ensuring the dissolved oxygen was kept above
its critical value of 4 mg L−1. The water for injection was
used to reduce the viscosity of the broth and was manually
controlled. The air flow and head pressure were controlled
by the operator to ensure the dissolved oxygen concen-
tration was kept above its critical value. The discharge
rate ensured that the volume of the bioreactor was kept
below its set-point of 100,000 litres. Further details of these
control variables can be found in [5].
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Fig. 3. Substrate feeding rates for four industrial batches.
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Fig. 4. Water for injection rates of four industrial batches.

2.2 Initial conditions

The initial conditions for the four industrial batches are
displayed in table 1. The initial biomass concentration

Batch reference X0 µXmax µPmax Batch length
(g L−1) (hr−1) (hr−1) (hr)

Batch 1 1.65 0.25 0.0409 257
Batch 2 2.6836 0.2349 0.0439 218
Batch 3 3.1105 0.2366 0.0459 223
Batch 4 1.74 0.3124 0.0434 286

Table 1. Data calculated for four industrial
batches and used as the inputs for IndPenSim.

and the maximum specific growth rate of biomass were
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Fig. 5. Air flow rate for four industrial batches.
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Fig. 6. Vessel pressure for four industrial batches.

calculated using the oxygen uptake rate from each indus-
trial batch. The maximum specific growth rate of penicillin
was calculated using the first three off-line measurements
of penicillin which were recorded every 24 hours. The
batch length was the total time of the fermentation. The
initial conditions and batch length was kept constant in
the comparison of the two different control strategies.

2.3 Process outputs

IndPenSim uses the process inputs and batch character-
istics to predict the substrate, penicillin, biomass, volume
and DO2 for each batch. The recorded off-line penicillin
concentration and volume of the four industrial batches
is compared against the simulated values predicted using
IndPenSim as shown in figures 7 and 8. The substrate
prediction is discussed in section 3 and the prediction of
biomass and dissolved oxygen is outside of the scope of
this paper.

2.4 Spectral data

IndPenSim contains a simulation of a Raman spectroscopy
sensor. The spectra are generated by applying six Gaussian
distributions, three of which are related to the concentra-
tion of penicillin and the remaining three are related to
the substrate concentration. These Gaussian distributions
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Fig. 7. Recorded volume for four industrial batches com-
pared to the simulation volume using IndPenSim
(·−historical data,−− simulated data).
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Fig. 8. Comparison of the simulated (s) penicillin concen-
tration, shown by the solid lines, against the historical
penicillin concentration, shown by the dashed lines,
of the four batches (·−historical data,−− simulated
data).

were then added to a baseline spectra. The intensity of
baseline spectra increased as a function of the biomass con-
centration, to simulate fluorescence. A linear relationship
was assumed between peak high and substrate or penicillin
concentration as defined by the Beer-Lamber law. The
spectra was recorded every 12 minutes and can be used
to model the substrate concentration on-line provided a
calibration model is successfully built. An example of the
raw spectra collected for Batch 1 is shown in figure 9.

2.5 Development of a calibration model

The simulated substrate concentration combined with the
spectral data from Batch 1 were used to build a calibration
model to predict the substrate concentration. It was as-
sumed that only the off-line measurements of the substrate
concentration, measured every four hours, were available
for the calibration model. The model was built using the
off-line substrate data (SOF ), consisting of a vector with
85 rows, and the corresponding spectral data (XSpec)
consisting of a matrix of 2200 columns and 85 rows. The
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Fig. 9. Spectra collected from Batch 1
.

column vectors of the matrix represent the wavenumbers
of the spectra. The wavenumbers of interest that contain
information related to the substrate concentration were
chosen using the regression coefficients (B) of a PLS model
taking XSpec as the X-block and SOF as the Y block.
The PLS model was built using the technique outlined
in [8]. The spectral data was first decomposed in to its
principal components, generating a matrix of scores, T,
and loadings, P. The off-line substrate concentration was
decomposed in a similar fashion generating a matrix of
scores, U, and loadings, Q, as shown below:

XSpec = TP′ + E (1)

SOF = UQ′ + F (2)

The inner relationship that relates the scores of the XSpec

block to the scores of the SOF block was calculated as
follows:

U = TW (3)

This inner relationship of regression coefficients was im-
proved by exchanging the scores, T and U, in an iterative
calculation. This allows information from one block to
be used to adjust the orientation of the latent vectors
in the other block and vice versa. Once the complete
model was calculated, a matrix of regression vectors, B̂,
was generated:

B̂ = P(P’P)−1WQ′ (4)

Ŝ = XSpecB̂ (5)

Where Ŝ is the predicted substrate concentration. The
magnitude of regression vectors (B̂) was used to determine
the wavenumbers of the spectra that contain information
about the substrate concentration. The wavenumbers with
large values of B̂ show that there is a relation between
those wavenumbers (XSpec) and the substrate concen-
trations (SOF ). These wavenumbers can be selected by

plotting the first three latent variables of B̂ as shown in
figure 10. The wavenumbers of interest were chosen from
this figure and were taken as: 170:270 620:660 953:1153
cm−1. The off-line substrate concentrations was divided
into a calibration and validation data set as shown in
figure 11. The growth phase of the fermentation considered
as the first 30 hours of each batch was ignored due to
the high substrate concentration during this period. The
spectral data was pre-processed using a standard Savitzky-
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Fig. 10. Regression coefficients B̂, calculated for the first
three latent variables of the PLS model for Batch 1.
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Fig. 12. Predicted substrate concentration compared the
actual simulated substrate concentration for Batch 1.

Golay smoothing technique using a 15 point average and
taking the first derivative. A partial least squares model
was then developed using the PLS technique described
earlier. Five latent variables were chosen for the model
as it accurately described the substrate concentration for
both the calibration and validation data sets of Batch 1 as
shown in figure 12.
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2.6 PAT Controller

The calibration model was applied on-line and utilised for
the prediction of the substrate concentration for Batches 2-
4. This predicted substrate concentration was first filtered
using a three point moving average filter to reduce the
noise associated with the prediction. This filtered signal
was used as the controlled variable in a proportional
integral (PI) controller that manipulated the substrate
feed rate. The PI controller was switched on after 100
hours which was taken as the transition point from the
growth phase to the stationary phase for each batch. The
set-point of the controlled variable was 5.5×10−3 g L−1.
This set-point was taken as the average of the off-line
substrate concentrations as shown in figure 11. The volume
of the tank was controlled by manipulating the discharge
flow rate to ensure that the volume did not exceed 90,000
litres. The controller set-up is illustrated in figure 13.

SubstrateRtank

PATRSensor

PIRR
controllerR

30Rminutes

Off-lineRSubstrateRconc
FeveryR4Rhours)

R
RawRspectra

CalibrationR
modelRR

PredictedR
SubstrateRconc

SubstrateRRS.PR

SubstrateRfeedRrateR

DownstreamRProcessing

Fs

FDischarge

Filter

FilteredRPredictedR
SubstrateRconc

Fig. 13. Overview of PAT controller

3. DISCUSSION

The mathematical simulation, IndPenSim, was used to
test the performance of a control strategy using a PAT
analyser on four industrial scale penicillin fermentations
with varying dynamics. Before the proposed PAT con-
troller was applied, the accuracy of the simulation was
first validated. Validation was made by using the process
inputs and initial batch conditions from the four historical
batches as model inputs in the simulation and then com-
paring the predicted outputs against the actual responses.
Figure 8 compares the actual penicillin measurements,
recorded using off-line laboratory analysis, against the
simulated values of penicillin by IndPenSim. This figure
shows that the simulation tracks the off-line measurements
very closely for each of the four batches. The simulation
was also shown to predict the volume in the bioreactor
accurately based on the inputs and the rate of discharge
as highlighted in figure 7.

Having validated the simulation, the performance of the
proposed PI controller system was assessed. Before the
control strategy could be implemented a calibration model
was built using the data from Batch 1 as discussed in
section 2.5. This calibration model gave a good predic-
tion of the substrate concentration as shown in figure
12. Although the prediction is shown to be noisy the
model accurately predicts the changes in the substrate
concentration throughout the entire batch. In order to
reduce the effect of this noise on the PI controller the
input signal was filtered using the technique discussed
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Fig. 15. Comparison of the substrate concentration when
the substrate feed rate is controlled using a PI con-
troller against and when controlled by an operator.

in section 2.6. The substrate feed rate manipulated by
the PI controller is compared against the previous op-
erator controlled substrate recorded in the batch records
for Batches 2-4 as shown in figure 14. The controller is
switched on after 100 hours and reduces the substrate feed
rate to control the substrate concentration to its set-point
of 5×10−1 g L−3. This set-point is tightly controlled for
the remainder of each of the batches. This tight control
on the substrate concentration is shown to improve the
production of penicillin for each batch as seen in figure 17.
The final penicillin yield was shown to increase by 35%,
20 % and 9% for Batches 2, 3 and 4, respectively. The vol-
ume control for each batch using the two different control
strategies is highlighted in figure 17. The volume control
using the PI controller strategy is shown to control the
level of the bioreactor very tightly compared to when it was
controlled using sequential batch control. Tight control is
highly desirable in large scale batch fermentations as the
large changes observed during operator controlled volume
can represent disturbances on other process variables and
reduce product concentration.
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4. CONCLUSIONS

The benefits of using a PAT analyser to help control the
substrate feed rate for an industrial scale penicillin fermen-
tation are highlighted here. Through the application of this
advanced technology, the substrate was measurement on-
line. These measurements were used by a PI controller to
manipulate the substrate feed rate. By controlling the sub-
strate feed concentration to a fixed set-point, the penicillin
production rate was shown to increase compared to when
the batch was controlled using sequential batch control.
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Carl-Fredrik Mandeniusa On-line multi-analyzer
monitoring of biomass, glucose and acetate for growth
rate control of a Vibrio cholerae fed-batch cultivation
Journal of Biotechnology 115 (2005) 67-79

[4] Stephen Goldrick, Barry Lennox, David Lovett, Keith
Smith, Gary Montague The Development of a Simu-
lation to Address the Real Challenges Associated with
Industrial Scale Penicillin Production. Computer Ap-
plications in Biotechnology conference, Mumbai Dec
2013

[5] Stephen Goldrick, Andrei Stefan, Gary Montague,
David Lovett, and Barry Lennox The development
of a simulation to address the pratical challenges
associated with industrial scale penicillin production
Biotechnology and Bioengineering, manuscript in
preparation to be submitted in Jan 2014

[6] G. C. Paul and C. R. Thomas, A structured model
for hypal differentiation and Penicillin Production
Using Penicillium chrysogenum Biotechnology and
Bioengineerng, 51,558-572 1996.

[7] Volker Tiller, Juliane Meyerhoff, Ditmar Sziele, Karl
Schgerl, Karl-Heinz Bellgardt , Segregated mathe-
matical model for the fed-batch cultivation of a high-
producing strain of Penicillium chrysogenum Journal
of Biotechnology, 34, 2, 15, 119-131, 1994

[8] Paul Gemperline Pratical Guide to Chemometrics
Taylor & Francis Group, 2006.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6227


