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Abstract: Active fault diagnosis can improve the diagnosability of potential faults by injecting
a suitable input into the system. This input can be designed using either a stochastic or a
deterministic framework. The stochastic approach aims to maximize the probability of a correct
diagnosis at a certain time, whereas the deterministic approach aims to guarantee diagnosis
within a certain time interval. Recently, a hybrid stochastic-deterministic approach has been
developed in which all uncertainties are described by uniform probability density functions
(PDFs) with finite support on zonotopes. This method is able to provide a guaranteed diagnosis
at a given time N , while approximately maximizing the probability of diagnosis at some earlier
time M < N . In this article, the hybrid stochastic-deterministic method is extended to arbitrary
PDFs using a sampling approach based on scenario optimization.
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1. INTRODUCTION

Component malfunctions and other faults pose a signifi-
cant threat to the safety and efficiency of complex systems,
such as aircraft, power systems, and chemical plants. Over
the last few decades, measurement-based methods have
been developed to determine whether or not a fault has
occurred (fault detection) and, if so, the nature of the fault
(fault diagnosis). Disturbances, measurement noise, and
other uncertainties make this task very difficult. To avoid
performance degradation, it is essential that these systems
provide an accurate diagnosis very quickly after the occur-
rence of a fault. Many methods have been proposed to ad-
dress this challenge, including residual and observer-based
methods (Chiang et al., 2001) and set-based approaches
(Lin and Stadtherr, 2008; Stoican, 2011; Tornil-Sin et al.,
2012). The vast majority of these methods are passive,
meaning that the fault status is decided on the basis of
input-output data acquired during normal control opera-
tion. However, faults are not always detectable at normal
operating conditions, or are obscured by the action of the
control system itself. Active fault diagnosis involves inject-
ing a suitably designed input into the system to improve
the detectability and diagnosability of potential faults. The
inputs for active fault diagnosis can be designed using
deterministic or stochastic formulations. In deterministic
formulations, the process and measurement noises, along
with any uncertainties, are assumed to be bounded. The

objective is to achieve values of the measured outputs
that can be shown to be consistent with exactly one
potential fault scenario (including the nominal case), so
that whether a fault (and which fault) has occurred is
determined with certainty. Recent works in this direction
are Nikoukhah (1998); Nikoukhah and Campbell (2006);
Ashari et al. (2012). In contrast, stochastic formulations
assume probability distribution functions (PDFs) for the
process uncertainties, and hence the inputs are designed
to maximize some measure of diagnosis probability. In this
approach, there is nearly always a finite probability of an
incorrect diagnosis. Despite this, stochastic methods often
achieve reasonable accuracy in practice, while using much
less aggressive inputs than those required by deterministic
methods (see, for example, Simandl et al. (2005); Kim
et al. (2013); Mesbah et al. (2012)).

Scott et al. (2013b) presents a hybrid stochastic-determinis-
tic input design method that aims to combine the advan-
tages of both approaches. In this work, all uncertainties
are described by uniform PDFs with finite support on
zonotopes, so that the noises are bounded in the deter-
ministic sense. As in Scott et al. (2013a), these bounds
are used to choose an input sequence that guarantees
diagnosis on [0, N ]. However, the approach simultaneously
maximizes (in an approximate sense) the probability of
an early diagnosis in M < N steps. At both N and
M , diagnosis is based on checking the consistency of the
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measured output with each potential fault model using
the deterministic uncertainty bounds. Thus, depending on
the measured output, the test is either indeterminate, or
a diagnosis can be made with certainty (note that at time
N , the latter case is ensured).

The first contribution of this paper is the extension of
Scott et al. (2013b) to arbitrary PDFs by an application
of the scenario approach (Campi et al., 2009), which is
done by first formulating the condition at time M as a
deterministic guarantee of diagnosis, and then relaxing this
condition through sampling. Using the theory of scenario
optimization, the number of samples is then related to a
guaranteed lower bound on the probability of diagnosis
at M . The second contribution of the paper is a purely
stochastic method, obtained from the previous method by
dropping the deterministic constraint at time N . Accord-
ing to the above discussion, this method differs from stan-
dard stochastic formulations in that an incorrect diagnosis
is impossible. Rather than maximizing the probability of a
correct diagnosis, the proposed method aims to maximize
the probability that sufficient information will be available
to make a certain diagnosis at time M . Moreover, the
scenario approach provides guaranteed bounds on this
probability, rather than only estimates.

2. PROBLEM STATEMENT

Consider a system that on each time step k is described by
one of nm discrete-time linear time-invariant models with
state xk ∈ Rnx , output yk ∈ Rny , input uk ∈ U ⊂ Rnu ,
disturbance vk ∈ V ⊂ Rnv , and measurement noise
wk ∈ W ⊂ Rnw . Each model is identified with the index
i ∈ I = {1, 2, . . . , nm} and evolves according to

xk = A[i]xk−1 +B[i]uk−1 + r[i] +B[i]
w wk−1, (1)

yk = C [i]xk + s[i] +D[i]
v vk. (2)

The vectors r[i] and s[i] are constant and are used to model
additive faults (e.g., actuator or sensor bias). One of these
models is considered to be the nominal model; the rest
represent different faults. It is assumed that our method
provides a diagnosis sufficiently rapidly to guarantee that
a single model is active until the diagnosis is provided.

3. PRELIMINARIES

3.1 Sequence Notation

A tilde designates a sequence on [0, N ] associated with

(1)–(2), for example, ũ ≡ (u0, . . . , uN−1) ∈ Ũ . Another
shorthand is λ ≡ (x0, w̃, vN ), where λ is a random variable
distributed according to an arbitrary PDF in the set
∆ = X0 × W̃ × V , where W̃ ≡ W × . . . ×W denote the
sets of disturbances on [0, N ] (the number of Cartesian
products is N). Note that λ contains all random variables
that affect the output at time N , yN .

3.2 Zonotopes

The supports X0, W , and V are assumed to be zonotopes,
which are centrally symmetric convex polytopes that can
be described as Minkowski sums of line segments called the

generators of the zonotope (Guibas et al., 2003). In gener-
ator representation, a zonotope Z is fully characterized by
its center c ∈ Rn and generators g1, . . . , gng

∈ Rn as

Z =

{
c+

ng∑
i=1

ξigi : ‖ξ‖∞ ≤ 1

}
.

We use the notation Z = {G, c}, where G ≡ [g1 · · · gng ],
and note that Z can be equivalently defined as the image
of the unit hypercube in Rng under the affine mapping
ξ 7→ Gξ + c. The order of a zonotope is defined as ng/n.
Given Z, Y ⊂ Rn and R ∈ Rm×n,

RZ ≡ {Rz : z ∈ Z},
Z + Y ≡ {z + y : z ∈ Z, y ∈ Y },
−Z ≡ {−z ∈ Rn : z ∈ Z}.

For Z = {Gz, cz} and Y = {Gy, cy}, these operations can
be computed efficiently, even in high dimension by

RZ = {RGz, Rcz}, (3)

Z + Y = {[Gz Gy], cz + cy}, (4)

−Z = {Gz,−cz}. (5)

Because zonotopes are convex polytopes, they can always
be represented as an intersection of a finite number of
halfspaces, Z = {z : Hz ≤ k}, which is called the
(H,k)-representation of Z. An algorithm for converting a
zonotope from generator to (H,k)-representation is given
by Althoff et al. (2010). The (H,k)-representation makes
verifying the membership z ∈ Z very simple, and will
be advantageous for the methods presented in §5. On the
other hand, generator representation is often much more
compact, and makes the operations (3)–(5) very efficient
to perform. Moreover, it is simple and efficient to compute
a reduced order zonotope containing the original zonotope
(Althoff et al., 2010).

3.3 Reachable Sets

For each model i ∈ I and time k ≥ 0, define the state

solution map φ
[i]
k : Rknu × Rnx+knw+nv → Rnx and the

output solution map ψ
[i]
k : Rknu × Rnx+knw+nv → Rny , so

that φ
[i]
k (ũ, λ) is the state of (1) and ψ

[i]
k (ũ, λ) is the output

of (2) at k given the initial state x0, input ũ, disturbance

w̃, and measurement noise vk (the dependence of φ
[i]
k on

vk is trivial, but simplifies notation).

Definition 1. Define the state reachable set and output
reachable set for model i at time k, respectively, as

Φ
[i]
k (ũ,∆) ≡ {φ[i]k (ũ, λ) : λ ∈ ∆}, (6)

Ψ
[i]
k (ũ,∆) ≡ {ψ[i]

k (ũ, λ) : λ ∈ ∆}. (7)

For brevity, explicit dependence of the reachable sets on ∆
will be omitted. Iterating (1)–(2) k times yields matrices

Ã[i], B̃[i], etc. such that

φ
[i]
k (ũ, λ) = Ã[i]x0 + B̃[i]ũ+ r̃[i] + B̃[i]

w w̃.

It follows that

Φ
[i]
k (ũ) = Ã[i]X0 + B̃[i]ũ+ r̃[i] + B̃[i]

w W̃ ,

Ψ
[i]
k (ũ) = C [i]Φ

[i]
k (ũ) + s[i] +D[i]

v V.

Since X0, W , and V are zonotopes, these equations imply

that Φ
[i]
k (ũ) and Ψ

[i]
k (ũ) are zonotopes and can be com-
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puted efficiently using (3)–(5). In particular, with X0 ≡
{G0, c0}, W̃ ≡ {GW̃ , 0}, and V ≡ {GV , 0},

Φ
[i]
k (ũ) =

{[
Ã[i]G0B̃

[i]
w GW̃

]
, φ

[i]

k (ũ, c0)
}

and

Ψ
[i]
k (ũ) =

{[
C [i]

[
Ã[i]G0 B̃

[i]
w GW̃

]
D[i]
v GV

]
, ψ

[i]

k (ũ, c0)
}
,

where φ
[i]

k (ũ, c0) ≡ Ã[i]c0 + B̃[i]ũ + r̃[i] and ψ
[i]

k (ũ, c0) ≡
C [i]φ

[i]

k + s[i] (i.e., the state and output of (3)–(5) when
λ = (c0, 0, 0)). Note that u affects the center of these
sets, but not their generator matrices (i.e., their shapes).
It follows by applying the algorithm of Althoff et al.

(2010), that Φ
[i]
k (ũ) and Ψ

[i]
k (ũ) can be described by (H,k)-

representations of the form {z : Hz ≤ k(ũ)}.

4. REVIEW OF THE DETERMINISTIC APPROACH

This section briefly reviews the method of Scott et al.
(2013a) for computing an input ũ = (u0, ..., uN−1) that
guarantees diagnosis at time N . Specifically, diagnosis is

performed online by checking the inclusion yN ∈ Ψ
[i]
N (ũ),

for each i ∈ I. Noting that this must hold for at least one
i, diagnosis is said to occur if

∃i ∈ I : yN ∈ Ψ
[i]
N (ũ), yN /∈ Ψ

[j]
N (ũ), ∀j ∈ I, i 6= j. (8)

The objective is to design an input that guarantees this
condition, which may be stated equivalently as

Ψ
[i]
N (ũ)

⋂
Ψ

[j]
N (ũ) = ∅, ∀(i, j) ∈ I, i 6= j. (9)

To identify a minimally invasive input of this type, con-
sider the optimization

min
ũ

ũTRũ, s.t. ũ ∈ Ũ , (9) holds,

where and ũTRũ is a positive semidefinite quadratic func-
tion representing the harmful effect of the active input on
the system that needs to be minimized, and Ũ ≡ U×...×U
is a polyhedral input constraint. In order to solve this
problem, the constraints (9) have to be rewritten in a
suitable way. To this end, rewrite the reachable sets in

the generator representation Ψ
[i]
N (ũ) = {G[i]

N , c
[i]
N (ũ)} and

observe that (9) is equivalent to the condition @(ξ, γ) ∈
Rng×ng : c

[i]
N (ũ) + G

[i]
N ξ = c

[j]
N (ũ) + G

[j]
N γ, ‖ξ‖∞ ≤ 1, and

‖γ‖∞ ≤ 1. This condition can be written as δ
[ij]
N (ũ) > 1

where

δ
[ij]
N (ũ) ≡ min δ[ij] (10)

s.t. G
[i]
N ξ + c

[i]
N (ũ) = G

[j]
N γ + c

[j]
N (ũ), (11)

‖ξ‖∞ ≤ δ[ij], ‖γ‖∞ ≤ δ[ij]. (12)

The optimization becomes

inf
u
ũTRũ, s.t. ũ ∈ U, 1 < δ

[ij]
N (ũ), ∀(i, j), i 6= j. (13)

Since (10)–(12) define a linear program (LP), the con-
straints in (13) can be replaced by their necessary and
sufficient conditions of optimality. After further reformula-
tions, the problem can be rewritten as a MIQP that can be
easily solved with, for example, CPLEX. The details of this
optimization problem can be found in Scott et al. (2013a).
Although this method guarantees diagnosis, it can result
in very aggressive inputs. Moreover, because (13) does not
consider the distribution of uncertainties, it can lead to
inputs that consistently require all N steps for diagnosis

in simulations. For these reason, the following sections
reformulate the problem in a sample-based framework with
the aim of maximizing the probability of early diagnosis
for uncertainties described by arbitrary PDFs.

5. MAXIMIZING THE PROBABILITY OF
DIAGNOSIS

This section considers the problem of computing an input
ũ that maximizes the probability of diagnosis at time N
(i.e., maximizes the probability of observing yN such that
(8) holds). As a first step, §5.1 considers inputs that satisfy
a specified lower bound on the probability of diagnosis.
This formulation is then extended in §5.2 so that ũ is
chosen so as to approximately maximize this bound within
a single optimization.

5.1 Satisfying an a priori Probability Bound

In order to establish a lower bound on the probability
of diagnosis, begin with the deterministic formulation
for guaranteed diagnosis in §4, and subsequently relax
this condition through sampling. Using the theory of
scenario optimization (Campi et al., 2009), the number of
samples can then be rigorously related to the probability
of diagnosis. To begin, it is necessary to reformulate the
diagnosis condition (9) in a form compatible with the
results in Campi et al. (2009). To this end, first note

that (9) is equivalent to ψ
[i]
N (ũ, λ) /∈ Ψ

[j]
N (ũ), ∀λ ∈ ∆,

∀(i, j) ∈ I2, i 6= j. Next, recall that each zonotope

Ψ
[j]
N (ũ) = {G[j]

N , c
[j]
N (ũ)} has an (H,k)-representation of

the form Ψ
[j]
N (ũ) = {z : H

[j]
N z ≤ k

[j]
N (ũ)}, where k

[j]
N

is an affine function of ũ (see §3). Thus, the condition

that ψ
[i]
N (ũ, λ) /∈ Ψ

[j]
N (ũ) is equivalent to requiring that

at least one of the conditions −h[j]N,tψ
[i]
N (ũ, λ) < −k[j]N,t(ũ),

t ∈ {1, . . . , nh} is satisfied, where h
[j]
N,t is the tth row of

H
[j]
N and k

[j]
N,t is the tth element of k

[j]
N . This equivalence

leads to the reformulation of (9):

− h[j]N,tψ
[i]
N (ũ, λ) < −k[j]N,t(ũ) + α(1− p[ij]t ), ∀λ ∈ ∆ (14)

n
[j]

h∑
t=1

p
[ij]
t ≥ 1, p

[ij]
t ∈ {0, 1}, ∀t ∈ {1, .., n[j]

h }, (15)

∀(i, j) ∈ I2, i 6= j. (16)

The binary variables p
[ij]
t determine whether or not the

corresponding constraint (14) is active: if p
[ij]
t = 1, then

(14) is active; if p
[ij]
t = 0, then, provided that α is suffi-

ciently large, (14) is trivially satisfied. For ũ ∈ Ũ with Ũ
bounded, a sufficiently large α exists because the function

(ũ, λ) 7→ −h[j]N,tψ
[i]
N (ũ, λ) + k

[j]
N,t(ũ) is continuous. To see

that conditions (14)–(16) imply (9), choose ũ ∈ Ũ and sup-

pose that there exist p
[ij]
t such that (14)–(16) hold. Then,

for each pair (i, j), t may be chosen such that p
[ij]
t = 1,

and for this t, (14) clearly implies that Ψ
[i]
N (ũ) and Ψ

[j]
N (ũ)

are disjoint. On the other hand, the conditions (14)–(16)
are not equivalent to (9) because they require that Ψ[i](ũ)

is separated from Ψ[j](ũ) by a single hyperplane h
[j]
N,t.
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Thus, (14)–(16) is a conservative reformulation of (9).
However, the conservatism can be reduced by augmenting
the (H,k)-representation of Ψ[j](ũ) with additional redun-

dant constraints h
[j]
N,tz ≤ k

[j]
N,t(ũ), t=n

[j]
h +1, . . . , n

[j]
h +`. In

particular, we choose additional constraints corresponding
to the hyperplanes defining the facets of Ψ[i](ũ), so that

h
[j]

N,n
[j]

h
+t

=h
[i]
N,t, t=1, . . . , n

[i]
h . Briefly making use of the

generator representation of Ψ[i](ũ), the corresponding k

values are given by k
[j]

N,n
[j]

h
+t

(ũ) = h
[i]
N,tc

[j]
N (ũ)+‖h[i]N,tG

[j]
N ‖1.

Now consider replacing the diagnosis constraint in (13)
with (14)–(16), which results in a mixed-integer program
with the following property. For each fixed realization of
the binary variables, the program has robust constraints
of the general form f(ũ, λ) ≤ 0, ∀λ ∈ ∆, where f(·, λ)

is linear, and hence convex on Ũ , for each fixed λ ∈ ∆.
This mathematical form is compatible with the theory of
scenario optimization of Campi et al. (2009); Campi and
Garatti (2008), which relates the solution of such robust
optimizations with the solution obtained by replacing ∆
with a subset Ω of finite cardinality. Thus, we consider the
scenario optimization corresponding to (13):

min
ũ,p

[ij]
t

ũTRũ (17)

s.t. ũ ∈ Ũ (18)

− h[j]N,tψ
[i]
N (ũ, λ) < −k[j]N,t(ũ) + α(1− p[ij]t ), (19)

n
[j]

h∑
t=1

p
[ij]
t ≥ 1, t = 1, .., n

[j]
h (20)

∀(i, j) ∈ I2, i 6= j,∀λ ∈ Ω ⊂ ∆. (21)

Choose any violation parameter ε ∈ (0, 1) and confidence
parameter β ∈ (0, 1), and let Nsamp satisfy

k∑
j=1

d−1∑
i=0

(
Nsamp

i

)
εi(1− ε)Nsamp−i ≤ β, (22)

where d and k are the numbers of continuous and binary
variables in (17)–(21), respectively. The results of Calafiore
et al. (2012), and more recently of Esfahani et al. (2012),
show that the solution of (17)–(21) with |Ω| = Nsamp
satisfies the subsequent condition with probability at least
1 − β. The solution violates the constraints (14)–(16) for
a subset of ∆ that has probability at most ε. Choosing
β very small (e.g. β = 10−20), this implies that it is
sufficient to solve (17)–(21) with |Ω| = Nsamp in order
to guarantee diagnosis with probability at least 1 − ε
with practical certainty (the expression “with practical
certainty” shall be used in the rest of this note as a
synonym of “with probability larger than 1 − β”, where
β > 0 is some extremely small value). This remarkable
result is an extension to mixed-integer programs of the
results for convex programs originally presented by Campi
and Garatti (2008) and Campi et al. (2009).

5.2 Maximization of the Probability Bound

The main disadvantage of the method in the previous
section is that ε has to be tuned a priori, which has two
consequences. The first is that feasibility is not guaranteed.
Moreover, if the problem is feasible, the probability bound

1− ε is not necessarily the best possible. In order to over-
come these problems, this section extends the approach by
presenting a method that can approximately modify this
probability bound during the optimization of ũ. Moreover,
a method is given for computing a guaranteed probability
bound for the computed input a posteriori. As done by
Calafiore and Fagiano (2013), introduce a slack variable ρ
to make the optimization feasible for all possible N and
for all possible sample sets Ω as

min
ũ,ρ,p

[ij]
t

ũTRũ+ γρ (23)

s.t. ũ ∈ Ũ (24)

− h[j]N,tψ
[i]
N (ũ, λ) < −k[j]N,t(ũ) + α(1− p[ij]t ) + ρ, (25)

n
[j]

h∑
t=1

p
[ij]
t ≥ 1, ρ ≥ 0, ∀λ ∈ Ω ⊂ ∆, (26)

∀t ∈ {1, .., n[j]
h }, ∀(i, j) ∈ I2, i 6= j. (27)

where γ represents a weighting scalar that can be chosen
by the designer and is in most cases set as a very large
number (exceeding the upper bound of ũTRũ, ∀ũ ∈ U). We
can also provide a bound ρ on ρ, since ũ lies in a bounded
set and the samples are taken from bounded sets. Thus,
the problem (23)–(27) is always feasible having ρ ≤ ρ,
and we choose α such that α ≥ ρ. In practical uses, α
will be set equal to a very large number, say 106, and ρ
can be bounded to be ρ ≤ α. As in the previous section,
the above program is in a mathematical form compatible
with the results of Calafiore et al. (2012). Thus, if (22)
holds, the same probabilistic guarantees follow. However,
when the optimal value ρ∗ of ρ is nonzero, the conclusion
that the constraints will be satisfied for a subset of ∆ with
probability at least 1 − ε does not imply that diagnosis
will occur with probability 1 − ε. This situation can be
overcome either by solving this problem with increasing N
until ρ∗ = 0, or by computing a valid lower bound on the
probability of diagnosis for the optimal input a posteriori.
Similarly to Campi and Garatti (2011), the latter can be
achieved by pruning all of the samples λ ∈ Ω that violate
the constraints (14)–(16) as follows. Compute

ρλ ≡min
ρ,p

[ij]
t

ρ (28)

s.t. ρ ≥ 0, (29)

− h[j]t ψ
[i]
N (ũ, λ) < −k[j]t (ũ) + α(1− p[ij]t ) + ρ (30)

n
[j]

h∑
t=1

p
[ij]
t ≥ 1,∀t ∈ {1, . . . , n[j]

h },∀(i, j) ∈ I, i 6= j. (31)

Next, eliminate from Ω every λ such that ρλ > 0, so that
only N∗ elements are left in Ω. Let P = Nsamp−N∗. Then,
following the proof of Algorithm 4.1 in Esfahani et al.
(2012), we can extend the results in Campi and Garatti
(2011) and say with practical certainty (probability 1−β)
that the probability of diagnosis in N steps with input ũ∗

is at least 1− ε, with ε > 0 the smallest value satisfying
k∑
j=1

(
P+d−1
P

) P+d−1∑
i=0

(
Nsamp

i

)
εi(1− ε)Nsamp−i ≤ β. (32)

The addition of ρ in (23)–(27) provides a heuristic method
for modifying the probability level ε during optimization,
whereas a true lower bound on the probability of diagnosis
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for the computed ũ is only computed a posteriori. Thus,
the computed ũ is suboptimal in the sense that it may not
maximize the probability bound 1− ε. This approach can
be improved by the algorithm:
Algorithm 1. Solve the optimization (23)–(27) (or run Algorithm 2)
to obtain ρ∗ and ũ∗:

WHILE ρ∗ > 0 AND Ω 6= ∅
(1) Calculate all the ρλ as described in (28)–(31) and eliminate all
λ ∈ Ω with ρλ = ρ∗.
(2) With the updated sample set, solve (23)–(27) to obtain ρ∗ and
ũ∗.
END WHILE

With the N∗ samples remaining after termination of Al-
gorithm 1, the probability of diagnosis in N steps with
input ũ∗ can be computed as before. Note that the opti-
mization (23)–(27) can potentially be very large and could
pose some computational issues due to the potentially
large number of samples, but more so due to the large
number of binary variables that may be required in the
reformulation (14)–(16). However, the primary reason for
this reformulation was to demonstrate that the theoretical
results of scenario optimization are applicable. For the
purposes of numerical simulation, an alternative formu-
lation is proposed in which ρ = ρ(ũ,Ω) is computed for
each ũ via an embedded algorithm that removes the need
for any binary variables and allows a standard gradient-
based approach to be used to find a solution ũ minimiz-
ing uTRu + ρ(ũ,Ω). This algorithm can check in parallel,
thus alleviating complexity, for each sample in the output
space ψ[i](ũ, λ) which is the minimum constraint violation
ρ(ψ[i](ũ, λ)) so that ψ[i](ũ, λ) /∈ Ψ[j](ũ),∀(i, j) ∈ I. It
then returns the maximum of these constraint violations
(ρ(ũ,Ω) ≡ max(ρ(ψ[i](ũ, λ))), ∀i ∈M, ∀λ ∈ Ω).

Algorithm 2. INPUT ũ, Ω OUTPUT ũTRũ+ γρ(ũ,Ω):

(1) Compute all ψ
[i]
N (ũ, λ), ∀i ∈ I, ∀λ ∈ Ω

(2) For each (i, j) ∈ I2, i 6= j, compute the (H,k)-representation of

Ψ
[j]
N (ũ) (with redundant halfspace constraints from Ψ

[i]
N (ũ) as per

§5.1).
(3) FORALL i ∈ I, j ∈ I, i 6= j
(4) ρ(i, j) = 106

(5) FORALL t ∈ {1, . . . , n[j]
h
}

(a) ρtemp = 0

(b) FORALL λ ∈ Ω
ρtemp = max{ρtemp,−h[j]N,tψ

[i]
N (ũ, λ) + k

[j]
N,t(ũ)}

(c) ENDFORALL

(d) ρ(i, j) = min{ρ(i, j), ρtemp}
(6) ENDFORALL
(7) ENDFORALL
(8) ρ(ũ,Ω) = max{ρ(i, j)}
(9) Compute ũTRũ+ γρ(ũ,Ω)

Remark 2. Algorithm 2 can be also used to solve the
problem (17)–(21) by just adding the constraint ρ = 0
in the outer program.

6. HYBRID STOCHASTIC-DETERMINISTIC INPUT
DESIGN

In this section, similarly to what is done by Scott et al.
(2013b), the deterministic input design method in Scott
et al. (2013a) is combined with the stochastic method con-
sidered in the previous section. The result of this combina-
tion is the formulation of a hybrid stochastic-deterministic
input design approach. In particular, an optimization is
formulated that chooses an input of minimum norm such
that two conditions hold: (1) diagnosis is guaranteed at

time N , (2) the probability of diagnosis at a specified time
M < N is greater than a lower probability bound. In order
to write the whole optimization, an input sequence ũ is
needed so that (23)–(27) holds at time step M and the
intersection between the output reachable sets at time N
of all the possible couples of models (i, j) is the empty
set. Recalling that the latter condition is equivalent to ask

δ
[ij]
N (ũ) > 1, the problem can be rewritten as

min
ũ,pt,ρ

uTRu+ γρ(ũ,Ω), s.t. ũ ∈ Ũ , min
i,j∈I:i 6=j

δ
[ij]
N (ũ) > 1.

The resulting optimization is a bilevel program. However,
the inner LPs can replaced with their KKT conditions
as in Scott et al. (2013a). The resulting MIQP can be
solved efficiently using Algorithm 1. Because the problem
has linear constraints and quadratic cost, the conditions
described by Esfahani et al. (2012) are satisfied and thus
(22) holds.

7. NUMERICAL RESULTS

Consider the four models defined by

A[1] =
[

0.60 0.20
−0.20 0.70

]
, A[2] = A[3] = A[4] =

[
0.84 0.28
−0.28 0.98

]
,

B[1] =B[2] =
[−0.3861 0.1994
−0.1994 0.3861

]
, B[3] =

[−0.3861 0
−0.1994 0

]
,

B[4] = [ 0 0.1994
0 0.3861 ] , B[i]

w = [ 0.1215 0.0598
0.0598 0.1215 ] , C [i] = [ 1 0

0 1 ] ,

D[i]
v = [ 1 0

0 1 ] , r[i] = s[i] = [ 00 ] , i = 1, . . . , 4.

Model 2 is considered to be the nominal model; Model
1 has system faults while Models 3 and 4 have faulty
actuators. The support of the PDF for λ is X0 × W̃ × V ,
where X0, W̃ , and V are zonotopes defined, in generator
notation, as

X0 = {0.4 I, [1 1]T}; V = W = {0.4 I, [0 0]T}.
λ = (x0, w̃, vN ) ∈ X0 × W̃ × V is a random variable
distributed according to

x0 = cX0 +GX0

[
3∑
i=1

σi/3,

4∑
i=1

σi/4

]T
,

vk = wk = cW +GW

[
3∑
i=1

σi/3,

4∑
i=1

σi/4

]T
,

where each σi is uniformly distributed in [−1, 1], and each
of the above equations uses different values so that x0, wk,
and vk are independent. The goal of the first example is
to synthesize an input ũ1 that maximizes the probability
of separation in M = 3 steps and to provide a lower
bound on the probability of diagnosis. Given that ũ1 was
synthesized using Nsamp = 800 samples and P = 10 of
them were pruned, a probability bound ε was computed
according to (32). For β = 10−20, this results in ε = 0.12,
so that, with practical certainty, diagnosis will occur with
a probability of at least 0.88. To verify this bound, Monte
Carlo simulation was carried out with 104 samples, and
ũ1 was observed to provide a diagnosis in 3 steps in
99% of cases. As another example, consider imposing
a deterministic guarantee of diagnosis at N = 5, while
simultaneously maximizing the probability of diagnosis at
M = 3 (see §6). The result is shown in Figure 2 while
Figure 1 reports the result with only the deterministic
constraint at N = 5. The comparison of the two figures
clearly shows, for time k = 3, that the stochastic approach
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Fig. 1. Deterministic approach: Output reachable sets
of nominal and faulty models using the input ũ2
that guarantees diagnosis in 5 steps. Colored circles
represent 200 samples.

Fig. 2. Hybrid stochastic-deterministic approach: Output
reachable sets of nominal and faulty models using the
input ũ1 that guarantees separation in 5 steps and
approximately maximizes the probability of diagnosis
in 3 steps.

leads to less overlapped output reachable sets. On the
other side, in order to have a greater probability of early
diagnosis, the input needs to be more aggressive and in

fact
‖uhybrid‖2

‖udeterministic‖2 = 1.18.
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