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Abstract: The design of a suitable controller often consists of two steps: first, the choice of
a specific controller structure; second, the choice of suitable controller parameters achieving
the desired performance. In case of uncertainties and nonlinearities, choosing suitable controller
parameters that lead to a satisfying performance is challenging. Simulation of single parameter
values does often not provide enough information and insight, especially in the case when the
robustness with respect to noise or model-plant mismatch have to be taken into account. We
propose a set-based method for deriving guaranteed outer bounds on the admissible controller
parameter values, such that the system satisfies performance constraints with respect to a
set of initial conditions and desired terminal conditions – set-points. In terms of robustness we
consider unknown-but-bounded parameter values, as well as bounded actuator and sensor noise.
The outlined approach is illustrated considering the design of a set-point change controller of a
magnetic levitation platform, and comparing the theoretically guaranteed estimation results to
the performance of the actual experiment.

Keywords: nonlinear control, bounded disturbances, controller parametrization, set-based
approach

1. INTRODUCTION

Tuning a controller, i.e. finding a controller parametriza-
tion such that the performance specifications of the closed
loop are satisfied, is a challenging task. This is further com-
plicated if uncertain nonlinear systems, as they typically
appear for industrial plants, are considered.

However, the majority of the controllers used in industrial
applications belong to the class of proportional-integral-
derivative (PID) controllers (Åström and Hägglund, 2010),
or model-based controllers exploiting linear models. A
number of tuning rules exists for such controllers, yet
finding suitable parameters is often achieved in an ad
hoc trial-and-error method exploiting look-up tables or
frequency-response based methods (Gao, 2006).

At the same time, tuning methods for nonlinear systems
are limited, especially when measurement noise and para-
metric uncertainty have to be taken into account. Even
more challenging, in some instances (e.g. to ensure safe
operation) the controller has to perform according to spec-
ified qualitative or quantitative constraints.

A possibility to tackle these problems are set-based ap-
proaches for nonlinear systems. Set-based methods are
an alternative way to analyze system properties subject
to uncertainties, such as robustness or stability (Streif
et al., 2013b). They rely on the notion of unknown-but-
bounded constraints, allowing the variables to attain any

value within a defined set. Such a formulation results in
a guaranteed region of admissible solutions, that satisfy
system constraints. For a general overview of the set-
based methods we refer to (Milanese et al., 1996; Blanchini
and Miani, 2008; Rumschinski et al., 2010a). Application
of the methods to controller design was illustrated i.a.
in (Jaulin and Walter, 1996; Kieffer et al., 2002), where
interval analysis methods are employed, and (Korda et al.,
2013), where the set approximations were obtained via
occupation measures.

This work outlines how set-based methods can be used
for guaranteed controller parametrization subject to un-
certainties. For this purpose, the methodology proposed
in (Rumschinski et al., 2010b; Savchenko et al., 2011) is
employed, constructing a so-called feasibility problem of a
general nonlinear model of the system in Section 2, that in-
corporates model dynamics with set-based constraints on
the involved variables. These constraints allow to include
uncertainties of both model and controller parameters,
possible (bounded) measurement noise, desired qualitative
or quantitative behavior of the controlled plant as well as
global bounds on the states of the system. This formulation
is then relaxed, leading to an approximation of the set
of feasible solutions. It guarantees that the resulted set
contains the controller parameter values, that satisfy all
such constraints.

We illustrate the proposed method for a magnetic levi-
tation platform in Sections 3 and 4. The platform is set
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up in a configuration that is open-loop unstable, and we
estimate the admissible values of its parameter against a
specified reference value.

Section 4 contains the experimental results, additionally
assuming model-plant mismatch, measurement noise and
uncertain knowledge about the parameters of the system.
We compare the simulation results to the actual plant
experiment, illustrating that for the estimated feasible
controller parameter set the plant performs according to
the desired specifications.

2. SETUP AND METHODS

Consider an implicit discrete-time model of the plant as
described by{

g(x(k + 1), x(k), u(k), p) = 0,
h(y(k), x(k), p) = 0.

(1)

Here x(k) ∈ Rnx denotes the system states, p ∈ Rnp the
plant parameters, u(k) ∈ Rnu the inputs and y(k) ∈ Rny

the outputs of the system. The time index is denoted by
k ∈ N.

2.1 Controller Structure

We consider a memoryless output-feedback controller,
which is given in the general implicit form

l(u(k), y(k), p, r, c) = 0, (2)

where the variables u(k), y(k) and p are as defined before,
r ∈ Rnr stands for the desired reference values and c ∈ Rnc

represents the controller parameters. For simplicity we
refer to both r and c as controller parameters.

With respect to the controller parametrization we consider
the following problem: for given initial conditions find
the controller parameters (r, c), that allow for the desired
(qualitative or quantitative) behavior/performance of the
system. Such behavior/performance criteria can be repre-
sented in form of boundary conditions, set-point changes,
global state constraints (e.g. to avoid overshooting or ob-
stacle collisions), desired trajectories, etc.

Solving this problem in a structured way is challeng-
ing, especially in the case of nonlinear dynamics, possi-
ble sensor and actuator noise, disturbances, as well as
parameter uncertainties. Furthermore, to guarantee that
results obtained for the model also hold true for the actual
plant, model-plant mismatch from simplified or neglected
dynamics of the process needs to be taken into account.
Rather than finding a single value of the controller pa-
rameters (r∗, c∗) that achieves the desired behavior, it is
often advantageous to find all possible parameters that
would allow constraint satisfaction. This allows to pick the
value of the controller parameters that provide a degree of
robustness, or the value that satisfies additional optimality
conditions even during operation.

Next we present a framework for estimating the admissible
region of controller parameters for the system subject to
unknown-but-bounded system constraints and parameters
using a set-based problem formulation.

2.2 Set-based Controller Parameter Estimation

We assume the functions g, h and l to be polynomial or
rational. Note that other nonlinearities can be approxi-
mated by such functions to an arbitrary precision, see e.g.
(Hasenauer et al., 2010) and references therein.

To account for process uncertainty, we assume the parame-
ters p to be unknown-but-bounded within a semi-algebraic
set, i.e. p ∈ P ⊆ Rnp . In similar form we can describe
the initial search space of the desired controller parameter
values (r, c) ∈ C ⊆ Rnr × Rnc . Both sets can be derived
from the physical meaning of the parameters, limitations
of the controller or bounds set by the operator.

The desired behavior of the system is expressed in form
of unknown-but-bounded constraints on x(k) ∈ Xk (resp.
y(k) ∈ Yk, w(k) ∈ Wk). If no explicit constraints for states,
inputs or outputs are provided, we assume that their values
are still bounded to (possibly) large semialgebraic sets
for technical reasons. We collect the constraints on all
variables in terms of bounding sets

X := {Xk ⊂ Rnx , k ∈ T },
Y := { Yk ⊂ Rny , k ∈ T },
U := { Uk ⊂ Rnu , k ∈ T },

for the set of time indices

T := {k0, k1, . . . , ke} ⊆ N,
that define the time horizon of interest. We denote with
T − the set of all time instances except the last one, i. e.
T − = T \ {ke}.
For short notation, we write x ∈ X (resp. y ∈ Y, u ∈ U)
meaning x(k) ∈ Xk (resp. y(k) ∈ Yk, u(k) ∈ Uk) for each
k ∈ T .

The framework for estimating admissible control parame-
ters is based on the following definition:

Definition 1. (Consistent controller parameters).
The controller parameter (r, c) ∈ C is said to be consistent
with the desired qualitative/quantitative behavior, if there
exist initial conditions x(k0) ∈ Xk0

and plant parameters
p ∈ P, for which the closed-loop system model (1)-(2)
satisfies x ∈ X , u ∈ U and y ∈ Y within the time
horizon T . �

Using Definition 1 we can formulate the problem of esti-
mating the set of admissible controller parameters as

Problem 1. (Admissible controller parameter set).
Find the controller parameter set CF such that the closed-
loop system (1)-(2) is consistent with the desired quanti-
tative behavior of the system for each (r, c) ∈ CF . �

We address Problem 1, i.e. finding the set of controller
parameters (r, c), by constructing a feasibility problem of
the system model, following (Rumschinski et al., 2010b;
Savchenko et al., 2011). The feasibility problem based on
the system model (1)-(2) can be formally described as
follows.

FC :


g(x(k + 1), x(k), u(k), p) = 0, k ∈ T −,
h(y(k), x(k), p) = 0, k ∈ T ,
l(u(k), y(k), p, r, c) = 0, k ∈ T ,
(x, y, u) ∈ (X ,Y,U),
p ∈ P, (r, c) ∈ C.
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The solution set of FC consists of all values of the involved
variables that satisfy the constraints, i.e. performance
specifications. Extracting the set of consistent controller
parameter values is straightforward, since the following
holds

proj(r,c)(FC) = CF ,
where proj(r,c) is the projection of the feasible set on the
subspace of the controller parameters (r, c).

However, exactly determining the solution set FC is
generally difficult for nonlinear system dynamics. As
in (Savchenko et al., 2011), we employ a linear relax-
ation. Using available efficient linear solvers (i.a. Gurobi,
http://www.gurobi.com) allows to consider reasonably
large problems. We refer to (Savchenko et al., 2011; Streif
et al., 2013a) for the detailed overview of the necessary
relaxation steps.

2.3 Outer Approximation of Feasible Sets

The relaxation procedure leads to a so-called outer ap-
proximation of the feasible set, guaranteeing that every
solution of the original problem is present in the solution
set of the relaxed problem. A detailed description of al-
gorithms to obtain outer approximations of feasible sets
can be found in (Rumschinski et al., 2010a), next we only
briefly outline the key underlying ideas.

We denote with LP (C) the relaxed formulation of the
original problem, where the search space for the controller
parameter values is reduced to (r, c) ∈ C ⊆ C. With
dLP (C) we denote the Lagrangian-dual of LP (C) and em-
ploy the following observation: weak duality implies, that
if the problem dLP (C) is unbounded, the corresponding
problem LP (C) is infeasible. In turn, it implies that there
are no points (r, c) ∈ C that belong to the feasible set CF .

Hence, the outer approximation of the feasible set CF can
be obtained by eliminating the subsets of C for which the
above observation is satisfied, namely

CF ⊆ CO = C \
⋃

i∈I,LP (Ci)→∞

Ci,

where Ci represent a partition of the set C for some finite
index set i ∈ I.

Theoretically, the introduced method provides guaranteed
results for the model of the closed-loop system, i.e. the esti-
mated feasible set will always include the set of consistent
controller parameter values CF .

As mentioned, the considered model has to account for
model-plant mismatch, discretization error etc. to suc-
cessfully apply these results on an actual plant. Employ-
ing the described set-based method allows to incorporate
these phenomena considering the system variables to be
unknown-but-bounded.

In the following sections we employ the outlined approach
to an actual plant, solving Problem 1 for the parametriza-
tion of a set-point change nonlinear controller in simula-
tion as well as actual experiments.

3. CASE STUDY

We consider the control of a magnetic levitation platform
(MagLev 730, Educational Control Products, ECP, Bell

Canyon, USA, www.ecpsystems.com) illustrated in Fig-
ure 1.

Fig. 1. Considered magnetic levitation platform.

In this section we evaluate the approach by simulations,
considering a set-point change controller and fixing the
initial, terminal and performance constraints on some of
the system states. Specifically, we request an absence of
overshoot by specifying suitable state constraints at all
times.

3.1 System Description

The setup consists of a high field density rare earth magnet
and a drive coil. A laser sensor measures the permanent
magnet position. A turntable incorporates a conductive
spin platter that interacts with the permanent magnet
and causes it to levitate. Position control is accomplished
through spin speed changes in the platter. We consider an
open-loop unstable setup, when only the upper coil (see
Figure 1) is used to control the position of the permanent
magnet.

The discrete time model of the considered plant takes the
form

x1(k + 1) = x1(k) + ∆Tx2(k),
x2(k + 1) = x2(k)+

∆T

(
g − αx2(k)− u(k)

ma(x1(k) + b)2

)
,

y(k) = x1(k).

(3)

Here x1 represents the observed position of the permanent
magnet, and x2 is its velocity. The variable u represents
the input in form of the coil voltage, ∆T denotes the
sampling time. Details on the parameter values can be
found in Table 1. The values of parameters a, b, m and α
were estimated from the actual plant using least-squares
methods.

Table 1. Reference Parameter Values

Parameter Symbol Bounds Unit

Standard gravity g 981 cm s−2

Magnet mass m 0.125 kg

Aggregated parameter a 5.4976 · 10−5 V s2kg−1cm−3

Offset parameter b 2.4512 cm

Friction coefficient α [15.68, 15.70] s−1
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We choose a memoryless state-feedback linearizing con-
troller (Isidori, 1999) of the form

u(k) = ma(y(k) + b)2(g + c(y(k)− r)), (4)

where c is the gain, and r is the reference value.

Our objective is to find suitable values for the parameters
c and r such that the performance specifications are met.

3.2 Simulation Results

For determining the set of consistent controller parameters
we choose the discretization of ∆T = 0.03 seconds.

Our goal is to determine controller parameter values that
allow for a set-point change in finite time (within 0.5 sec-
onds) without significant overshoot (requiring appropriate
global bounds on the state x2), as specified next.

The terminal time for the transition is set to 0.48 seconds
which leads to

T := {k0 = 0, . . . , ke = 16}.
The bounds on the initial conditions (for k0) as well as
terminal conditions (for ke) are set allowing for small
errors, see Table 2.

Table 2. Desired quantitative model behavior

State Bounds

x1(k0) [ 2.99, 3.01 ]
x2(k0) [ −0.01, 0.01 ]
x1(ke) [ r − 0.05, r + 0.05 ]
x2(ke−1) [ −0.1, 0.1 ]

Note that the terminal condition on the state depends on
the reference value we want to estimate.

We restrict the operating regime for the system and the
controller by setting the bounds on x1(k), x2(k) and u(k)
as shown in Table 3.

Table 3. State and controller bounds

Variable Bounds

x1(k) [ 1, 5 ]
x2(k) [ −10, 0.1 ]
u(k) [ −0.3, 0.3 ]

The initial bounds of the controller parameter values are
provided in Table 4.

We perform an outer approximation of the search space,
using the algorithm illustrated in Section 2.3 and im-
plemented in the Analysis, Design and Model Invalida-
tion Toolbox (ADMIT) (Streif et al., 2012). We itera-
tively partition the search space to estimate first the one-
dimensional bounds (see Table 4) and then to approx-
imate the shape of the feasible set via a collection of
two-dimensional orthogonal sets. The corresponding two-
dimensional results are shown in Figure 2. The blue area
represents the region, where feasible parameter values can
be found, i.e. the outer approximated feasible set.

As the algorithm results in an outer approximation, the ob-
tained feasible set can contain so-called spurious solutions,
that only satisfy the constraints of the relaxed problem. To

illustrate the approximation quality of the obtained set we
run a Monte-Carlo sampling procedure within the initial
search space of controller parameter values using initial
condition values from Table 2. Controller parameter values
for the obtained solutions that satisfy the constraints in
Tables 2 and 3 are illustrated in Figure 2 as red dots.

The results show that the search range of the parameter c
was significantly reduced. Besides, the bisectioning proce-
dure resulted in a tight approximation of the actual feasi-
ble set despite its nonconvex shape and a linear relaxation
of the nonlinear problem FC.

Table 4. Controller parameter bounds

Parameter Initial Bounds Estimated Bounds

c [ 0, 1000 ] [ 81.63, 99.18 ]
r [ 1.5, 2.5 ] [ 1.5, 2.5 ]

Fig. 2. Feasible set of the admissible controller parameters.

While the information derived from this analysis is helpful
in understanding relations between controller parameters,
for an actual experiment we can significantly reduce the
workload. Usually for an actual plant the reference value
is known a priori, hence we can simplify the formulation
of the problem and only estimate the controller parameter
c.

As mentioned in Section 2, for the simulation result to
provide guarantees on the performance of the actual plant,
several phenomena have to be taken into account. Limited
knowledge about the plant parameter values, measurement
noise, the discretized time setting and approximated dy-
namics of the plant should be compensated via appropriate
setting of the system variable bounds. In the next section
we introduce a modified setup and compare the estimated
bounds with the plant performance through an actual
experiment.

4. EXPERIMENTAL VALIDATION

To account for possible disturbances in the actual plant,
we modify the system model (3) inserting additive noise
e(k) to the permanent magnet position dynamics equation:
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x1(k + 1) = x1(k) + ∆T (x2(k) + e(k)),
x2(k + 1) = x2(k)+

∆T

(
g − αx2(k)− u(k)

ma(x1(k) + b)2

)
,

y(k) = x1(k).

(5)

The structure of the controller (4) is left unchanged.

To reduce the discretization error, we consider a smaller
time step of ∆T = 0.02 seconds and hence for the terminal
time of 0.5 seconds the set of time indices is given by

T = {k0 = 0, . . . , ke = 25}.

The controller implemented on the actual plant is set
with the values from Table 1 (and friction coefficient α =
15.69). However, for the simulated estimation procedure
we account for measurement uncertainties, as well as
model-plant mismatch, allowing for parameter variations
of up to ±5 percent compared to the values of the applied
controller. The search space for the controller parameter
c is given in Table 4, and the new parameter bounds are
provided in Table 5.

Table 5. Plant Parameter Bounds

Parameter Bounds Unit

a [ 5.25 · 10−5, 5.75 · 10−5 ] V s2kg−1cm−3

b [ 2.33, 2.57 ] cm

α [ 14.9, 16.5 ] s−1

e(k) [ −0.5, 0.5 ] cm s−1

Fixing the reference value to a single point

r = 1.5,

allows the terminal state to take values in the range

x1(ke) ∈ [1.45, 1.55],

according to Table 3.

4.1 Results and Discussion

The feasible set of parameter c was obtained using
ADMIT, leading to

c ∈ [67.6391, 136.587].

To be able to compare the simulation results with those
obtained by an actual experiment, it is required to com-
pute admissible bounds on the states and the inputs of the
system. It is done in two steps. First, we propagate the
estimated region for the controller parameter c through
(4). Second, the obtained estimates on the input values
are employed as unknown-but-bounded input set in the
formulation (5).

The comparison between the estimated data and the ex-
perimental results are shown in Figures 3 and 4. The blue
lines illustrate measured outputs and inputs of the mag-
netic levitation platform, the red bars show the admissible
bounds on the corresponding variable values, derived using
ADMIT. The black dashed line in Figure 3 corresponds to
the reference value and the thick black marks define the
bounds on the initial and terminal states of the system.
We can conclude that the actual plant with the designed
controller has performed the set-point change within the
required time horizon of 0.5 seconds, and the measured
data agrees with the simulation results.

Fig. 3. Real measured outputs compared to the set-based
model estimates. The magnified area illustrates the
noise of the real measurement data.

Fig. 4. Real applied input compared to the set-based model
estimates.

Compared to the model in Section 3, the estimated region
for the values of controller parameter c is significantly
more conservative. It is a direct consequence of relaxing
system parameter bounds and the injection of an additive
error term into the model (5). The decreased sampling
time furthermore resulted in a significantly larger problem
formulation, that in turn affected the relaxation error of
the estimation method.

However, even in this scenario the estimated region was
significantly improved compared to the initial bounds on
the controller parameter c . Furthermore, the admissible
state values presented in Figure 3 are rather narrow con-
sidering the nonlinear dynamics of the plant and allowed
parameter variations.
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5. CONCLUSIONS

We employed a method based on a relaxed set-based fea-
sibility formulation for controller parameterization. The
method allows for unknown-but-bounded parameter val-
ues, as well as various constraints of the desired behavior
of the system given in form of (possibly nonlinear) inequal-
ities on system states and measurement data.

It was shown that the method is able to provide an outer
approximation of the feasible controller parameterization.
Furthermore, the estimated closed-loop controller per-
formed adequately in simulation and an actual experiment
considering a magnetic levitation platform.

The presented method, however, has certain drawbacks. In
order to closely approximate the feasible set of a complex
shape (for example, when controller parameters are not
sensitive or depend nonlinearly on posed constraints) we
require a computationally challenging procedure, that par-
titions the search space into a large number of subregions.
Effective ways to reduce the computational burden of the
approach are the reduction of the amount of variables
to be estimated and the simplification of the underlying
feasibility problem formulation (Savchenko et al., 2013).

Outer approximation of the feasible region always intro-
duces a set of spurious solutions, that do not satisfy the
constraints of the original model, hence the estimated
controller parameter bounds provide information on the
set of values that do not satisfy desired constraints. We
view the application of the presented method as a first
step in reducing the search region of suitable or optimal
control parameters, that can be followed by e.g. a Monte-
Carlo search or set-based methods providing inner approx-
imations (Garloff, 2000; Streif et al., 2013c). Indeed, for the
proposed example we were able to significantly reduce the
search area even for highly relaxed constraints and added
noise on the system dynamics. When multiple parameters
have to be estimated at the same time, such a reduction
can immensely speed up sampling-based estimation meth-
ods.
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