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Abstract: State feedback control is very attractive due to the precise computation of the gain matrix, but
the implementation of a real-state feedback controller is impossible in most of the practical situations.
Hence the need for an estimator or observer is obvious to estimate all the state variables by observing the
input and the output of the controlled system. As such, the purpose of the paper is to provide a control
design strategy based on a Luenberger observer that can assure the closed-loop performances of a vehicle
drivetrain with backlash, while compensating the network-induced time-varying delays. The designed
robust full state-feedback predictive controller based on flexible control Lyapunov functions explicitly
takes into account the time-varying delays and guarantees also the input-to-state stability of the system in
a non-conservative way. The control strategy was experimentally tested on a vehicle drivetrain emulator
controlled through Controller Area Network.
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1. INTRODUCTION

The advanced control techniques, which rely on full state feed-
back, rather than classic output feedback, became increasingly
attractive for different control applications in the last years.
However, the implementation of a real-state feedback controller
is possible only when all state variables are directly measurable.
This condition is almost impossible to accomplish due to the
excess number of required sensors or unavailability of states
for measurement in most of the practical situations. Hence the
need for an estimator or observer is obvious to estimate the
state variables by observing the input and the output of the
controlled system. While observer design for linear discrete-
time systems is a trivial problem, observer design for piecewise
linear plant models raises considerable difficulties (Spinu et al.,
2012). In the literature there are papers that address the de-
sign of observers for continuous-time switched affine systems
(Alessandri and Coletta, 2001), bi-modal piecewise linear sys-
tems in both continuous and discrete time (Juloski et al., 2007),
discrete-time systems with piecewise affine dynamics (Heemels
et al., 2008), discrete-time systems with input-induced bilinear-
ity (Spinu et al., 2012), disturbed networked control systems
(Postoyan and Nesic, 2012) and nonlinear systems with delayed
measurements (Ahmed-Ali et al., 2013).

Moreover, backlash introduces a hard nonlinearity in the con-
trol loop for torque generation and distribution, which is a com-
mon problem in powertrain control. This phenomenon occurs
whenever there is a gap in the transmission link, resulting in an
angular position difference between wheels and engine, which
leads to zero torque transmitted through the shaft. The effect of
traversing the backlash gap is a large shaft torque and sudden
acceleration of the vehicle. Controlling of mechanical systems
with backlash nonlinearities is a topic of increasing interest
(Rostalski et al., 2007; Templin, 2008), because it can lead

to reduced performances and even instability. Engine control
systems must compensate for the backlash with the purpose
of traversing it as fast as possible. New driveline management
application and high-powered engines increase the need for
strategies on how to apply the engine torque in an optimal
way. Furthermore, the components of the control system are
linked using a communication network, e.g., Controller Area
Network (CAN), which brings up the challenge of dealing with
the effects of the network-induced delays in the control loop be-
cause they can be time-varying, may degrade the performances
and can even destabilize the networked control systems (NCSs)
designed without considering them.

As such, the problem considered in this paper is the develop-
ment of a networked predictive control strategy, based on the
design of a Luenberger observer, which is applied to minimize
the backlash effects in a vehicle drivetrain, while compensating
the CAN-induced time-varying delays. The proposed solution
starts by deriving a piecewise linear (PWL) model of a two iner-
tias drivetrain, which takes into consideration the backlash non-
linearity and the effects of the network-induced time-varying
delays by using a disturbance method. Then, a Luenberger
observer which estimates all the states is synthesized for the
discrete-time system with PWL dynamics. Afterwards, a robust
one step ahead MPC scheme is designed using the concept
of flexible control Lyapunov functions (CLF) that explicitly
accounts for rejection of disturbances introduced by the time-
varying delays and guarantees also the input-to-state stability of
the system in a non-conservative way. The control strategy was
implemented in Matlab/Simulink to control the physical plant
(vehicle drivetrain) on a real-time simulation test-bench and the
designed experiments validate the proposed approach.

Notation and basic definitions. R, R+, Z and Z+ are the real,
non-negative real, integer and non-negative integer numbers.
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Fig. 1. Schematic representation of a vehicle drivetrain.

Rn×m denotes the set of real n × m matrices. We use the
notation Z≥c1 and Z(c1,c2] to denote the sets {k ∈ Z+ | k ≥
c1} and {k ∈ Z+ | c1 < k ≤ c2}, respectively, for some
c1, c2 ∈ Z+. Let ‖x‖∞ := maxi∈Z[1,n]

|[x]i|, where | · | denotes
the absolute value. A functionϕ : R+ → R+ belongs to classK
if it is continuous, strictly increasing and ϕ(0) = 0. A function
ϕ : R+ → R+ is said to belong to class K∞ if it is of class
K and lims→∞ ϕ(s) = ∞. A polyhedron (or a polyhedral set)
in Rn is a set obtained as the intersection of a finite number
of open and/or closed half-spaces. Let P(Rn) denote the set
of all bounded and non-empty polyhedrons in Rn. Given a
polyhedron P ∈ P(Rn), the map vert: P(Rn) ⇒ Rn provides
a set of vertices of cl(P).

2. DRIVETRAIN MODELING

Fig. 1 is a schematic representation of a vehicle drivetrain with
backlash, having two inertias, one for the engine and gearbox
(J∗ep), and another one for the vehicle and the driving wheels
(Jw) connected through a flexible driveshaft. The engine gen-
erates a torque (Te), which is transmitted to the wheels through
the driveline. Backlash nonlinearity exists in almost all gear
boxes and in many mechanical couplings, being a common
problem in vehicle drivetrains. The modeling of a mechanical
system with backlash has to consider two different operational
modes: backlash (non-contact) mode (when the two mechanical
components are not in contact) and contact mode (when there
is contact between the two mechanical components resulting in
a moment transmission).

2.1 Mathematical description

The equations that describe the engine and wheel dynamics are:

J∗epω̇e = Te − Fbck
Td
itot
− deωe,

Jwω̇w = FbckTd − dwωw − Tl
(1)

where θe and θw are the engine and wheel angles, ωe and ωw
are the engine and wheel angular velocities, ω̇e and ω̇w are the
engine and wheel angular accelerations, respectively, itot is the
overall gear ratio, de and dw are the engine and wheel damping
coefficients, Tl is the load torque and Fbck is the backlash force
that equals 0 when the systems is in the backlash (non-contact)
mode, and equals 1 if the system is in the contact mode.

The torque in the driveshaft is modeled as

Td = kd

(
θe
itot
− θw

)
+ dd

(
θ̇e
itot
− θ̇w

)
, (2)

where kd and dd represent the stiffness and damping coeffi-
cients of the flexible driveshaft.
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Fig. 2. Drivetrain control architecture.

Starting from equations (1), that describe the dynamics of the
engine and wheel inertias, and considering, without loss of
generality, that there is a fixed transmission ratio and no load
torque, a state-space model of the system is obtained:{

ẋ = Acix+Bcu if x ∈ Pi
y = Ccx

, (3)

x =
[
ωe ωw

θe
itot
− θw

]T
,

u = [ Te ]
(4)

where i ∈ I := Z[1,2] denoting the active mode at time t ∈ R+.
The collection of sets {Pi|i ∈ I} defines a partition of the state-
space X ⊆ R3 as follows:{

P1 := {x ∈ R3||x3| ≤ α}
P2 := {x ∈ R3||x3| > α} (5)

where α is the backlash angle. The input of the system is
represented by the engine torque, the system states are the
engine and wheel angular velocities and the torsional angle
between engine and wheels and the outputs are the first two
states.

For the contact mode using Fbck = 1, the system matrices yield

Ac1 =

−
de+

dd
i2
tot

J∗
ep

dd
itotJ∗

ep
− kd
itotJ∗

ep
dd

itotJw
−dd+dw

Jw
kd
Jw

1
itot

−1 0

 ,
Bc =

 1
J∗
ep

0
0

 , Cc =

[
1 0 0
0 1 0

]
.

(6)

In a similar way, the non-contact mode is characterized by
transmitting no torque from the engine to the wheels (Fbck =
0), which yields the following system matrix

Ac2 =

−
de
J∗
ep

0 0

0 − dwJw 0
1
itot

−1 0

 , (7)

and matrices Bc and Cc are the same as for the contact mode.

2.2 Network-controlled architecture

In Fig. 2 it can be seen that the components of the networked
vehicle drivetrain control system, e.g., sensors, controller, actu-
ator, communicate through a shared network.

The complete network-controlled architecture, which is graph-
ically illustrated in Fig. 2, operates as follows:

• the outputs of the system are measured by sensors and
samples are sent to the controller through CAN;

• the transmission controller receives the measurements
from the sensors and the desired vehicle velocity reference
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Fig. 3. NCS with time delays.
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Fig. 4. NCS with time delays as disturbances.

vrv = rwω
r
w and calculates the required torque, while

handling the physical constraints and the delays; rw is the
wheel radius and ωrw is the desired wheel speed;
• the control signal (the torque calculated by the controller)

is sent to the engine controller through CAN;
• the engine controller actuates the spark timing and airflow

(through ua) as requested for driveline control.

The dashed lines depicted in Fig. 2 represent the direction
of the messages. In what follows, a model of the drivetrain
that accounts for backlash and the time-varying delays induced
by CAN is developed, followed by the transmission controller
design in Section 3.

2.3 Network delay modeled as disturbance

The standard NCS illustrated in Fig. 3 is composed of five
parts: a shared communication network, a physical plant, a
sensor node (S), a controller node and an actuator node (A).
The network-induced delays, which can be smaller and larger
than the sampling period, are denoted as τ ca (the delay in the
forward channel) and as τsc (the delay in the feedback channel).
It can be observed that Fig. 3 is equivalent to Fig. 4, in which the
difference between the actual control signal and the delayed one
is regarded as a hypothetical disturbance (Natori et al., 2008).
Furthermore, the difference between the actual output and the
delayed one is regarded as another hypothetical disturbance
(Caruntu and Lazar, 2011).

Notation: Let ak and bk denote the delay in the forward and
feedback channels at time instant k, expressed as a number of
sampling periods: ak = dτ cak /Tse, bk = dτsck /Tse, where Ts is
the sampling period of the system. Moreover, let ā and b̄ denote
the maximum delays in the forward and feedback channels
expressed as a number of sampling periods: ā = dτ camax

/Tse,
b̄ = dτscmax

/Tse.
The physical plant is given by the discrete-time state-space
model (Caruntu et al., 2011b){
xk+1 = Adixk +Bdiuk +

∑ak
j=0 ∆j,k(uk−j−1 − uk−j),

yk = Cdxk
,

(8)

where xk is the system state, uk is the control signal, Adi =

eAciTs , Bdi =
∫ Ts

0
eAci(Ts−θ)dθBci and Cd = Cc are the

discrete-time system matrices and

∆j,k =


0, τ cak−j − jTs ≤ 0∫ τca

k−j−jTs

0
eAci(Ts−θ)dθBci, 0 < τ cak−j − jTs < Ts∫ Ts

0
eAci(Ts−θ)dθBci, Ts ≤ τ cak−j − jTs

(9)
for all k ∈ Z+ and j ∈ Z[0,ak] with

τ cak ≥ τ cak−1 − Ts. (10)

Forward channel delays The maximum discrete-time for-
ward channel disturbance representation is given by

udk = uk−ak − uk. (11)
In (Caruntu and Lazar, 2012) it is shown that if the input of the
plant is bounded then all possible disturbances that appear due
to the forward channel time-varying delays can be included in
a bounded set Wu.

Considering that the control signal is lower and upper bounded
umin ≤ uk ≤ umax, (12)

where umin and umax are the minimum and the maximum con-
trol signal values, the disturbance can be bounded as (Caruntu
and Lazar, 2012)

umin − umax ≤ udk ≤ umax − umin. (13)

Moreover, if the control signal is incrementally restricted

−u∆ ≤ ∆uk ≤ u∆, (14)
where ∆uk := uk − uk−1, for all k ∈ Z≥1, with u0 some
predetermined value and u∆ the maximum increase/decrease
of the control signal at each sampling time instant k ∈ Z≥1, the
disturbance can be rebounded as (Caruntu and Lazar, 2012)

−āu∆ ≤ udk ≤ āu∆. (15)

Feedback channel delays The hypothetical disturbance ex-
erted on the physical plant gives the following discrete-time
feedback channel disturbance representation

ydk = yk−ak−bk − yk−ak . (16)
In (Caruntu and Lazar, 2011) it is shown that if the input of the
plant is bounded then all possible disturbances that appear due
to the feddback channel time-varying delays can be inclued in
a bounded set Wy .

Consider the physical plant (8) with input disturbance
xk+1 = Adixk +Bdi(uk + udk) =

= Aldixk−l+1 +
∑l−1
j=0A

j
diBdi(uk−j + udk−j),

yk = Cdxk

(17)

then, (16) becomes

ydk = C((In −Abkdi )xk−ak−bk−1−

−
bk−1∑
j=0

AjdiBdi(uk−ak−j−2 + udk−ak−j−2))
(18)

Notice that, xk−ak−bk is known at time instant k, all uk−j ,
j ∈ Z≥1 are known, all udk−j , j ∈ Z≥1 are bounded, ak and bk
are bounded by ā and b̄, respectively, so xdk can be dynamically
bounded at each sampling instant k ∈ Z+.

Now, the output that reaches the controller becomes
yk = Cxk = C(Adixk−1 +Bdiuk−1) + wk, (19)

where wk = C(Bdiu
d
k−1) + ydk .
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The time-varying delays give a time-varying disturbance, but
the sets Wu, which is defined by C(Bdiu

d
k−1), and Wy , which

is defined by ydk , remain fixed. This modeling technique is suit-
able for the use of the results presented in (Lazar and Heemels,
2008), in which the disturbances are explicitly taken into ac-
count during the design phase of the predictive controller.

3. PREDICTIVE CONTROLLER WITH LUENBERGER
OBSERVER DESIGN

3.1 Luenberger observer design

Assumption 3.1. The region of the discrete-time PWL vehicle

drivetrain model Pi, such that
[
x̂
u

]
∈ Pi, is known at each

moment of time.

The Luenberger observer can be written as follows:

{
x̂k+1 = Adix̂k +Bdiuk + Li(y − ŷ),

ŷ = Cdx̂.
(20)

From Assumption 3.1 it follows that for any
[
x̂
u

]
∈ Pi,[

x
u

]
∈ Pi and as such, the error dynamics is

ek+1 = (Adi − LiCd)ek. (21)
Theorem 3.2. Suppose there exists a positive definite matrix P
and a number ρ ∈ R(0,1) and

(Adi − LiCd)>P (Adi − LiCd) � ρP, (22)
hold for all i ∈ Z[1,s]. Then the error dynamics (21) is globally
asymptotically stable.

To solve the inequality (22) in Theorem 3.2 the following
lemma is introduced.
Lemma 3.3. Suppose that[

ρP A>diP − C>d Yi
PAdi − Y >i Cd P

]
� 0 (23)

holds for all i ∈ Z[1,s] and some P � 0, ρ ∈ R(0,1) and Yi.
Then the inequality (22) holds with P, ρ and Li = (YiP

−1)>.

For the proof of Theorem 3.2 and Lemma 3.3 the interested
reader is referred to Theorem 1 and Lemma 1 from (Alessandri
and Coletta, 2001). Note that it is possible to compute a single
gainL = Li for the discrete-time PWL observer by considering
a single Y = Yi in (23).

3.2 Robust one step ahead predictive controller design

The flexible Lyapunov function concept was proposed in
(Lazar, 2009) by extending and relaxing the conventional Lya-
punov condition. These functions offer a stability guarantee
(under a recursive feasibility assumption) even for a short pre-
diction horizon. In this paper, the concept was used in designing
a robust one step ahead MPC scheme to attain stability and
performance. Also, the disturbances are explicitly taken into
account during the design phase by using input-to-state stability
(ISS) concepts.

Consider the perturbed discrete-time constrained nonlinear
drivetrain system (19) with the observer (20). Naturally, it is as-
sumed that the set of feasible states X, the set of feasible inputs

U and the disturbance set W are bounded polyhedra with non-
empty interiors containing the origin. Next, let α1, α2, α3 ∈
K∞ and let σ ∈ K.
Definition 3.4. A function V : Rn → R+ that satisfies

α1(‖x̂‖) ≤ V (x̂) ≤ α2(‖x̂‖), ∀x̂ ∈ X ⊆ Rn (24)
and for which there exists a possibly set-valued control law
π : Rn ⇒ U such that

V (Adix̂k +Bdiuk + wk + Li(y − ŷ))− V (x̂) ≤
≤ −α3(‖x̂‖) + σ(‖w‖),
∀x̂ ∈ X,∀u ∈ π(x̂),∀w ∈W,

(25)

is called an input-to-state stability control Lyapunov function
(ISS-CLF) in X for system (19) and disturbances in W.

ISS theory (see (Jiang and Wang, 2001)) can be used to derive
an input-to-state stabilizing predictive control scheme with
improved disturbance rejection, as done in (Lazar and Heemels,
2008), where this property is refereed to as optimized ISS.

As such, let W be a convex hull of the vertices we, e =
1, . . . , E, and let λek, k ∈ Z+, be optimization variables
associated with each vertex we. Let J(λ1, . . . , λE , λ) : RE+ ×
R+ → R+ be a strictly convex, radially unbounded function
(i.e. J(·) tends to infinity when its arguments tend to infinity)
and let J(λ1, . . . , λE , λ) → 0 ⇒ λe → 0 for all e = 1, . . . , E
and λ→ 0, and J(0, . . . , 0, 0) = 0.

Choose off-line a CLF V (·) for system (19) without distur-
bances and let α3 ∈ K∞ and x̂ ∈ X be given. At each
control sampling instant k ∈ Z+ the one step ahead ISS MPC
controller solves the following problem.
Problem 3.5. At time k ∈ Z+ obtain the observed state x̂k and
minimize the cost J(λ1

k, . . . , λ
E
k , λk) over uk, λ1

k, . . . , λ
E
k and

λk, subject to the constraints
uk ∈ U, (Adix̂k +Bdiuk+Li(y − ŷ)) ∈ X, λek ≥ 0, λk ≥ 0,

(26a)
V (Adix̂k +Bdiuk+Li(y − ŷ))− V (x̂k)+

+ α3(‖x̂k‖) ≤ λk, (26b)
V (Adix̂k +Bdiuk+Li(y − ŷ) + we)− V (x̂k)+

+ α3(‖x̂k‖) ≤ λek, (26c)
for all e = 1, . . . , E. 2

Let π(x̂k) := {uk ∈ Rm | ∃λk, λek, e ∈ Z[1,E] s.t. (26) holds}
and let φcl(x̂k, π(x̂k), wk) := {Adix̂k +Bdiuk +wk +Li(y−
ŷ) | uk ∈ π(x̂k)} denote the difference inclusion correspond-
ing to system (19) in closed-loop with the set of feasible solu-
tions obtained by solving Problem 3.5 at each sampling instant
k ∈ Z+.

Next, the main robust stability result in terms of ISS is stated.
This result is an adaptation of the main result in (Lazar and
Heemels, 2008), to fit the relaxation (26b) of Problem 3.5, i.e.,
λk = 0 for all k ∈ Z+ corresponds to the problem considered
in (Lazar and Heemels, 2008).
Theorem 3.6. Let α1, α2, α3 ∈ K∞, a continuous and convex
CLF V (·) and a cost J(·) be given. Suppose that Problem 3.5 is
feasible for all states x in X and assume that limk→∞ λ∗k = 0.
Then, the trajectories generated by the difference inclusion

x̂k+1 ∈ φcl(x̂k, π(x̂k), wk), k ∈ Z+, (27)
with initial state x̂0 = x0 ∈ X converge in finite time to a
robustly positively invariant subset of X, in which the difference
inclusion is ISS for disturbances in W.
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The proof of Theorem 3.6 follows from standard arguments
employed in proving ISS and Lyapunov stability and is there-
fore omitted here. The interested reader is referred to (Lazar
and Heemels, 2008) and (Lazar, 2009) for more details. Ad-
vantageous properties of the proposed robust controller are that
ISS is guaranteed for any (feasible) solution of the optimiza-
tion problem, state and input constraints can be explicitly ac-
counted for, and feedback to disturbances is provided actively,
on-line. The key of the stability proof is the limiting condition
limk→∞ λ∗k = 0. In what follows a non-conservative solution
for guaranteeing this condition is provided.
Lemma 3.7. Let ∆ ∈ R+ be a fixed constant to be chosen a
priori and let ρ ∈ R[0,1) and M ∈ Z>0. If

0 ≤ λk ≤ ρ
1
M (λ∗k−1 + ρ

k−1
M ∆), ∀k ∈ Z≥1, (28)

then limk→∞ λk = 0.

Lemma 3.7 is proven in (Caruntu et al., 2011a) and is omitted
here for brevity. By augmenting Problem 3.5 with constraint
(28) the property limk→∞ λ∗k = 0 is thus guaranteed, which is
sufficient for asymptotic stability.

The developed robust MPC scheme for the constrained system
(19) can be implemented by solving a single LP during each
control cycle using an infinity-norm based candidate CLF as
shown in (Caruntu and Lazar, 2011) and is omitted here.

4. EXPERIMENTAL RESULTS

This section presents the validation of the proposed networked
one step ahead robust predictive control strategy based on the
designed Luenberger observer. It was investigated using a real-
time simulation test-bench based on the M220 Industrial plant
emulator (M220, 1995), which can emulate an automated man-
ual transmission (AMT) driveline with backlash nonlinearity
and driveline flexibility. The one step ahead MPC scheme was
implemented in Matlab/Simulink and real time experiments
were conducted by using Real Time Windows Target, that
allows external connection to the M220 Plant Emulator. The
sampling period of the system was chosen as Ts = 4ms. Please
note that on a real automotive drivetrain only angular velocities
can be measured, so the full state will be estimated by the
designed observer.

The upper bound of the delays that are induced by CAN was
calculated using the methodology described in (Klehmet et al.,
2008), resulting that τmax = 2Ts = 0.008s for each channel,
which is used to apply the presented methodology to model the
effects of the variable time delays as disturbances. Then, the
bounds of the disturbances are explicitly taken into account by
the robust one step ahead predictive control strategy described
in Section 3. The delays are time-varying and uniformly dis-
tributed in the interval [0, τmax].

The control objective is to reach a desired wheel angular ve-
locity in a short time and to increase the passenger comfort by
reducing the backlash effect. The axle wrap, which is calculated
as the difference between the engine speed (divided by the total
transmission ratio) and the wheel speed is used as a measure of
the driveline oscillations.

The recursive feasibility of the robust one step ahead MPC
scheme developed in this paper implies asymptotic stability.
However, recursive feasibility is not a priori guaranteed and
hinges mainly on the constraint (28) on the future evolution
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of λ∗k. For all simulation scenarios case studies, the values
Ω = 0.5 and M = 1 proved to be large enough to guarantee
recursive feasibility for the desired operating scenarios.

The engine and wheel angular velocities are illustrated in Fig. 5,
where it can be seen that the system reaches the reference in
a short time, having almost no overshoot when it approaches
the reference wheel angular velocity. When the system is in the
non-contact mode there is no torque transmitted to the driving
wheels because of the backlash, so the wheel angular velocity is
equal to 0. After the system enters the contact mode (6 sampling
periods = 24 ms), the wheel angular velocity starts to increase.
Also, the engine torque and the axle wrap are represented in
Fig. 6 and Fig. 7.

The differences between the real states of the emulator and the
estimated states are illustrated in Fig. 8 - Fig. 10 in which it can
be seen that the estimated values of the states provided by the
observer tend asymptotically to the real state.

5. CONCLUSIONS

This paper considered the design of a full state-feedback pre-
dictive controller based on a Luenberger observer with the
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aim of compensating the backlash effects, while decreasing
the influence of the network-induced time-varying delays on
the closed-loop control performances over the CAN network.
The designed robust one step ahead MPC strategy can handle
the performance/physical constraints and explicitly takes into
account the disturbances caused by the time-varying delays.
Also, a flexible control Lyapunov function was employed to
obtain a non-conservative ISS stability guarantee for the devel-
oped one step ahead MPC scheme. The proposed control strat-
egy was tested on a real-time simulation test-bench including
CAN communications and the results obtained illustrate that
the proposed controller has good performances and it meets the
required timing constraints.
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