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Abstract: This paper studies the problem of higher order singular linear quadratic optimization
for Linear Time Variant Systems a¤ected by some sort of uncertainties. It is shown the natural
connection between the order of singularity of the time varying quadratic cost and the order
of Sliding Mode. An integral high order sliding mode is proposed to reach the corresponding
higher order singular time varying optimal manifold in prescribed time. The transformation to
the phase-variable form for the Linear Time Variant Systems becomes the key step solve the
problem and the proposed solution provides insensitvity of trajectory w.r.t. matched bounded
perturbation.
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1. INTRODUCTION

Singular Optimal Control (SOC) is well a known �eld of
research (see (1), (8), (3)) motivated by problems that
emerge in a variety of practical situations ranging from
economy to aeronautics ((5), (17) and (10)). In this last
�eld particularly the control engineers face the problem of
time changing parameters such as variable mass of rockets,
probes and tanks. Therefore these problems are better
modeled by models with time variable coe¢ cients. The
main results in SOC were conceived during the 60th and
70th. At that time, one of the common approach to solve
SOC problems, involves a transformation of the states
and control variables from which a reduced dimension
system is obtained and the original singular problem is
transformed to a regular (non-singular) control problem
in the new variables, as a result it is possible to �nd,
the so-called, higher order singular manifold (SOM). If
that does not hold, then a further transformation to a
state space of smaller dimension is needed (see (11), (8)
and (1)). Other approaches include the use of impulse
control along with �rst order sliding mode controls to
reach, the higher SOM, this is the surface in the state
space in which the cost function achieve its minimum. It
is suggested also the concept of cheap control converting
the singular optimization stabilization (SOS) problem into
singularly perturbed LQ optimal problems ensuring the
fast convergence of the solutions to the SOM (see for
example (3), (12), (18)). Most of this approaches studied
time invariant systems.

In this paper we study the problem of singular control
problem of higher order, this is, problems with arbitrary
reduced dimension of the associated system for a linear

? The authors wish to thank for the grants CONACYT 169734 as
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plant with time-varing parameters. In the book of ( (19)
chapter 6), this problem was �rst studied and a time-
varying sliding surface based on a time varying SOM
(TVSOM) was designed, then an order one sliding mode
is applied to solve the problem. However some importante
aspects was not mentioned by that approach, such as:
problems for singular system with smaller dimension or
higher order problems, the starting time at the TVSOM
was not speci�ed and the robustnes of the solution w.r.t
to bounded perturbation is not mention.

Contribution: In this paper we propose an Integral
Higher Order Sliding Mode (IHOSM) approach ((14)) to
solve arbitrary order singular LQ problems for uncertain
time-varying systems. The main contributions are the
follows:

� a notion of order of singularity of time-varying LQ
problem is introduced;

� the natural connection between order singularity and
order of sliding mode is shown;

� based on the order of singularity the integral quasi-
continuous HOSM algorithm is designed allowing to:
- reach the TVSOM in a desired time instant;
- maintain the system solution on the TVSOM;
- ensure the insensitivity of the system trajectory

with respect to the bounded matched uncertainties.

2. GENERAL CASE

Consider the following perturbed linear time varying sys-
tem

_x = A (t)x+B (t) (u+ �) ;
x (t0) = x0;

(1)
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where x (t) 2 Rn, u (t) 2 R is the scalar control input, and
A (t) 2 Rn�n; B (t) 2 Rn�1;are time varying matrices and
the perturbation satis�es

j�(t; x)j � L; L > 0: (2)

is bounded and Lebesgue-measurable on t . Moreover, here
and always bellow we will suppose that the solution of the
system (1)-(2) is unique in the sense of Filippov ((6)) for all
t � t0. Assume the system is uniformly controllable (see
(2)). The optimization problem for dynamics (1) could
not be not well posed because the system (1) is uncertain.

That is why together with system (1) consider the nominal
singular �nite time LQ problem with time coe¢ cients
dynamics:

_x = A (t)x+B (t)u; x (t0) = x0; (3)

We consider a quadratic in the states and a �control-
free� cost objective where the weight matrix is also time
variable, i.e.,

J =
1

2

tfZ
t1

x| (t)Q (t)x (t) dt; (4)

where Q (t) = Q| (t) � 0, is a semipositive de�nite matrix
for 8t � t0 and t1 > t0, t0 is the initial time instant.
The cost function does not depend on control that is why
this problem leads to the solution of the singular optimal
control problem.

The solution of nominal �nite time singular problem (3)-
(4) lies on the time variable singular optimal manifold.

3. HIGHER ORDER SINGULAR OPTIMIZATION
FOR NOMINAL LTVS

Transformation to Phase-Variable canonical form

Let us consider that the system (3) as a uniformly con-
trollable (9). The following phase-variable transformation
is based on the procedure given in ((16)), consider the
nonlinear transformation

y (t) = T (t)x (t) ; (5)

applying into (3) yields to

�
y =

�
T (t)A (t) +

�
T

�
T (t)

�1
y + T (t)B (t)u (6)

where T (t) is matrix such thatAc =
�
T (t)A (t) +

�
T (t)

�
T (t)�1

and Bc = T (t)B (t) given by:

Ac =

0BB@
0 1 0 � � � 0 0
0 0 1 � � � 0 0
...

...
...

. . .
...

...
�1 (t) �2 (t) �3 (t) � � � �n�1 (t) �n (t)

1CCA ; Bc =

0BB@
0
0
...
1

1CCA
(7)

which transform the system (3) into the canonical form:

�
y = Ac (t) y +Bcu (8)

in its turn the cost function (4) it is transformed into

J =
1

2

tfZ
t1

yT ~Q (t) y (t) dt (9)

where ~Q (t) =
�
T�1

�T
Q (t)T�1Q (t) and the cost is

transform to following block structure:

~Q (t) =

0BBBBBBBB@

~Q11 (t) ~Q12 (t)
~Q21 (t) ~Q22 (t)
0 0
...

...
0 0| {z }
n�k columns

0 � � � 0
0 � � � 0
0 � � � 0
...
. . .

...
0 � � � 0| {z }
k�columns

1CCCCCCCCA
~Q22 (t) > 0; ~Q21 (t) � 0

8t � t0
(10)

the involved block matrices have dimension ~Q22 (t) 2
R; ~Q11 (t) 2 R(n�k�1)�(n�k�1); ~Q12 (t) = ~Q|21 (t) 2
R1�(n�k�1): The previous example in which the control
variable can appear in higher derivative of the TVSOM
motivate the following de�nition. For a given singular
control problem, the Order of Singularity can be seen
as i = k + 1, and k is the number of zero columns in
(10). For the porpouse of clarity, we de�ne the vectors
~y1 = (y1; y2; :::; yn�k�1)

> that represent the sliding mode
reduced dynamics, and y2 = yn�k a variable virtual
control.

Procedure to �nd the transformation T (t) We assume
the entries of the matrices A (t) and B (t) to be in�nitely
di¤erentiable functions. In this section we omit the time-
dependent notation some places where it is clear from the
previous context.

As is shown in ((16)) the necessary and su¢ cient condition
for the unique existence of the transformation matrix T (t)
is the uniform controllability of the system (3) (see (16)).
In what follows we outline the procedure to �nd T (t) : Let
the components of the vector y (t) in (8) be:

y1 (t) = T11x1 + Tx2 + � � �+ T1nxn = T1x
y2 (t) = T21x1 + T22x2 + � � �+ T2nxn = T2x

...
yn (t) = Tn1x1 + Tn2x2 + � � �+ Tnnxn = Tnx

(11)

where x (t) is the state vector of (3), and Tij (t),
(i; j = 1; 2; � � � ; n) are the components of the time varying
rows of T (t), that is

Ti (t) = (Ti1; Ti2; : : : ; Tin)

taking the time derivative of (5) we get

_y (t) =
�
_T + TA

�
x (t) + TBcu (t) (12)
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the system (3) in canonical variables (6) makes the row of
(12) equal to:

y2 =
�
y1 =

�
�
T1 + T1A

�
x+ T1Bu (t)

y3 =
�
y2 =

�
�
T2 + T2A

�
x+ T2Bu (t)

...

yn =
�

yn�1 =

�
�

Tn�1 + Tn�1A

�
x+ Tn�1Bu (t)

(13)

making T1B = T2B = : : : = Tn�1B = 0;the components
of T (t)x (t) becomes

T2x =

�
�
T1 + T1A

�
x

T3x =

�
�
T2 + T2A

�
x

...

Tnx =

�
�

Tn�1 + Tn�1A

�
x

(14)

Therefore in order to �nd the matrix T (t) the row must
satisfy:

Tk =

�
�

Tk�1 + Tk�1A

�
for k = 2; : : : ; n (15)

along with the equalities T1B = T2B = : : : = Tn�1B = 0:
Also because of (8) TB = Bc we obtain0BBBB@

T1B
T2B
...

Tn�1B
TnB

1CCCCA =

0BBBB@
0
0
...
0
1

1CCCCA (16)

Transformation of the functional

The cost function (9) involves cross terms in the state
variables, in order to get a simpler problem, de�ne a new
auxiliary variable �i ((19)):

�i (t) = y2+Li (t) ~y1; Li (t) :=
�
~Q22 (t)

��1
~Q12 (t) (17)

Using the de�nition of for the states and the control
variables (z1; �i) ; the cost function (9) the is transform
to:

J =
1

2

tfZ
t1

�
~y|1 (t)Q̂11 (t) ~y1(t) + �

|
i (t)

~Q22 (t) �i(t)
�
dt:

where the matrix

Q̂11 (t) = ~Q11 (t)� ~Q12 (t)
�
~Q22 (t)

��1
~Q|12 (t) :

(18)

Design of the TVSOM

For every high order singular optimization problem for
LTVS we have the following result. For any order of

singularity i, minimize the performance index (9), subject
to the dynamics (8). Notice that in the system given by
canonical variables (8) only the last coordinate is time
dependent, nonetheless the singular optimal manifold (for
every singular problem) remains time variable due to
associated matrices of the cost function. To �nd out the
optimality conditions for each index, we take again the last
coordinate as the virtual control variable and minimize
(18), subjected to the partial dynamics

�
~y1 =

�
Ai +Bi

�
~Q22 (t)

��1
~Q|12 (t)

�
~y1 +Bi�i (t) (19)

where Ai and Bi are constant matrices with form:

Ai =

0BB@
0 1 0 � � � 0
0 0 1 � � � 0
0 0 0 � � � 0
...
...
...
. . . 1

0 0 0 � � � 0

1CCA 2 R(n�i)�(n�i); Bi =

0BB@
0

0

0

...
1

1CCA
9>>=>>; n� i rows

with ~y1 2 Rn�i; ~Q22 (t) 2 R; ~Q12 (t) 2 Rn�i

(20)

the dimension of the matrices are well de�ned. The next
theorem is a higher order extension of the results concern-
ing the

�rst-order SOS problem ((19)).

Theorem 1. The optimal value acting as virtual mini-
mizing control in (9) is

y2 = �
�
~Q22 (t)

��1 �
BiPi + ~Q|12

�
~y1 (21)

where Pi; is the solution of the di¤erential matrix Riccati

� _Pi (t) = Pi (t) ~Ai (t) + ~A|i (t)Pi (t) + Q̂11 (t)

�Pi (t)Bi
�
~Q22 (t)

��1
B|i Pi (t)

(22)

with boundary conditions Pi (tf ) = 0; where:

~Ai (t) = Ai +Bi

�
~Q22 (t)

��1
~Q12 (t) ;

Q̂11 (t) = ~Q11 (t)� ~Q12 (t)
�
~Q22 (t)

��1
~Q|12 (t)

follows from the standard optimal control theory.

Design of Transient Trajectory to Reach SOM

In the general case the cost function (9) is not optimized
from the begginig of the process (8), the initial condition
of does not belong to the SOM, therefore the initial time
t1 should be speci�ed. Consider the SOM as

Si (y; t) = y2 +Mi (t) ~y1 = 0 (23)

Assume that art least j; 0 � j � i � 1 we have
S
(j)
i (y0; t0) 6= 0:We would like for the system trajecto-
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ries reaches the ith order sliding mode set Si(y (t1)) =
_Si(y (t1)) = ::: = S

(i�1)
i (y (t1)) = 0 at the reaching time

t1:

Let de�ne the transient trajectory �i (t) de�ned for the
interval time t0 � t � t1 as a polynomial of the form:

�i (t) = (t� t1)
i��

c0 + c1 (t� t0) + :::+ ci�1 (t� t0)i�1
�
:

(24)

satisfying the initial conditions

�i (t0)=Si (y0) , _�i (t0)= _Si (y0) ; ...; �
(i�1)
i (t0)

=S(i�1)i (y0) :
(25)

At the arrival time on SOM t1 we have

�i (t1) = _�i (t1) = ::: = �
(i�1)
i (t1) = 0

and �i (t) = 0 8t > t1: The parameters ci could be
uniquely de�ned from (25). De�ne the function t1 � t0 as
a positive-de�ned function of the initial conditions as

t1 � t0 = Ti
�
Si (y0) ; _Si (y0) ; :::; S

(i�1)
i (y0)

�
; (26)

For any �; p =const> 0 the function Ti could be uniquely
de�ned as (14) :

Ti = �

�
jSi (y0)jp=i +

�� _Si (y0)��p=(i�1) + : : :+ ���S(i�1)i (y0)

���p�1=p
(27)

The function �i (t) is uniquely determined by (25), (24)
and (26).

We de�ne an auxiliary surface
P

i (y)= Si (y) � �i (t), in
such a way when the ith order quasicontinuous controller
achieves to do that

P
i (y) is zero in some �nite time tr, we

have that Si (y (tr)) = �i (tr) ; in addition we remember
�i (t > t1) = 0; and if in addition there is ful�lled that
t1 > tr , then the time of convergence of Si will be the
same one in which the polynomial �i does zero to itself for
the �rst time. that is to say t1.

IHOSM Design

Now from ((15)). we can conclude following theorem:

Theorem 2. The controller

vi = �i	i�1;i(�i; _�i; :::;�
(i�1)
i ); '0;i = �i; N0;i = j�ij ; (28)

	0;i = '0;i=N0;i = sign�i; 'l;i = �
(l)
i + �iN

(i�l)=(i�l+1)
l�1;i 	l�1;i

Nl;i =

����(l)i ���+ �iN(i�l)=(i�l+1)
l�1;i ; 	l�1;i = 'l;i=Nl;i;

�i (t; y)=
�
Si (y)� �i (t) , t0 � t � t1
Si (y) ; t � t1 (29)

established the �nite-time stable r-sliding mode Si (y0) =
_Si (y(t)) = ::: = S

(i�1)
i (y(t)) � 0 for t � t1:

The equality Si (y(t)) = �i (t) ; is kept during the transient
process t1 � t � t0.

Remark 2.

The control quasi-continuous higher order controller for
i� 1; 2; 3; 4 takes the form :

�1 = ��1sign�1;

�2 = ��2
�
_�2 + j�2j1=2 sign�2

�
=
��� _�2��+ j�2j1=2� ;

�3 = ��3

h
��3+2

�
j _�3j+j�3j2=3

��1=2�
_�3+j�3j2=3sign�3

�i�
j��3j+2(j _�3j+j�3j2=3)1=2

� ;

�4 = ��4'3;4=N3;4;

'3;4 =
...
�4 + 3

h����4��+ ��� _�4��+ 0:5 j�4j3=4�2=3i1=2
�
h
��4+

��� _�4��+ 0:5 j�4j3=4��1=3 � _�4 + 0:5 j�4j3=4 sign�4�i
(30)

and

N3;4 =
��...�4��+ 3h��4 + ��� _�4��+ 0:5 j�4j3=4��2=3i1=2 ; (31)

4. DESCRIPTION OF THE ALGORITHM

To summarize the procedure design we have the following
algorithm:

Step 1: Transformation of the system (1) into phase-
variable form (8).

Step 2: Transformation of the functional (4) into trans-
formed form (9) .

Step 3: Solving analytical or numerically the correspond-
ing Riccati di¤erential equation (22) in order to design
the time-variable surface Si (y; t) .

Step 4: Design the auxiliary Surface
P

i (y; t) = Si (y)�
�i (t) �nding the coe¢ cients c0; c1; : : : ; ci�1 of the poly-
nomial �i (t), using the initial conditions (25).

Step 5: Design a convergence time t1 with a given initial
condition t0 and a proposed value �, considering (26)
and (27).

Step 6: Design the corresponding IHOSM control.

5. NUMERICAL EXAMPLE

Consider the following LTVS

�
x = A (t)x+B (t) (u+ �) ; x 2 R3; u 2 R;

x (0) = x0
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and the cost function associated as:

J =
1

2

tfZ
t1

yT ~Q (t) y (t) dt

where:

A =

0@�1 e�t t1 �3 0
0 1 t2

1A ; B =
0@ e�t0

0

1A
x 2 R3; � = 2 cos (2t) + cos (x1 + x2 + x3) + 1:5;

and

Q (t) =

0@ 0 0 0
0 4e2t 4e

�
t2 + 1

�
0 4e2t

�
t2 + 1

�
4e2t

�
t2 + 1

�2
+ e2t

1A
We can see that the perturbation is bounded j�j � 4:5 and
Q (t) = Q| (t) � 0: Applying the Step 1 we obtain that
the transformation matrix T (t) is

T (t) =

0@ 0 0 et

0 et
�
t2 + 1

�
et

et
�
t2 � 1

�
et
�
t4 + 2t2 + 2t+ 1

�
1A

and using the Step 2 the cost function �nally becomes

J =
1

2

tfZ
t1

�
y21 + 4y

2
2

�
dt (32)

subject to the dynamics
�
y1 = A2y1 +B2y2
A2 = 0; B2 = 1

the optimal virtual control y2 is:

y2 = �
1

4
P2 (t) y1 (33)

where P2 (t) 2 R is the solution of the Riccati di¤erential
equation:

�
�
P 2 (t) = �P2 (t)2 =4 + 1 (34)

with P2 (tf ) = 0: If we take tf = 10; now following the
Procedure of Step 3, the analytic solution is

P2 (t) = 2
�
1� e(t�10)

�
=
�
e(t�10) + 1

�
and the time varying manifold is

S2 = y2 +M2 (t) y1

M2 (t) =
1

4
P2 (t) :

the auxiliary surface become:

0 2 4 6 8 10
-4

-3

-2

-1

0

1

2

3

Time

y1

y2

Fig. 1. States of the System.X
2

(y) = S2 (y)� �2 (t) (35)

the order of quasicontinuous controller is two, therefore
the polynomial (24) takes the form:

�2 (t) = (t� t1)
2
(c0 + c1 (t� t0))

where t0 = 0; is the initial time of the states variables x;
therefore we get

�2 (t) = (t� t1)
2
(c0 + c1t) : (36)

In order to design the auxiliary surface
P

2 (y) we follow
the Step 4, then the coe¢ cients of the polynomial �2 (t)
are given by:

c0 = S2 (0) =t
2
1

c1 =
�
S2 (0) =t

2
1 + 2c0=t1

now considering Step 5 with a initial condition t0 = 0 and
a proposed value �, we have that the reaching time is given
by:

t1 = T2

�
S2 (0) ; _S2 (0)

�
T2 = �

 
jS2 (0)j3 +

���� �S2 (0)����6
!1=6

for the initial condition y1 (0) = 3; y2 (0) = �4; y3 (0) =
5;with P2 (10) = 0; and k11 = 50; k12 = 50; S2 (0) =

�2:5001;
�
S2 (0) = 3:0003 it is found that c0 = �4:4125;

c1 = �6:4286 and taking � = 0:25; we get t1 = T2 =
0:7527: Finally using Step 6 the second order quasicontin-
uous controller is expressed as:

u = ��1 (y)

0@ _�2 + j�2j1=2 sign�2��� _�2���+ j�2j1=2
1A

with the variable gain as:

�1 (y) = 50
q
y21 + y

2
2 + y

2
3 + 50

in what follows we show the corresponding �gures to the
simulation:

6.

7. CONCLUSION

This paper shows natural connection between order of sin-
gularity of the singular LQ and order of sliding modes. The
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Fig. 2. Reaching Time t1 = 0:7527.
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Fig. 3. Sliding Surfaces.
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1
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P2(10) = 0

Fig. 4. Solution of Riccati equation P2:
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40
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80

100

Time

Control

Fig. 5. Second Order Quasicontinuous Controller.

time variable SOM is considered as the sliding manifold for
HOSM of corresponding order.

The HOSM algorithm is suggested ensuring:

� that the system trajectory will arrive on the TVSOM;
� maintain the system trajectory on the TVSOM;
� the insensitivity of the system trajectory with respect
to the matched uncertainties.

REFERENCES

[1] Bell, J.B. and Jacobson, D.H., Singular Optimal Con-
trol Problems. Academic Press, London, 1975.

[2] Chen, C.T., Linear System Theory and Design. CBS
College Pub, 1984.

[3] Dmitriev, M.G. and Kurina, G.A., Singular Perturba-
tions in Control Problems. Automation and Remote
Control, 67, 3-51.

[4] Edwards, C. and Spurgeon, S., Sliding Mode Control:
Theory and Applications. Taylor and Francis, 1998.

[5] Faulkner, F.D., The problem of Goddard and optimum
thrust programming, Advances in the Astronautical
Sciences vol I. Plenum Press, 1957.

[6] Filippov, A.F., Di¤erential equations with discontin-
uous right hand-sides, Mathematics and its applica-
tions,Kluwer Academic Publisher, 1983.

[7] Fridman, L. and Jimenez-Lizarraga, M. and Ibarra,
E.,Integral Higher Order Sliding Mode and Singular
Optimal Stabilization. Proceedings of the European
Control Conference 2013.

[8] Ho, Y.C., Linear stochastic singular control problems.
J. Optim. Theory Appl, 9, 24-31 1972.

[9] Isidori, A., Nonlinear Systems. Springer-Verlang,
1995.

[10] Johnson, C. D. and Gibson, J.E., Singular solutions in
problems of optimal control, IEEE Trans. Automat.
Contr, 8, 4-15, 1963.

[11] Kelley, H. J., A transformation approach to singular
subarcs in optimal trajectory and control problems.
SIAM J. Control, Ser. A, 2, 234-240, 1965.

[12] Lee, J.T. and Bien, Z.N., A Quadratic Regulator
with Cheap Control for a Class of Nonlinear Systems.
Journal of Optimization Theory and Applications. Vol
55, 289-302, 1987.

[13] Levant, A., Quasi-continuos high-order sliding-mode
controllers. IEEE Trans. Automat. Contr, 50, 1812-
1186, 2006.

[14] Levant, A. and Alelishvili, L., Integral High Order
Sliding Modes. IEEE Trans. Automat. Contr, 1278-
1282, 2007.

[15] Levant, A. and Michael, A., Adjustment of high-order
sliding-mode controllers. International Journal of Ro-
bust and Nonlinear Control, 19, 1657-1672, 2008.

[16] Ramaswami, B. and Ramar, K., On the Transforma-
tion of Time-Variable Systems to the Phase-Variable
Canonical Form. IEEE Trans. Automat. Contr, 44,
417-419, 1969.

[17] Ross, S., Minimality for problems in vcrtical and
horizontal rocket �ight. Jet Propulsion, 28, 55-56,
1958.

[18] Saberi, A. and Sannuti, P., Time-Scale Decomposition
of a Class of Linear and Nonlinear Cheap Control
Problems. Proc. Am. Control Conf. 1414-1421, 1985.

[19] Utkin, V., Slides Modes in Control and Optimization.
Springer-Verlang, 1991.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6055


