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Abstract: This paper proposes a suboptimal feedback controller design for nonlinear distributed
parameter systems via the stable manifold method. The stable manifold method provides
approximate stabilizing solutions of Hamilton-Jacobi (HJ) equations in nonlinear optimal control
theory. We apply this method to a reduced-order system obtained from the proper orthogonal
decomposition (POD) and Galerkin projection. The feasibility of the design is demonstrated by
the numerical example of feedback controls of the viscous Burgers’ equation.
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1. INTRODUCTION

In nonlinear optimal control problems, Hamilton-Jacobi
(HJ) equations play a significant role (Aliyu (2011)). Re-
cently, the stable manifold method has been developed
for approximately solving the HJ equations (Sakamoto
and van der Schaft (2008)). Compared with conventional
approaches to the HJ equations, such as Taylor expansion
method (Lukes (1969)), the method is advantageous in
that the computational complexity does not increase with
respect to the accuracy of the approximation. Some ap-
plications using the stable manifold method have been re-
ported, e.g., a swing up control of a 2-dimensional inverted
pendulum (Sakamoto (2013)) and a guidance control of a
drifting vehicle (Abe et al. (2013)). However, all of these
researches have treated systems described by ordinary
differential equations, that is, lumped-parameter systems.

In this paper, we treat nonlinear distributed-parameter
systems, which often arise in fluid dynamics or chemi-
cal engineering. It is very challenging to solve the opti-
mal feedback control problems of nonlinear distributed-
parameter systems due to an infinite number of degree of
freedom. Furthermore, even if it can be solved, it leads
to infinite dimensional controllers that are not imple-
mentable. Thus, in controls of distributed-parameter sys-
tems, we usually approximate partial differential equation
as ordinary differential equations and synthesis a feedback
controller for the approximated model. However, such an
approximation like the finite element method (FEM) tends
to be high dimensional.

Copyright © 2014 IFAC

We solve this problem by using of a unified model re-
duction by the proper orthogonal decomposition (POD)
and Galerkin projection (Holmes et al. (1998)). POD, also
known as the Karhunen-Loeve method, is a statistical
analysis technique for obtaining basis functions describ-
ing a dominant character of systems from numerical or
experimental data. By using Galerkin projection, very low
dimensional reduced-order models (ROM) can be derived
from the POD basis functions. Then, we solve optimal
control problems based on the ROM. Though this strategy
can be found in past researches, e.g. Kunisch et al. (2004),
we use the stable manifold method to solve the optimal
control problem efficiently. To our knowledge, the com-
bination of POD-based model reductions and the stable
manifold method is new.

The organization of the paper is as follows. In section
2, we explain a class of distributed parameter systems
considered in this work. This class includes some practical
equations like the viscous Burgers’ equation and two-
dimensional incompressible Navier-Stokes equation. Sec-
tion 3 is devoted to the review of POD and constructing
ROM. In section 4, we describe the numerical strategy
for the optimal feedback controller design with the stable
manifold method. In section 5, we illustrate a numerical
example to show the effectiveness of the proposed con-
troller synthesis for the viscous Burgers’ equation.

We end this section with some mathematical notations
which are used throughout this paper.

Let X be real Hilbert Space. The inner product and the
norm in X are denoted by (-,-)x, || - ||x respectively. X’
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denotes the dual space of X and (-,)x/xx is the duality
pairing. For 0 < T < oo, L?(0,T; X) is defined by {w(t) €
X ae. t € (0,7) : fOTHw(t)H%(dt < oo}. We define the
space W (0,T; X) := {¢ € L?(0,T; X) : ¢y € L?(0,T; X")}
and we set Wipe(0,00; X) 1= Ny W(0,T; X).

2. NONLINEAR SYSTEM AND OPTIMAL CONTROL
PROBLEM

In this section, we define nonlinear distributed parameter
systems and formulate the optimal control problem.

Let V and H be real separable Hilbert spaces with V' C H,
V dense in H, the injection of V' C H being compact. We
consider a symmetric bilinear continuous form a : V X
V — R and it is coercive, that is, there exist constant
k > 0 such that a(v,v) > k[/¢||? for all v € V. Let
N : V — V’ be a nonlinear continuous operator mapping
satisfied N(0) = 0 and it’s Frechet derivative N’(0) = 0.

We consider the nonlinear evolution equation

), o) + aly(t), )

dt
+<N<y<t))a (p)V’,V = (Bu(t)v SD)V’,V
for all ¢ € V with initial condition
y(0) =y € H (1b)
where y(t) € V is a state, u(t) € R™ a control input and
B :R™ — V' a continuous linear operator.

(1a)

Ezample 1. Let us present an example for (1a), which will
be treated in Section 5 as a numerical example. With
the domain Q := (0,¢), we consider the viscous Burgers’
equation, which is written as

oy 0%y Oy

% Vo2 Yo, + B(z)u(t) (2a)
with the boundary condition
Jy

and the initial state
y(z,0) = yo(z). (2¢)

Here, y(x,t) represents the state at the position x and the
time ¢, B(z) the function for distribution of the control
input u(t) € R™ and v > 0 is a positive constant.

To rewrite Burgers’ equation in the weak form (la 1b), we
set V = {¢p € C®(Q) : ¢(0) = 0} and define V as the
closure of V in well-known Sobolev space H!(Q) and H
as the closure of V in Lebesgue space L?(2). We define
the bilinear form a as a(v,w) = v(v;, w,)g and nonlinear
operator N as N(v) = v,v, where v,w € V. Considering
y(z,t) with boundary condition satisfy

u/ymu¢wuww=—m%@
Q

for all ¢ € V, the equations (2a-2c) can be written the
form as (la 1b) in abstract. For the functional analytical
treatment of Burgers’ equation, See Ly et al. (1997) for
example.

We consider the control problem with the cost functional
to be minimized, which is defined as

mew=4w@mmmmH+ﬂw&MMt (3)

where @ is a positive semi-definite linear operator and R
a positive definite matrix.

Problem 2. The optimal control problem is, given a yy €
H, to find the optimal control input uept that minimizes
the cost functional J(yo,u) over all trajectories of (1a)
and (1b).

We approximate this problem to the finite-dimensional
problem in section 4.

3. POD AND GALERKIN PROJECTION

In this section, we review POD and Galerkin projection.
The POD gives, in some sense, an optimal orthogonal basis
from a collected data set. The POD and related model
reduction techniques have been widely applied in fluid
mechanics. For more details, we refer the readers to, e.g.,
Holmes et al. (1998) and Kunisch et al. (2004).

Let U = {uy : ux, € X}7_, be a given ensemble set, where
X is separable Hilbert space and n the number of elements
of the set U. As the average of the image f(U), where f
is a scalar map, we define (f(ux)), = (1/n) > _; f(uk).
In order to represent efficiently for the set U, we consider
the optimal orthogonal basis for representation of the set
U by linear combination.

First, we consider a single function ¢ for representation of
the set U that maximizes the objective function:

<<uk7 30)2>k
Tol? @

The optimal solution is the most parallel to the set U in
the sense of mean square.

peX

For the following argument, we define some operators. The
linear bounded operator U : R™ — X is defined as Uv =
> v for v = [v,...,v,]T € R™. Furthermore, the map
R : X — X and the matrix K € R"*™ are given by R =
(1/n)UU*, KK = (1/n)U*U respectively, where U* is adjoint
operator of U, that is, U*w = [(w,u1),..., (w,u,)]? for
w € X. R is bounded, non-negative and self-adjoint
operator.

From the perturbation method for the above maximum
problem, we get the following eigenvalue problem as nec-
essary conditions for optimal solution.

Ry = \p (5)

Since the image of R is finite dimensional, R is a compact
operator and there exist an optimal solution of (4). The
maximum value corresponds with the maximum eigen-
value of (5). By Hilbert-Schmidt theorem, there exist or-
thonormal basis consisting of eigenvectors in (5) equation.
The eigenvalues is real and non-negative, So we sort them
such A\; > Ay--- > 0. The orthogonal basis from this
procedure is called sometimes empirical eigenfunctions or

POD basis.

Remark 3. The computation for integral eigenvalue prob-
lem (5) is, in general, highly time consuming. So it is
common to obtain POD basis from not solving (5), but
eigenvalue problem of the matrix /C. It is called method of
Snapshots and we use it in the later computations.

Remark 4. The optimality of POD basis is considered as
follow.

11358



19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

Let u(t) € X be time-dependent signal. We construct en-
semble from snapshots of the signal uw at t = ¢4, ..., t,, that
is, we set U = {u(t;)}?_,. We consider the decomposition
of u by any orthogonal basis {¢; : ¢; € X}. The time
coefficient in j-th mode is defined as b;(t) = (u(t), ¢;).
The average energy is given by

()X ),

=D (b)),
j=1
and so the average energy in the j-th mode is given by
<bj (tk)2>k'

Suppose that we have POD basis {¢;} and associated
eigenvalues {);} from the ensemble U. Time coefficient
in j-th POD mode is defined as a;(t) = (u(t), ;). Then
POD basis have the following optimality. For every natural
number r < n, we have

i;ajtk 2, = Z)\ >Z V-

For a proof we refer the reader to Holmes et al. (1998).
This optimality means that the POD basis captures most
energy than any other basis on average. To total energy,
the ratio of the energy captured by from first to r-th POD
basis is expressed as

r) :Z/\j/z)‘j' (6)

3.1 Galerkin projection and reduced order models

By using Galerkin projection with POD basis, we derive
finite-dimensional systems of the infinite-dimensional one
(1a, 1b).

First, we set u(t) = 0 in (la) and get the (simulated
or experimental) response data of the system in order to
extract dominant characteristics of the dynamics, that is,
POD basis. Then, we set U = {u(t;) : u(t;) € H}, and
obtain POD basis {¢;}. We determine the reduced-order r
to have sufficient modes of the original dynamics, namely

E(r) ~ 1.

Then, We express y as a finite summation of time-
dependent coefficients multiplied by POD basis:

H=Y alvge: (7

We substitute (7) into the left-hand side of (la) and
take the inner product with each basis ¢;(j = 1,...,7).
Then the equation (1a) is reduced to the following finite-
dimensional equation:

a = Ara+ Ny(a) + Byu (8a)
where we definite vector a as a(t) = [a1(t),...,a.(t)]T €
R" and the matrices A, € R"™", B, € R"™"™ and
the nonlinear function N,(a) € R" are defined by
(Ar)ij = —alei@g); (Brlij = (bisj)vrv, (Ne(a))i =
(N (3 4—q arpr), i)v,v respectively, where by : R — V'
is the map derived from Bu = )., bruy uniquely. To
summarize linear and nonlinear terms, we set f.(a) :=

Ara+ Ny(a).
The initial value ag = a(0) is determined by

(a0)i = (Yo, pi)m, i=1,...,7 (8b)

The system consist of (8a) and (8b) is called reduced-
order model (ROM). By Galerkin projection, the other
orthogonal basis could lead the other reduced-order mod-
els. However, using POD basis, we are able to obtain very
low dimensional models.

4. OPTIMAL CONTROL FOR REDUCED-ORDER
MODEL

It is optional how to synthesis of controllers based on the
ROM. However, considering the influence of the modeling
error and the disturbances, it is desirable to design a
closed-loop controller, not open-loop one.

In this section, we consider the synthesis of nonlinear
optimal feedback controller for the ROM using by the
stable manifold method.

First, using POD basis we approximate the first term of
cost functional (3) as following:

Qzaz %Zag

—Zaz

( ) Qa(t)
where Q;; = (Qyi, ¢;). Q is semi-positive definite matrix
since Q is semi-positive definite. Thus, we get approxima-
tion of cost functional (3) as

J(ag,u) == /000 a® (H)Qal(t) + u” (t)Ru(t)dt. 9)

We consider the optimal control for the ROM with cost
functional (9).

Problem 5. The optimal control problem is, given a ay by
(8b), to find an optimal control input uepy that minimizes
the cost functional J(ag,u) over all trajectories of (8a) and
(8b).

(Qu,y)

QS"%»S"J)GJ( )

The optimal feedback controller of the above optimal
regulator problem is given by
u(a) = —1/2R™'BTp(a)
where p = (0V/0a)T and V is the stabilizing solution of
the Hamilton-Jacobi (HJ) equation:
1

H(a,p) =p" f(a) +a"Qa— 2p" B.R™'Bp=0. (10)
A solution V' of HJ equation is said to be the stabilizing
solution if p(0) = 0 and 0 is an asymptotically stable
equilibrium of the vector field f,.(a) — 1/4B,R~'BIp.

HJ equation is a first order partial differential equation
and it is difficult to derive analytical solutions except for
special cases. Although various approximation techniques
have been proposed, they are poor in terms of computa-
tional cost and accuracy in practical. However, the stable
manifold method is the efficient numerical method and has
been reported its usefulness in various practical nonlinear
systems (Sakamoto (2013)). We obtain the numerical sta-
bilizing solution of HJ equation using the stable manifold
method and construct a nonlinear feedback controller. See
Sakamoto and van der Schaft (2008) for the detailed of the
stable manifold method.
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The stable manifold method constructs the partial differ-
ential function of the stabilizing solution V from the origin.
Therefore the Riccati algebraic equation, which is obtained
from linearizing the HJ equation, plays an important role
in the stable manifold method. The following theorem
gives the relation of HJ equations and Riccati equations.

Theorem 6. (van der Schaft (1991)) We consider the Ric-
cati equation:

PA, + ATP - PB,R'B'P+Q =0 (11)
which is obtained by the linearizion of HJ equation (10).
The stabilizing solution of HJ equation (10) exists in the
neighborhood of origin if the stabilizing solution of (11)

exist, i.e., there exists the solution P satisfying A, —
B,R™!BI'P be stable.

The stabilizing solution of the Riccati equation is neces-
sary for not only guaranteeing the existence of the sta-
bilizing solution of the HJ equation, but also solving the
HJ equation numerically by the stable manifold method.
We will ensure the existence of the stabilizing solution of
the Riccati equation (11) using the following well-known
lemma.

Lemma 7. (Kucera (1973)) The stabilizing solution P of
the Riccati equation (11) exists and it is the unique
nonnegative solution if and only if (A,, B,.) is stabilizable
and (Q'/2, A,) detectable.

Theorem 8. There exists the stabilizing solution P > 0 of
the Riccati equation (11) uniquely.

Proof. First, we will show that A, is stable. For any
vector & = [r1,...,2,]7 € R", the following inequality
hold:

2T Az = ina(%,@j)x]
iy J
= a(z xi%»Z%‘%)
4 J
S

The last inequality comes from the coerciveness of bilinear
form a. Since POD basis {¢;} are linear independent,
2T A,z is negative for all * # 0, which implies that
symmetric matrix A, is negative definite, that is, A,
is stable. Since A, is stable, for any matrix B, and
Q'Y?, (A,,B,) is stabilizable and (Q/2, A,) detectable.
Lemma 7 gives the completeness of the proof.

From Theorem 8, we are able to apply the stable manifold
method to Problem 5 every time.

5. APPLICATION FOR VISCOUS BURGERS’
EQUATION

In this section, we consider the optimal distributed control
of the viscous Burgers equation, which was appeared in
Example 1. We confirm numerically that the nonlinear
controller obtained by POD-Galerkin model reduction and
the stable manifold method decreases the cost functional
value in comparison to the uncontrolled case. In the latter
of this section, we compute the cost functional values with
varying initial states. For a comparison, We use a linear
optimal controller obtained from the stabilizing solution
of the Riccati equation (11).

There are a number of researches on the control of the vis-
cous Burgers’ equation. See Efe and Ozbay (2004), Glowin-
ski et al. (2008) and referenced literatures in them. The
control of Burgers equation using POD is considered in Efe
and Ozbay (2004); Kunisch and Volkwein (1999); Kunisch
et al. (2004); Smaoui (2005). Especially, Kunisch and Volk-
wein (1999) considers of both open-loop and closed-loop
optimal distributed control of Burgers’ equation. However,
they construct feedback controller interpolating of open-
loop controls for each state space point. On the other hand,
We solve the HJ equation directly.

We set the length ¢ = 3 and the positive constant v =
0.1 in the following computations and the distribution
function of the control inputs B(z) = [b1(x), ba(x), bs(x)]
is pictured in Fig. 1.

0.4
L XY *
L . < 4
0.35 DA 0 ‘,‘
: . ¥ R
0.3 P . . [} 1
) '
L] . l
0.25 y . ! L.
' ) ' .
' . ' .
0.2 B . ' e
. ]
1 ] . i l
n = 4
0.15 ! oy H
0.1 : ll l. l q
: .l . . — )| "
| ]
0.05 ' PRI R
" .1 ==y A
0 ; . ; A ; kY
0 0.5 1 1.5 2 2.5 3
Space z

Fig. 1. Distribution of inputs

Then, we give a discontinuous initial condition as follow-
ing:

0(0<z<1)

= - 12

o) = {00202 (12

where ¢ = 4, which will be varied latter.
First, we simulate the uncontrolled Burgers’ equation by
finite element method with first-order splines and 100

elements. Fig. 2 shows the free response and the advection
occurs due to the nonlinear term.

\\'&

\
\\ \\ \ \\°\ \\\\‘

Time ¢ 5 0
Space z

Fig. 2. Response of free Burgers’ equation
We carry out POD from the snapshots of the solution and

the first three POD basis are displayed in Fig. 3. In terms
of the ratio (6), we get £(1) = 0.976,£(2) = 0.994.
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Fig. 4 shows the time coefficients a;(t)(i = 1,...,5)
corresponding to each POD basis. We confirm that the

frat PNN hacia Aanist +tha Aarminant Axvmamine

Space x

Fig. 3. Primal three POD bases

6

S

Time ¢

Fig. 4. Response of POD modes in free Burgers’ equation

We set the reduced-order r = 2 and obtain the ROM of
Burgers’ equation. The concrete form of the ROM, see
Kunisch and Volkwein (1999), Smaoui (2005). Then, we
consider the optimal control problem with @ = I and
R;; = (bi,bj)m = 0.06659; ;, where I and J; ; represents
identity operator and Kronecker delta respectively. The
initial state of ROM is given as ap = [5.3892, —1.5593]~.

Fig. 5. Stable manifold and linear solution

Fig. 5 shows the part of the stable manifold of associated
Hamiltonian system in the optimal control problem and
the stabilizing solution of the Riccati equation. In this
figure, we can verify the stable manifold contacts the
hyperplane, that is the solution of the Riccati equation, at
the origin and pass through near the initial state of ROM

ap. By the manifold, we construct the optimal feedback
controller using 7th order polynomial fitting. Fig. 6 depicts
the time response of the control of ROM and the states
converge to zero.

We implement the controller to the original system and
simulate the time response by FEM. Fig. 7 shows the
response of the state y and Fig. 8 the input .

6 T

—ay(t)
- = =ay(t)

Time ¢

Fig. 6. Response of controlled reduced order model

mmrsEiiiai

ORIRE W
R T T T

Time t 5
Space z

Fig. 7. Response of controlled Burgers’ equation

3

2

Space z Time ¢

Fig. 8. Inputs of controlled Burgers’ equation

In order to analyze the controlled response in Fig. 7, we
observe it in each POD modes in Fig. 9. It shows that the
first and second POD modes converge to zero similarly
for the ROM and the ignored POD modes remain small
sufficiently.
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0 1 2 3 1 5
Time ¢
Fig. 9. Response of POD modes in controlled Burgers’
equation

We summarize the cost functional values of each models
and controllers in the Table 1. As a comparison, we also
display the cost functional values of the responses by the
linear controller, constructing from the stabilizing solution
of the Riccati equation.

It can be seen that, in both linear and nonlinear, the cost
functional value with original model is larger than the one
with ROM. It is due to the model error between Burgers’
equation and the ROM. It can be confirmed, however,
that the cost functional value with nonlinear controller for
Burgers’ equation is smaller than one in uncontrolled case,
whereas one with linear controller is larger than it. Thus,
in term of the cost functional, linear optimal controller
results in lower performance than uncontrolled case.

Table 1. Values of cost functions at ¢ = 4.

Model Controller  Cost funtional =~ Value
Burgers None Eq. (3) 16.894
Burgers  Nonlinear Eq. (3) 13.383
Burgers Linear Eq. (3) 17.955
ROM Nonlinear Eq. (9) 13.723
ROM Linear Eq. (9) 17.987

Finally, with the controller obtained above, we calculate
the cost functional values for varying the ¢, which is the
height of initial state (12).

Fig. 10 depicts the cost functional values for varying
c from 0 to 6.5 with 0.1 interval in linear controlled,
nonlinear controlled and uncontrolled cases. It can be seen
that the nonlinear controller has robust performance for
the initial state. When c¢ is small sufficiently, the effect
of nonlinear term of Burgers’ equation is insignificant
and linear controller performs as nonlinear controller.
However, As ¢ increases, the cost functional value with
linear controller grows rapidly and finally exceeds one
in uncontrolled case. On the other hand, it is observed
that the cost functional value with nonlinear control is
smaller than uncontrolled one nonetheless c¢ increases.
Thus, nonlinear controller performs proper on more wide
region than linear one.
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