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Abstract: This paper proposes a control scheme based on discrete-time block control technique
using sliding modes, for a system composed of a three-phase rotatory induction motor when
includes a gear.The goal is tracking position trajectory. A recurrent high order neural network
(RHONN) is used to identify the system, which is trained with an Extended Kalman Filter
(EKF) algorithm. Its performance is illustrated via simulations.
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1. INTRODUCTION

Induction motors are one of the most important workhorses
in industry and they are manufactured in large numbers.
For a relatively long period, induction motors have mainly
been deployed in constant-speed motor drives for general
purpose application due to their reliability, simple con-
struction, and relatively low cost (Menghal and Laxmi,
2013) (Mohamadian et al., 2003).
Gears are mechanical elements which, when attached, can
change the behaviour of a system. For motors, gears enable
the change of the movement’s speed, torque and direction.
Despite the many advantages of mechanical gears, there
are features when must be taken into account when imple-
menting such elements. Due to the continuous use, natural
weather or design failures, these components can have
or develop dead zone, hysteresis or backlash behaviours.
These non-linearities are not easy to predict and are diffi-
cult to compensate when they become present in systems
(Woods, 1944).
Backlash is present when there is a gap between the
gear’s teeth. When gears change direction, the transference
between the gears becomes zero until the gap is closed;
therefore the final gear’s position is constant even if the
motor shaft is in motion (Menghal and Laxmi, 2013).
For many non-linear systems, it is often difficult to obtain
their accurate and faithful mathematical models,regarding
their physically complex structures and hidden parame-
ters. Therefore, system identification becomes a relevant
issue and even necessary before system control can be
considered, not only for understanding and predicting the
behaviour of the system but also to obtain an effective
control law. The identification problem consists on the
selection of an appropriate identification model and ad-
justing its parameters according to an adaptive law, such
that the response of the model to an input signal (or class
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of input signals) approximates the response of the real
system to the same input (Alanis et al., 2010).
The best-known training approach for recurrent neural
networks (RNN) is the back propagation through time
learning. However, it is merely a first-order gradient de-
scent method and hence its learning speed is very slow.
Extended Kalman Filter (EKF) based algorithms have
been introduced to the training of neural networks. With
an EKF-based algorithm, the learning convergence can be
improved. Over the past decade, the EKF-based training
of neural networks, both feed-forward and recurrent ones,
has proven to be reliable and practical for many applica-
tions (Alanis et al., 2007).
In this paper, we propose a scheme for position tracking
based on the discrete-time block control technique with
sliding mode, using a neural identifier based on RHONN
for a class of multi input multi output (MIMO) discrete-
time non-linear systems. The recurrent high-order neural
network (RHONN), which estimates the state vectors of
the unknown plant dynamics. The training algorithm for
RHONN is based on an EKF.

2. FUNDAMENTALS

2.1 Discrete-time high order neural netwokrs

Consider a MIMO nonlinear system:

χ(k + 1) = F (χ(k), u(k))

y(k) = h(k)
(1)

where states χ ∈ <n, control values u ∈ <m, for some n
and m, each time instant k ∈ Z+, F ∈ <n × <m → <n is
a nonlinear function.

For control tasks, extensions of the first order Hopfield
model, called Recurrent High Order Neural Networks
(RHONN), present more interactions among the neurons.
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Additionally, the RHONN model is very flexible and allows
to incorporate to the neural model a priory information
about the system structure (Alanis et al., 2007). Consider
the following discrete-time RHONN:

x̂i(k + 1) = wTi zi(x̂(k), v(k)) i = 1, ..., n (2)

where x̂i(i = 1, 2, ..., n) is the state of the i -th neuron,
wi(i = 1, 2, ..., n) is the respective on-line adapted weight
vector, and zi(x̂(k), v(k)) is given by

zi(x(k), %(k)) =


zi1
zi2
...

ziLi

 =



∏
jεI1ξ

dij(1)
ij∏

jεI2ξ
dij(2)
ij

...∏
jεILi

ξ
dij(Li)

ij

 (3)

where Li is the respective number of high order connec-
tions, {I1, I2, ....ILi} is a collection of non-ordered subsets
of {1, 2, ..., n + m}, n is the state dimension, m is the
number of external inputs, dij(k) being a non-negative
integers, and ξi defined as follows:

ξi =



ξi1
...
ξin
ξin+1

...
ξin+m


=



S(x1)
...

S(xn)
%1
...
%m


(4)

in (4), % = [%1, %2, . . . , %m]T is the input vector to the
neural network, and S(•) is defined by

S(ς) =
1

1 + exp(−βς)
, β > 0 (5)

where ς is any real value variable.
Consider the problem to approximation the general
discrete-time non-linear system (1), by the following
discrete-time RHONN series-parallel representation:

xi(k + 1) = w∗T
i zi(x(k), %(k)) + εzi , i = 1, . . . , n (6)

where xi is the i-th plant state, εzi is a bounded ap-
proximation error, which can be reduced by increasing
the number of the adjustable weights. Assume that there
exists and ideal weights vector w∗

i such that ‖εzi‖ can be
minimized on a compact set Ωzi ⊂ <Li . The ideal weight
vector w∗

i is an artificial quantity required for analytical
purpose. In general, it is assumed that this vector exists
and is a constant but unknown. let us define its estimate
as wi and the estimation error as

w̃i(k) = w∗
i (k)− wi (7)

The estimate wi is used for stability analysis. Since w∗
i is

a constant, then w̃i(k + 1) − w̃i(k) = wi(k) − wi(k + 1),
∀k ∈ 0 ∪ Z+ (Sanchez et al., 2008).

2.2 The EKF Training algorithm

The well known Kalman filter is a set of mathematical
equations which provides an efficient computational (re-
cursive) solution of the least-square method ; this filter
estimates the state of a linear system with additive state

and output white noises (Sanchez et al., 2009).
For KF-based neural network training, the network
weights become the states to be estimated. In this case,
the error between the neural network output and the
measured plant output can be considered as additive white
noise. Due to the fact that the neural network mapping is
non-linear, an EKF, type is required. The training goal
is to find the optimal weight values which minimize the
prediction errors.
For this paper, we use a modified EKF-based training
algorithm described by:

wi(k + 1) = wi(k) + ηiKi(k)[y(k)− ŷ(k)]

Ki(k) =

{
Pi(k)Hi(k)Mi(k) if ‖wi(k)‖ > ci

0 if ‖wi(k)‖ < ci
(8)

Pi(k + 1) = Pi(k)−Ki(k)HT
i (k)Pi(k) +Qi(k)

with

Mi = [Ri(k) +HT
i (k)Pi(k)Hi(k)]−1 (9)

where ci > 0 is a constant used to avoid zero-crossing and
Pi ∈ <LixLi is the prediction error associated covariance
matrix, wi ∈ <Li is the weight (state) vector, Li is the
total number of neural network weights, y ∈ <m is the
measured output vector, ŷ ∈ <m is the network output,
ηi is a design parameter, Ki ∈ <Lixm is the Kalman
gain matrix, Qi ∈ <LixLi is the state noise associated
covariance matrix, Ri ∈ <mxm is the measurement noise
associated covariance matrix, Hi ∈ <Lixm is a matrix, in
which each entry (Hij) is the derivative of one of the neural
network output, (ỹ), with respect to one neural network
weight, (wij), as follows:

Hij(k) =

[
∂ỹ(k)

∂wij(k)

]
wi(k)=ŵi(k+1)

(10)

where i = 1, . . . , n and j = 1, . . . , Li. Usually Pi, Qi and
Ri are initialized as diagonal matrices, with entries Pi(0),
Qi(0) and Ri(0), respectively. It is important to note that
Hi(k), Ki(k) and Pi(k) for the EKF are bounded (for a
detailed explanation, see (Sanchez et al., 2008).

3. MATHEMATICAL MODEL

3.1 Induction motor model

The six-order discrete-time induction motor model in the
stator fixed reference frame (α, β), under the assumptions
of equal mutual inductances and linear magnetic circuit,
is given by

θ(k + 1) = θ(k) + ω(k)T

+
µ

α
[T − 1

α
(1− a)]M(iβ(k)ψα(k)− iα(k)ψβ(k))

−TL(k)

2J
T 2

ω(k + 1) = ω(k)

+
µ

α
(1− a)M(iβ(k)ψα(k)− iα(k)ψβ(k))− (

T

J
)TL(k)

(11)
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Fig. 1. a) Backlash model; b)Schematic representation.

ψα(k + 1) = cos(ηpθ(k + 1))ρ1 − sin(ηpθ(k + 1))ρ2

ψβ(k + 1) = sin(ηpθ(k + 1))ρ1 + cos(ηpθ(k + 1))ρ2

iα(k + 1) = ϕα(k) +
T

σ
uα(k)

iβ(k + 1) = ϕβ(k) +
T

σ
uβ(k)

where

ρ1(k) = a(cos(φ(k))ψα(k) + sin(φ(k))ψβ(k))
+(1− a)M(cos(φ(k))iα(k) + sin(φ(k))iβ(k))

ρ2(k) = a(cos(φ(k))ψβ(k) + sin(φ(k))ψα(k))
+(1− a)M(cos(φ(k))iβ(k) + sin(φ(k))iα(k))

(12)

with

α =
Rr
Lr
, γ =

M2Rr
σL2

r

+
Rs
σ
, σ = Ls −

M2

Lr
,

β =
M

σLr
, a = e−αT , µ =

3Mηp
2JrLr

,

ϕα(k) = iα(k) + αβTψα(k) + ηpβTω(k)ψβ(k)− γT iα(k)
ϕβ(k) = iβ(k) + αβTψβ(k) + ηpβTω(k)ψα(k)− γT iβ(k)
φ(k) = ηpθ(k)

(13)
where θ is the rotor angular position, ω is the rotor angular
speed, ψα is the rotor magnetic flux in α, ψβ is the rotor
magnetic flux in β, iα is the stator current in α, iβ is the
stator current in β, uα is the input voltage in α, uβ is the
input voltage in β and TL is the load.

whit Ls, Lr and M are the stator, rotor and mutual
inductance respectively; Rs and Rr are the stator and
rotor resistances respectively; and np is the number of pole
pairs.

3.2 Backlash model

The backlash model as well as a simple mechanical con-
nection are both presented in Fig. 1. (Santos and Viera,
2008).
In the backlash characteristic shown in Fig. 1.a, v(t) is the
input, u(t) is the output, and cr > 0 is the right ”crossing”
on the v − axis, while cl < 0 is the left ”crossing” on the
v − axis.

Fig. 2. Inverting a backlash.

The discrete-time model of the backlash is given by:

u(t) =


m(v(t)− cl) if v(t) ≤ vl =

u(t− 1)

m
+ cl

m(v(t)− cr) if v(t) ≥ vr =
u(t− 1)

m
+ cr

u(t− 1)otherwise
(14)

where the values vl and vr are the v − axis projections of
the intersections of the two parallel lines of slope m with
the horizontal inner segment containing u(t− 1).
Equation (11) is the so-called friction driven hysteresis
backlash model, i.e., the driven member retains its position
when the backlash gap is not closed, as if kept in place by
strong friction. It can be verified that (11) is a piecewise-
linear dynamical system with three distinct regions of
behaviour, here called upward active, downward active and
gap regions.

3.3 Backlash inverse model

The desired function of a backlash inverse is to cancel the
harmful effects of backlash on system performance: the
delay corresponding to the time needed to traverse an in-
ner segment of B(.) and the information loss occurring on
an inner segment when the output u(t) remains constant
while the input v(t) continues is changed. That is, given
a desired signal ud(t) for u(t), a backlash inverse BI(.) is
such that ud(t) = B(BI(ud(t))) (Fig. 2).

The discrete-time model of the backlash inverse is repre-
sented by the following mapping:

v(t) =


v(t− 1) if ud(t) = ud(t− 1)
ud(t)

m
+ cl if ud(t) < ud(t− 1)

ud(t)

m
+ cr if ud(t) > ud(t− 1)

(15)

Notice that the formulation of the backlash inverse in
discrete-time does not make use of the derivatives of ud(t).
Another advantage of the discrete-time formulation over
the continuous-time one is that closed-loop signal bounds
can be established even for the case of different slopes m.

4. NEURAL IDENTIFIER

For the induction motor identification, a recurrent high
order neural network (RHONN) is used; defined as:
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Fig. 3. Neural identifier scheme.

x̂0(k + 1) = ω01(k)S0(θ∗(k)) + ω02(k)S1(θ∗)S2(ψβ(k))iα(k)
+ω03(k)S1(θ∗)S2(ψα(k))iβ(k)

x̂1(k + 1) = ω11(k)S(ω∗(k)) + ω12(k)S(ω∗)S(ψβ(k))iα(k)
+ω13(k)S(ω∗)S(ψα(k))iβ(k)

x̂2(k + 1) = ω21(k)S(θ∗(k))S(ψα(k)) + ω22(k)iα(k)

x̂3(k + 1) = ω31(k)S(θ∗(k))S(ψβ(k)) + ω32(k)iβ(k)

x̂4(k + 1) = ω41(k)S(ψα(k)) + ω42(k)S(ψβ(k))
+ω43(k)S(iα(k)) + ω44(k)uα(k)

x̂5(k + 1) = ω51(k)S(ψα(k)) + ω52(k)S(ψβ(k))
+ω53(k)S(iβ(k)) + ω54(k)uβ(k)

(16)

where

S(ζ) = tanh(ζ)

S0(ζ) = 104(
1

1 + e−10−3ς
− 0.5)

S1(ζ) = 10(
1

1 + e−10−7ζ
+ 0.5)

S2(ζ) = 0.006(
1

1 + e−0.1ζ
− 0.5)

(17)

where x̂0(k) estimates the angular position θ(k); x̂1(k) es-
timates the angular speed ω(k); x̂2(k) and x̂3(k) estimates
the fluxes ψα(k) and ψβ(k), respectively; x̂4(k) and x̂5(k)
estimates the currents iα(k) and iβ(k), respectively.
The training is performed with all neural network states
initialized randomly. The covariances matrices are ini-
tialized as diagonals, and non-zero elements are: P0 =
1e3, Q0 = 1e3, r0 = 1e3, P1 = 1e3, Q1 = 1e3, r1 =
4e7, P2 = 4e3, Q2 = 1e3, r2 = 1e3, P3 = 1e1, Q3 =
1e1, r3 = 4e7, P4 = 4e7, Q4 = 1e0, r4 = 1e7, P5 =
4e7, Q5 = 1e0, r5 = 4e7. During the identification process
the plant and the neural network (NN) operates in open-
loop. Both of them (plan and NN) have the same input
vector [uαuβ ]T ; uα and uβ are chirp functions with 200
volts of amplitude and incremental frequencies from 0Hz
to 150Hz and 0Hz to 200Hz, respectively. The implemen-
tation is performed with a sampling time of 0.0005 s.

5. NEURAL BLOCK CONTROLLER DESIGN

The control objective is to track references of angular
position and flux amplitude for the discrete-time induction
motor, using the algorithm developed as follows. Let define
the states

x1(k) =

[
x̂0(k)− θr(k)
Ψ(k)−Ψr(k)

]
(18)

x2(k) =

[
x̂4(k)
x̂5(k)

]
(19)

where Ψ(k) = x̂22(k) + x̂23(k) is the rotor flux estimated
magnitude, Ψr(k) and θr(k) are reference signals. Equa-
tion (16) can be represented in the block control form as
(Sanchez et al., 2008)

x1(k + 1) = f1(x1(k)) +B1(x1(k))x2(k)
x2(k + 1) = f2(x1(k), x2(k)) +B2u(k)

(20)

with u(k) = [ uα(k) uβ(k) ]T and

f1(x1(k)) =

[
w01(k)S0(θ∗(k))− θr(k + 1)

f11

]
(21)

f11 = w2
21(k)S2(θ∗(k))S2(ψα(k))+w2

31S
2(θ∗(k))S2(ψβ(k))

+ I2m(k)−Ψr(k + 1)

Im =
√
w2

22(k)i2α(k) + w2
32(k)i2β(k)

B1(x1(k)) =

[
b11(k) b12(k)
b21(k) b22(k)

]
(22)

b11 = w02(k)S1(θ∗(k))S2(ψβ(k))
b12 = w03(k)S1(θ∗(k))S2(ψα(k))
b21 = 2w21(k)w22(k)S(θ∗(k))S(ψα(k))
b22 = 2w31(k)w32(k)S(θ∗(k))S(ψβ(k))

f2(x2(k)) =

[
f21 (k)
f22 (k)

]
(23)

B2 =

[
w44(k) 0

0 w54(k)

]
(24)

f21(k) = w41(k)S(ψα(k)) + w42(k)S(ψβ(k))
+ w43(k)S(iα(k))

f22(k) = w51(k)S(ψα(k)) + w52(k)S(ψβ(k))
+ w53(k)S(iβ(k))

Applying the block control technique (Loukianov, 2002),
we define the following vector z1(k) = x1(k). Then

z1(k + 1) = f1(x1(k)) +B1(x1(k))x2(k) = Kz1(k) (25)

where K = diag{k1, k2}, with |ki| < 1(i = 1, 2); the
desired value x2d(k) of x2(k) is calculated from as

x2d(k) = B−1
1 (x1(k))[−f1(x1(k)) +Kz1(k)] (26)
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It is desired that x2(k) = x2d(k). Hence, a new error vector
is defined as z2(k) = x2(k)− x2d(k), then

z2(k + 1) = f3(x1(k)) +B2(k)u(k) (27)

with

f3(x1(k)) = f2(x2(k))−B−1
1 (x1(k))[−f1(x1(k)) +Kz1(k)]

(28)

Let us select the manifold for the sliding mode as SD(k) =
z2(k). In order to design a control law, a discrete-time
sliding mode version is implemented as

u(k) =

{
ueq(k) if ‖ueq‖ ≤ u0
uo(k)

ueq
‖ueq‖

if ‖ueq‖ > u0
(29)

where ueq(k) = −B−1
2 (k)f3(x1(k)) is calculated from

SD(k) = 0 and u0 is the control resources that bound the
control. Due the time varying of RHONO weights, we need
to guarantee that B1(•) and B2(•) are not singular; then
it is necessary to avoid the zero-crossing of the weights
w13(k), w22(k), w32(k), w44(k) and w54(k), which are so-
called controllability weights. It is important to remark
that in this application only the weights w44(k) and w54(k)
tend to cross zero.

6. SIMULATIONS RESULTS

Simulations are performed for system (16), using the pa-
rameters given in Table 1. The identification results are
included as follows: Fig. 4 shows the position estimation,
with x̂0(k) which estimates the the motor position θ(k);
Fig. 5 shows the speed motor, with x̂1(k) which estimates
the speed motor w(k); Fig. 6 shows the alpha flux esti-
mation, with x̂2(k) which estimates the alpha flux motor
ψα(k); Fig. 7 shows the alpha current estimation, with
x̂4(k) which estimates the alpha current motor iα(k). The
result for ψβ and iβ are similar to ψα and iα. Finally,
tracking results for the angular position and for the flux
magnitude are present in Fig. 8 and Fig. 9; Fig. 10 shows
the control law in phases α and β.

Table 1. Induction motors parameters

Parameter Value Description

Rs 14Ω Stator resistance
Ls 400 mH Stator inductance
M 377 mH Mutual inductance
Rr 101 Ω Rotor resistance
Lr 412.8 mH Rotor inductance
np 2 Number of poles pairs
J 0.01 Kg m2 Moment of inertia
wn 168.5 rad s−1 Nominal speed
TLn 1.1 Nm Nominal load
T 0.0005 s Sampling period

7. CONCLUSIONS

This paper has presented the application of recurrent high
order neural network to design a discrete-time block con-
trol with sliding modes techniques for a class of discrete-
time non-linear systems. The RHONN is used to perform
system identification; the training of the neural networks

Fig. 4. Evolution of θ(k) and its estimate x̂0(k).

Fig. 5. Evolution of ω(k) and its estimate x̂1(k).

Fig. 6. Evolution of ψα(k) and its estimate x̂2(k).

using an extended Kalman filter, which is implemented
on-line. Simulations results illustrate the effectiveness of
the proposed scheme for position trajectory tracking.
Presently, we are implementing in real-time this scheme
for a three-phase induction motor, which has an attached
gear.
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Fig. 7. Evolution of iα(k) and its estimate x̂4(k).

Fig. 8. Angular position tracking θ(k) (dashed line), and
reference θr(k) (solid line).

Fig. 9. Flux magnitude tracking Ψ(k) (dashed line), and
reference Ψr(k) (solid line).

Fig. 10. Control law signals uα(k) (solid line) and uβ(k)
(dashed line)
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