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Abstract: In this paper, new Lyapunov-based reset rules are constructed to improve Lo gain
performance of linear-time-invariant (LTI) systems. By using the hybrid system framework,
sufficient conditions for exponential and finite gain Lo stability are presented. It is shown that
the Lo gain of the closed loop system with resets can be improved compared with the base

system. Numerical example supports our results.
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1. INTRODUCTION

The L5 gain is an important performance index in control
systems, as it captures the disturbance attenuation ability
that is needed in many engineering applications. In this
paper, reset controllers are explored to improve this per-
formance, showing the potential of reset control schemes.

Reset controllers were first proposed in Clegg [1958],
where the so-called Clegg integrator was introduced. The
Clegg integrator was generalized to First Order Reset
Element (FORE) in Horowitz and Krishnan [1975]. In
this early work, it was suggested that reset controllers
can overcome some fundamental limitations or improve
transient performance of linear control systems. Beker
et al. [2001] shown the first example that non-overshoot
performance can be achieved by using a reset controller,
whilst it is impossible to do so by any LTI controller. The
FORE with zero crossing reset conditions were used in
many papers to improve transient performance or stabilize
systems, see, for example, Zheng et al. [2000], Beker et al.
[2004], Banos et al. [2011] and references therein.

In Zaccarian et al. [2005], a new model of FORE under
the hybrid systems framework developed by Goebel and
Teel [2006] was proposed, with the hybrid framework, and
it allows jumps on more complicated sets. Furthermore,
temporal regulation is introduced to avoid Zeno solutions.
With this new model, the exponential stability and input-
output stability were presented, leading to a systemat-
ic design tool for reset controllers. The Lo stability of
reset control systems was first presented in Nesi¢ et al.
[2005]. Linear Matrix Inequality (LMI) conditions were es-
tablished in Zaccarian et al. [2005] to estimate the Lo gain
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and piecewise quadratic Lyapunov functions were used
to get a tighter Lo gain estimation. Similar approaches
were then used in Loquen et al. [2007] for reset systems
with input saturation and in Loquen et al. [2008] for reset
systems with nonzero references to establish Lo stability.
In Zaccarian et al. [2011] the analytical and numerical Lya-
punov functions were provided to prove stability and Lo
gain performance of FORE control systems. Furthermore,
the LMI-based analysis method was used to determine the
performance of Single-Input-Single-Output (SISO) reset
systems in both Lo gain and H, sense as discussed in
Aangenent et al. [2010]. In Prieur et al. [2011], by adding
a hybrid loop in the control systems, reset controllers have
shown the potential to maximize the decay rate and reduce
overshoot of the systems based on full state feedback. In
Fichera et al. [2012], the performance improvement results
were extended to output feedback case, and these results
were summarized in Prieur et al. [2013], with a systematic
analysis.

The improved reset rules were proposed in Nesi¢ et al.
[2011], by tilting the boundary between the flow set and
the jump set, and the strictly decreasing Lyapunov func-
tions during jumps were constructed. For planar reset
control systems, necessary and sufficient conditions for the
exponential stability and finite £o gain were presented,
and rigorous proofs about improving Lo gain performance
and Lo gain trends were given. The obtained results can
be used to stabilize high order minimum-phase relative
degree-one plants. However, these results cannot be di-
rectly applicable for plant with a higher relative degree,
because the reset conditions only depend on the input and
output of the plants.

This paper extends the £5 gain performance improvement
result in Nesi¢ et al. [2011] to plants with higher relative
degree. The Lyapunov-based reset rules motivated from
Prieur et al. [2013] are proposed. The main contributions
of this work are two-fold. On one hand, with the state
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feedback and Lyapunov-based reset rules, sufficient con-
ditions for exponential and finite £y gain stability are
provided. On the other hand, it is shown rigorously that
the Lo gain with resets must be less than or equal to the
Lo gain of its base linear system (system without resets).
This clearly shows the advantage of reset controllers. A
simulation example is used to demonstrate our results.

The paper is organized as follows. Section 2 states the
problem formulation. The controller design is provided
in Section 3 and Section 4 presents the stability and
performance improvement results. A numerical example
is given in Section 5 and Section 6 concludes this paper.

Notations: The set of real numbers is denoted as R. The
set of integers is denoted as N. For any = € R, |z| denotes
the Euclidean norm of . For a matrix A € R"*™, | A| is the
induced norm. Given a state variable x of a system with
jumps, its derivative with respect to time (which is defined
almost everywhere) is denoted as ¢. At jump instants, we
denote the value of state after the jump by z™ and the
value of the state before the jump simply by z. For any
positive definite matrix P (P > 0), Amax(P) (Amin(P))
denotes the maximum (minimum) eigenvalue of P. I,, (0,)
denotes the n dimensional identity (zero) matrix.

2. PRELIMINARIES AND PROBLEM
FORMULATION

Consider the following LTI SISO plant with some distur-
bances

(1)

. i, = Apzp + Bpu + Byd,
PO _c
Y= CpTp.

where z,, € R"» is the state, y is the output, u is the control
input, d € R is the disturbance, and (A, By, Cp,, Bg) are
matrices with appropriate dimensions.

The controller for the plant (1) takes the following form:

T, = Acxe + Bexo,
IR { ‘ o (2)

u. = Coxe.

where z. € R" is the controller state, x,, is the state from
the plant (1), u. € R is the output of the controller, and
(A, B, C.) are matrices with appropriate dimensions.

ld

Plant

Controller —=

Fig. 1. The control structure

The connection between the plant (1) and the controller
(2) is shown in Figure 1, where

U= U 3)

Hence, the closed loop system can be represented as

6401

& = Ax + Bd,
< y=Cz.

where z = [2] 2l]" € R*T" =R", and

A= [féi Bﬁfﬂ], B- {%i], C=[C, 0.  (5)

2.1 Hybrid systems

In this work, the design of reset controllers is based on
hybrid systems framework proposed in Goebel et al. [2012].
This section thus gives a brief introduction to hybrid
systems. A class of generic nonlinear hybrid systems with
temporal regularization can be represented as

T=1

j::f(a:,w)} IfxeForT<p (6a)

= It d b
>

x+:g(x)} xe€Jand T >p (6b)

where x € R",w € R™,7 € R>p. In order to avoid the
presence of Zeno solutions (see Zaccarian et al. [2005]),
an extra jump rule is added to the hybrid model, where
a given time interval p has to expire before the next
jump occurs. This type of jump rule is called “temporal
regularization”. With this reset model, the time interval
between two jumps is forced to be at least p, hence, the
Zeno solution is excluded. F is the flow set and J is the
jump set, F U J =R".

A hybrid time domain is defined as a subset of R>¢ x N.
It is the union of infinitely many intervals of the form
[tj,tj+1] x {j}, where 0 = tg < t; < ---, or of finitely
many such intervals, with the last one possibly of the
form [t;,00) x {j}. A hybrid signal is a function defined
on a hybrid time domain. Denote £ := (z,7). A hybrid
signal ¢ : dom(¢) — R™ ! is a hybrid arc if £(t,5) is
locally absolutely continuous for each j. A hybrid signal
w : dom(w) — R™ is called a hybrid input.

Given any function 7(-,-) defined on the hybrid domain
dom(n), and any (t,5) € dom(n), denote

t J=1 i t
[ntsas =3 [ nts s+ [ ats. s,
0 i=0 t; t;

Given any hybrid signal ((-,-) and p € [1,00), its L,

t 1/p

norm can be defined as [|C]|, = tlim (/ 1C(s)[” ds)
> \Jo

We say that ¢ € £, whenever [|([, < oco. Define L
norm as [[C][,, := ess.sup(; j)edom(¢) [C(t, J)|; and say that
¢ € Lo whenever ||(]|,, < oo. The origin of the z
dynamics of system (6) with w = 0 is exponentially stable
if there exist constants m,l > 0 such that given any
initial condition (x¢, 79) € R™ X R>, the bound |z (¢, j)| <
B(|zol,t),V(t,j) € dom(x) holds for all solutions (8(:,-) is
class KL function (see Nesi¢ et al. [2011])). The system
(6) is finite gain L, stable from w to = (respectively, finite
gain L, to Lo, stable from w to x), if there exist constants
Yp,Y0 > 0 (respectively, vp.00,7 > 0) such that for any
initial condition (z¢,79) € R" x R>¢ and any w € £,
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2], <70 - [zl + v - lwll,, (7)

(respectively, [x(t,j)| < volzo| + Vp,00 - wll,,Y(t, ) €
dom(z)).

2.2 Problem formulation

It is known that introducing resets may improve the
performance of linear control systems, even though a
rigorous proof of this fact is not available for general linear
systems. Some experimental results (see, for example,
Zheng et al. [2000], Guo et al. [2009], Fernandez et al.
[2011], Zhao et al. [2013]) and theoretical results (such as
Nesié et al. [2011]) have been proposed for some classes of
systems.

In this paper, we propose the following reset controller
with temporal regularization, which corresponds to the
linear controller (2) plus reset rules

P=1
<
C'CCZACSEC-FBC%} IfreForTm<p (8a)
=0 IfxeJ and 7> (8b)
vl = Az, =7

where A, € R™"*™ F and J are flow set and jump set,
FUJ = R". Then, the closed loop consisting of plant (1),
reset controller (8) and (3) (see Figure 1) can be written
in the following form

=1
z‘Ax+Bd} IfeeFor<p (9a)
=0 Ifz € J and 7 > (9b)
T
xt = Az =P
where A, B are defined in (5) and
I, 0
el ] "

This paper focus on solving the following problem:

Problem: Consider the closed loop system (9), design
reset rules (F, J, A¢r) in the reset controller (8) such that
the Lo gain v of the closed loop system is less than or
equal to vz, where 7y, is a prescribed £, gain of the system
without resets.

3. RESET RULE DESIGN

In Nesi¢ et al. [2011], a rigorous proof was given to
illustrate that introducing resets in linear control systems
can improve Lo gain performance for first order plant.
And up to now, there are no other similar results in the
literatures. It is expected that the result should hold for
higher order plants, however, the proof techniques cannot
be directly applicable for higher order plants.

In this paper, we design new reset controllers in order
to extend the results in [Nesi¢ et al., 2011, Theorem 4]
to a class of more general SISO LTT systems. Consider
the closed loop system (9). First, design the matrices
(A., B, C.) of linear controller (2) for the base linear
system (4) such that a prescribed Lo gain ~yy, is satisfied.

Then, based on the designed linear controller, we propose
a new Lyapunov based reset rule such that the reset
controller can improve the L5 gain performance.

8.1 Linear controller design with a prescribed Lo gain -y,

First step is to design a stabilizing controller for the
base linear system (4) with a prescribed Lo gain ~y.
Suppose that P € R™ "™ is symmetric positive definite.
The following block matrices are introduced

x= [I’ﬂp OnPch] ’EO = |:Oannc:| ,

Ne

_ Oncxnp Inc
Ec o |: Inp OnPXnC:| '

A simple calculation leads to

PA=PXTAY + PYy[A: B Y. + PYTB,C.2E(12)

Denote ®. = [A. B, the following results show a suf-
ficient condition to ensure that a prescribed Lo gain is
satisfied. The proof is quite simple, thus the proof is
omitted.
Theorem 1. Let vy, be an arbitrary positive constant. For
the closed loop of the base linear system (4), if there exists
P > 0 and (A, Be,C.) such that the following bilinear
matrix inequality (BMI) holds
v PB
[BTP ’)’%:| <0 (13)
where

U =P¥T A% + PYy® 2. + PETB,C.2T 14)
+(PEXTAY + PY®. 3, + PXTB,0.21)7T + CTcs
then, this closed loop system satisfies the prescribed Lo
gain vy, if the controller gain matrices defined in (2) are as

follows
A, =057 B. =027
and C. is obtained from the BMI.

Remark 1. The condition (13) is BMI, it is usually hard
to get a global solution to a BMI problem. But according
to the path-following algorithm (see Hassibi et al. [1999]),
if an appropriate initial guess for P is obtained, then, (13)
is transformed into a LMI problem, which can be easily
solved by some standard LMI Toolbox. o

Remark 2. Note that when the BMI (13) is satisfied, the
following conditions hold for all x # 0:

eT(PA+ ATP)z <0, d=0
e’ (PA+ ATP)x + 27 (PB + B'P)d
+yI* =2 1df* <0, d#0. (15b)

This indicates that the closed loop matrix A is Hurwitz.

(15a)

3.2 Reset rule design

Assume that the BMI (13) is satisfied for the base linear
system, next, the reset rule will be designed based on
stability properties of the base linear system. In order to
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achieve this objective, the matrix P coming from (13) can

be partitioned as:
Pr1|Pro
P =
[Plg P22

where P € Rnpxnp,Plg S Rnpxnc,PQQ € R"*"e and
(P11, Po2) are symmetric positive definite matrices (see
Zhou et al. [1996] for more details).

(16)

Now, based on the above analysis, we design the following
flow set and jump set

}'::{xER":mTMJ:ZO}
J = {xE]R":mTMxSO}
K:In *P12
0]

where k > 0 is a constant, Pj5 is from P in (16). In order
to make sure that all states in controller (8) are reset to
zero at jumps, the reset map matrix A, is set to zero so
that A, in (9) can be re-written as

I,, 0
Ar = [ 0 onj

o { (17)

4. STABILITY AND PERFORMANCE

In this section, we characterize the exponential and finite
Lo gain stability properties of the reset system (9), and
prove the performance improvement of Lo gain.

Theorem 2. (Stability conditions) Consider the reset con-
trol system (9). Assume that there exist P > 0 and
(Ac, B, C.) such that BMI (13) is satisfied for the base
linear system. Then, the proposed reset control laws (8)
and (17) ensues that the following statements hold.

(1) For any k > 0,p > 0, the origin of the z dynamics
with d = 0 is exponentially stable.

(2) For any k > 0, p > 0, the system is finite gain Lo and
Lo to L, stable from d to y.

Proof. Item (1): For the purpose of proving exponential
stability, consider the disturbance d = 0. Let V(z) =
2T Pz, where P comes from the BMI (13). The stability
properties of the base linear system ensures that there
must exist A > 0 such that V(z) < —AV(z) holds.

Now, consider reset system (9), note that the system
dynamics coincide with its base linear system on the
continuous dynamics, which implies that the condition
V(z) < —AV(z) holds for z € F or 7 < p. Denote 1,
(k € N>g) as the k" jump instant, and V (z) = V (z(t, k)),
(t,k) € dom(z) := [to,t1] x OU [t1,t2] x 1 U---, then, we
have

V(z(t,k)) < exp(=A(t — tg))V (z(tx, k)) (1)
VxeForTt<p.

When jump occurs, noticing that Mz < 0 is satisfied
(see (17)) in the jump set, it follows that

T = Az
=a(ty, k) = Arx(tp, k — 1)
=V(x(ty, k) — V(x(ty, k — 1))
= 2T (tg, k — 1) (AT PA, — P)x(ty, k — 1)
<al(ty, k= 1)(ATPA, — P — uM)z(t, k — 1)
for x € J and 7 > p. Noting that

(19)

ATPA, — P —uM
_ | On, —Pra| _ u fifn% —Pip
—PL —Pyy -PL 0
_ | s, —Pio(1 —p)
_Plg(l — ) — Py ’

in which the condition A,.PA, — P — uM < 0 is evidently
satisfied by selecting p = 1. Noting that Py is symmetric
positive definite matrix, it follows that

(20)

V(zT)<V(x), V& Jand 7> p.
From (18) and (21), we can obtain that

(21)

V(z(t, k) < exp(—=A(t — tx))V(x(t, k)), YV € dom(x).(22)
This leads to the following bound

V(x(t, k) < exp(=A(t — o))V (z(to,0))
= Amin(P) |2(t, k)[> < V(z(t, k))

< exp(—=A(t — to))V(x(to,0))

< exp(—A(t — t0)) Amax (P) |(to, 0) |

i\\]::((ﬁ)) exp <—;)\(t — to)) |z(to, 0)] .

Hence, we conclude that the origin of x dynamics of system
(9) is exponentially stable.

(23)

=|z(t, k)| <

Item (2): Consider d # 0. Note that the system dynamics
coincide with its base linear system on continuous dynam-
ics. Hence, by applying Theorem 1, the condition (15b)
can be represented in hybrid time domain as follows

V(w(t,k) < = [y(t. k)| + 17 [d(t, k) (24)

for almost all ¢ € [tg,tr41]. Consider now any (t, k) €
dom(z), and denote for simplicity ¢x+1 = ¢. Then, inte-
grating (24) gives

0< —V(x(tjyr,4) +V(x(t;,5))
- / " (s, )2 ds

J

(25)

tj+1 5

tj
Summing up all the above equations leads to the following
bound for all (¢, k) € dom(x):
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k [ZEE
V(a(t, k) < V(a(to,0) = 3 / (s, 9)12 ds
i=0 /1t
k

9 tjt1 9
+'7LZ/ |d(s, 5)|” ds
i=0 "t

k tj+1
< V((t,0) ~ 3 / (s, /)2 ds + 2 ]2
1=0 J

(26)

Because V(z(t, k) > Amin(P) |z(t, k)%, the bound (26)
guarantees the finite Lo to L., bound with finite gain
Yoo = (V3/(Amin(P) - |CTC|)Y/? (where C satisfies y =
Cz), and it also guarantees the finite Lo gain with o = ..
This completes the proof. O

Remark 3. The proof of Theorem 3 shows that parameters
(k, p) are required to be positive in the reset controller (9),
but they may not be small. o

The main result of this paper shows the £, gain perfor-
mance improvement.

Theorem 3. (Lo gain estimate) Consider the reset control
system (9). Assume that there exist P > 0 and (A, B, C¢)
such that BMI (13) is satisfied for the base linear system.
Then, with the proposed reset control laws (8) and (17),
the following asymptotic estimate holds with k > 0,p > 0
for the L5 gain v of the closed loop from d to y.

7 <L (27)

where 7, is the gain from d to y of the system without
resets.

Proof. From Theorem 2, it is known that the base linear
system satisfies 227 P(Az + Bd) + |y|* — ~#|d|* < 0, for
all x and d. The flow condition follows trivially from the
fact that the reset control system coincides with the base
linear system when flows, and the V' (x) is decreasing when
jump occurs according to (20). According to the proposed
reset condition and the proof of Theorem 2 (see (20)), it
is required that x > 0. As the base linear system is stable
(from Theorem 1), so the p does not need to be small.
Hence, for any x > 0,p > 0, the £, gain of the reset
system must be less than or equal to the prescribed Lo
gain -y of its base linear system. m|
Remark 4. Note that with the proposed reset condition,
it is not guaranteed that the reset action would occur. In
addition, if the temporal regularization variable satisfies
p — o0, the reset action does not occur. Under both
situations, the system (8) will always flow and we can
recover the Lo gain «p from the base linear system, that
isvy=n"r. o
Remark 5. The results obtained in Nesi¢ et al. [2011] are a
special case of this paper. More specifically, when a scalar
plant and the first order controller is considered as in Nesi¢
et al. [2011] with a symmetric positive definite matrix P €
R2%2 the flow set with the proposed reset condition will be
F = {z € R¥rsv?+2Ppvx, > 0} (v=—xp,z = [2p, 2,]7).
Compared with the reset condition in Nesié et al. [2011]
(where F = {z € R?|ev? + 2vz, > 0}), if P12 > 0, we can
select kK = £ P15 such that our reset condition is exactly the
same as the one proposed in Negié et al. [2011]. o

Remark 6. In this work, the reset controller (8) needs to
have its dynamics (see equation (8a)). Thus the proposed
method is not applicable to proportional only controller. o

Remark 7. The proposed reset controller uses full state
feedback. If not all states are measurable, appropriate
observers are needed. With some modification, it is possi-
ble to extend the obtained results to observer-based reset
controller design. o

5. SIMULATION

In order to demonstrate the effectiveness of the proposed
reset controllers, a simulation example is presented.

Example: Consider the following plant

&p = E’ 02} Tp + [(ﬂ U+ [(ﬂ d. (28)
The disturbance signal takes the following form
d(t) = 4exp(—0.2¢) sin(20¢). (29)

Given a prescribed £, gain v7, = 3, as discussed in Remark
1, we select P randomly as follows

9.5503 —3.4475 3.2077 4.1028

p— —3.4475 13.9004 —0.5048 —9.7408 (30)
| 3.2077 —0.5048 5.9801 —1.4455
4.1028 —9.7408 —1.4455 9.1851

Then, solving the condition (13) in Theorem 1, we get the
following linear controller such that the closed loop base
linear system is stable

. [—6.5711 7.8467 —5.3377 —8.8704
Te=1_.88239 1.4911| e ™ | -3.9644 1.4919 |*»

(31)

A Be

u=[7.3423 —1.1431] z,
| ——
Ce
Select K = 0.1,p = 0.1, and initial conditions z = [5 —
13 0 0]T. The comparison control results between linear
controller and reset controller are shown in Figure 2, where
yr,(t) denotes output with linear controller, and yg(t) de-
notes output with reset controller. The disturbance signal
is shown in Figure 3. We can see that the disturbance
attenuation ability is enforced by reset control.

Remark 8. In this simulation, the only criteria to select P
is to ensure that the BMI condition (13) is satisfied. As the
reset controller is highly dependent on the choice of P, how
to select such a P to get the best Lo gain improvement is
still an open problem.

6. CONCLUSION

By constructing new Lyapunov-based reset rules, we show
the sufficient stability results for general SISO LTI sys-
tems, and provide a theoretical proof that the L5 gain
performance with the proposed reset controller can be
improved. Note that the proposed reset rules cannot guar-
antee the occurrence of resets, and if no reset happens,
the base linear system is recovered. Simulation example
demonstrates the effectiveness of the proposed methods.
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