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Abstract: Recent studies on ankle-foot prostheses which are commonly used for transtibial
amputees have focused on adaptation of the ankle angle of the prosthesis according to ground
conditions in order to reduce the difficulties which the patients experience while walking on
stairs or a ramp. For adaptation to the various ground conditions (e.g., incline, decline, step,
etc.), the ankle-foot prostheses should first recognize the ground conditions as well as the current
human motion pattern. For this purpose, the ground reaction forces and orientation angle of
the prosthesis provide fundamental information. The measurement of the orientation angle,
however, creates a challenge in practice. Although various sensors, such as accelerometers and
gyroscopes, can be utilized to measure the orientation angles of the prosthesis, none of these
sensors can be used as a sole sensing mechanism due to their intrinsic drawbacks. A number of
sensor-fusion methods have been proposed to address this issue. In this paper, a time-varying
complementary filtering (TVCF) method is proposed to incorporate the measurements from an
accelerometer and a gyroscope to obtain a precise orientation angle. The cut-off frequency of
TVCF is adaptively determined according to the human motion phase. The performance of the
proposed method is verified by experiments.
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1. INTRODUCTION

Proprio-Foot developed by Ossur (2013) is one of the most
popular active ankle-foot prostheses (AAFP) that adjust
the ankle angles according to the ground conditions. The
ankle motions and gait patterns of the device are detected
continuously by sensors measuring the orientation angles
and ground reaction forces of the device. Once these
data are obtained, an intelligent control algorithm, called
‘Terrain Logic,’ identifies the ground conditions. Then, the
ankle motion is generated by a stepping motor so that
it follows the desired angle trajectory determined by the
Terrain Logic.

As in the control strategy of the Proprio-Foot, it is
in general necessary to detect both the human motions
and ground conditions when developing the AAFP which
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et al. (2011)].

adapts its ankle angle according to the ground condition.
There have been many researches on human motion detec-
tion while walking. Kong and Tomizuka (2009) developed
a gait monitoring system based on air pressure sensors,
which detects gait phases by a fuzzy logic algorithm. Pap-
pas et al. (2001) studied a gait phase detection system
which has the success rate of detection above 96% for
subjects with impaired gait.

Meanwhile, the ground conditions (e.g., incline, decline,
step, etc.) should also be identified from ground reaction
forces applied to the prosthetic foot and the orientation
angle of the prosthesis for estimating the slope of the
ground. Therefore, it is important to accurately measure
the orientation angle of the prosthesis in order to identify
the ground conditions. There are many available sensors
or sensor modules to measure the orientation angle, such
as inertial measurement units (IMUs), ultrasonic sensors,
and vision sensors [Bachmann et al. (2003); Robertson
et al. (1998); Rencken (1993)]. However, it is difficult to
obtain the accurate orientation angle of a prosthesis by
these sensors due to their inherent drawbacks. Assuming
that the majority of the foot motions are on the sagittal
plane, the orientation angle of an AAFP can be estimated
by accelerometers and rate gyroscopes. Accelerometers are
utilized to estimate the direction of gravity in a stationary
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Fig. 1. Block diagram of general two input complementary
filtering.

High 
pass

High 
pass

High 
pass

2atan

∫ gθ̂

aθ̂

gy

axy

+

+
θ̂

cs

s

ω+

ayy
c

c

s ω
ω
+

High passFuzzy 
Logic

cωGait 
Phase

Fig. 2. Block diagram of proposed TVCF method with
gyroscope and accelerometer signals.

condition. On the other hand, gyroscopes measure body
angular rates and make it possible to estimate the attitude
by integrating the signal. From these two sensing methods,
the same physical quantity, pitch or roll, can be estimated.
Since each sensor provides different frequency domain
characteristics, an improved result is expected if the two
methods can be fused intelligently.

Complementary filtering (CF), shown in Fig. 1, is an
alternative signal processing method that can be used
for the same purpose [Baerveldt and Klang (1997); Hadri
and Benallegue (2009); Brown (1983)]. The conventional
CF method utilizes linear-time-invariant (LTI) filters with
different frequency characteristics, such that only the re-
liable components are selectively extracted in the fre-
quency domain. Since integration is required to estimate
the pitch or roll attitude from a rate gyroscope, where
the integration amplifies uncertainty at low frequencies,
the reliability of the estimate by gyroscope is poor at
low frequencies (e.g., drift). The limitation in estimating
attitude from accelerometers is evident due to the difficulty
in decoupling the gravity vector from the higher frequency
motion accelerations, and thus its reliability is poor at high
frequencies. Therefore, the CF method can be applied to
this problem, where a lowpass filter and a highpass filter
are used as the filters, G(s) and Ḡ(s), in Fig. 1. However,
the challenge of the CF method is to design the LTI filters
according to the frequency dependent reliabilities. When
the frequency characteristics are time-invariant and clearly
distinguished, the design of the filters require minor tun-
ing. However, in many cases, the frequency characteristics
are not fixed and the simple LTI filters may not produce
the best result.

In this paper, a time-varying complementary filtering
(TVCF) method is proposed as shown in Fig. 2 to estimate
the orientation angle of the AAFP. The proposed method
utilizes linear time-varying (LTV) filters for estimating a
physical quantity from multiple sensors whose reliability
in the frequency domain is time-varying. The advantage of

(a)

(b)

(c)

Fig. 3. Experimental device for detection of a gait pattern
and an orientation angle of the device; (a) gyroscope,
(b) accelerometer, and (c) load cells.

this method is that it improves the performance of the CF
method with more degrees of freedom in the design of the
filters. The main issue is determining the best conditions
with which to adapt the LTV filters. A fuzzy logic scheme
is proposed to formalize the qualitative conditions for
adaptation. The performance is verified by comparing the
estimation results with those of other sensor such as vision
sensor.

2. PROPOSED ORIENTATION ANGLE
MEASUREMENT

2.1 Application of CF Method to Angle Measurement

The main idea of the CF method, represented in Fig. 1,
is to fuse two measurements, θ1(t) and θ2(t), of the same
physical quantity, θp(t). Ḡ(s) is often designed as 1−G(s),

such that G(s)+ Ḡ(s) = 1. In this case, the estimate θ̂p(t)
is exactly the physical quantity if the measurements are
without noise and error.

Suppose that θ1(t) and θ2(t) are reliable at low and high
frequencies respectively. In a first-order implementation,
G(s) can be set as a low-pass filter with a fixed cut-off
frequency, ωc, i.e.

G(s) =
ωc

s+ ωc
(1)

The complement of G(s), i.e., Ḡ(s) = 1−G(s), is then

Ḡ(s) =
s

s+ ωc
(2)

which becomes a high-pass filter. Note that G(s)+ Ḡ(s) =
1 for all s and consequently there is no phase delay in the

estimate, θ̂p(t).

If θ1(t) = θp(t) + η1(t) and θ2(t) = θp(t) + η2(t), where η1
is high frequency noise and η2 is low frequency noise both
relative to ωc, then by (1), and (2) the estimate by CF is

θ̂p =G(s)[θp + η1] + Ḡ(s)[θp + η2] (3)

= θp +G(s)[η1] + Ḡ(s)[η2]. (4)

where the signals are in the Laplace domain. If the cut-
off frequency, ωc, is properly selected, the magnitude of
G(s)[η1] + Ḡ(s)[η2] in the time domain is small compared
to θp due to the characteristics of the noise and LTI filters.

With a known initial condition, θo, the single axis gyro-
scope can be integrated to achieve an attitude estimate,
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Table 1. Fuzzy rule basis for gait phase detection

Heel Toe Fuzzy membership value

high low µInitialcontact → 1

high high µMidstance → 1

low high µTerminalstance → 1

low low µSwing → 1

θ̂g(t) =
∫ t

0
yg(τ)dτ + θo. On the other hand, in the near

static or constant velocity condition, the motion acceler-
ations are near zero and the orthogonal components of
the dual axis accelerometer can estimate the attitude from
the gravity vector by θ̂a(t) = arctan 2(yax(t), yay(t)). The
arctan 2() function is chosen as opposed to the arctan()
function to estimate θ(t), since the range is [−π, π) (rad)
and not just (−π

2 ,
π
2 ) (rad).

Individually, the gyroscope gives a decent estimate of angle
at higher frequencies, but this estimate tends to drift due
to the bias and noise. The accelerometer gives an accurate
static estimate, but this estimate is predominately cor-
rupted by motion accelerations. Therefore, the attitude
estimates from the gyroscope and accelerometer can be
modeled as

θ̂g(t) = θ(t) + ηd(t) (5)

θ̂a(t) = θ(t) + ηm(t) (6)

where θ(t) is the true attitude angle to be estimated
by CF, and ηd(t) and ηm(t) are the measurement errors
corresponding to the drift and motion acceleration terms
respectively. In order to apply the CF method, ηd(t) and
ηm(t) are treated as noise; ηd(t) is low frequency and
ηm(t) is high frequency. Using this method a more accurate
estimate of θ(t) compared to the individual sensors can be
produced. Choosing a larger ωc places more trust on the

accelerometer estimate, θ̂a(t), while choosing a smaller ωc

places more trust on the gyroscope estimate, θ̂g(t).

2.2 Time Varying Complementary Filtering Based on
Gait Phase

In general, conventional CF does not always result in

the best estimate of the angle, i.e., θ̂p in (4), since the
noise characteristics (ηd(t) and ηm(t)) are time varying.
To improve the estimation performance of the CF, an
intuitive idea is to utilize a strategy in that the cut-off
frequency is adjusted according to the time varying noise
characteristics. For example, when the motion accelera-
tions occur, then the cut-off frequency, ωc in (1) and (2),
can be adjusted to a low value, ωlow, and effectively filter
out the high frequency noise, ηm(t), in (6). Conversely,
when the rigid body is not accelerating, the cutoff fre-
quency can be increased to a high value, ωhigh, to update
the estimate by the accelerometer measurement. Based
on these considerations, it is proposed to use the Time
Varying Complementary Filter (TVCF) approach.

Fuzzy Logic In order to detect precise motion acceler-
ation, the gait phase which represents a unique pattern
presented during walking [Perry (1992)] is utilized in this
paper. For example, the swing phase and the stance phase
(which are the most fundamental gait phases) exhibit
different motion acceleration profiles; there is large motion

Table 2. Fuzzy rule basis for gait transition detection

Swing Initial
contact

Terminal
stance

Fuzzy membership
value

high high low νSwing to Ic → 1

high low high νTs to Swing → 1

acceleration in the swing phase while less motion acceler-
ation is presented in the stance phase. Also a large peak
in the acceleration tends to be measured when the phase
changes from the stance phase to the swing phase and also
from the swing phase to the stance phase due to the impact
caused by ground contact.

TVCF should be able to take these acceleration charac-
teristics into consideration to render the cut-off frequency
appropriately and to provide the accurate orientation an-
gle. In this paper the gait phase is divided into four phases,
i.e., initial contact, mid stance, terminal stance and swing,
and it is detected to derive precise motion acceleration.
Then the TVCF changes the cut-off frequency based on
the detected gait phase to adjust the reliability of each
sensor and estimate the precise orientation angle as the
attitude of the ankle-foot prosthesis.

A ground reaction force (GRF) is measured to detect the
gait phase, and fuzzy logic is utilized to infer the precise
gait phase based on the measured GRFs. Figure 3 shows
the experimental device used in this research, where two
load cells are installed to measure the GRFs applied to
the heel and the toe. Since AAFPs should be designed to
endure repetitive loading for many cycles, the sensors to
measure GRFs were installed not under the foot but near
the ankle.

Table 1 shows a fuzzy rule basis for the gait phase detec-
tion. A membership function in (7) is used to determine
the high and low of the load cells.

f(x) = 0.5 [tanh(s(x− x0)) + 1] ∈ [0, 1] (7)

where x, x0, and s are the load cell value, the threshold
value, and the sensitivity coefficient, respectively [Kong
and Tomizuka (2009)]. It should be noted that the smooth
phase shift is detected by adjusting the sensitivity coeffi-
cient s to the lower value.

The rule to distinguish the gait phase which is presented
in Table 1 is calculated as (8) by the Larsen product
implication [Larsen (1980)], which is the logical product of
the output of the fuzzy membership functions (ftoe, fheel).
When the fuzzy membership value (µ) of each phase is
close to one, the gait is likely to be in that phase.

µ(x) = ftoe(x)× fheel(x) ∈ [0, 1] (8)

In addition, the phase change between the swing phase
and the stance phase should be detected, and another
fuzzy rule is proposed in Table 2 to this end. The fuzzy
membership value (ν) for the detection of the phase
transition consists of g(x) which is another membership
function of gait phases.

g(x) = 0.5

[
µ(x)− µ0

|µ(x)− µ0|
+ 1

]
∈ [0, 1] (9)

ν(x) = gS(x)× [gIc(x) + gTs(x)] ∈ [0, 1] (10)
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Fig. 4. Estimation of orientation angle by vision system;
(a) camera image, (b) detected red markers, (c) posi-
tions of the markers in pixel, and (d) angle estimation

g(x) is defined as (9) which lowers the threshold of µ to
detect the phase transition not the phase itself, and this
can reduce the calculation effort compared to (7). The
subscripts S, Ic and Ts represent Swing, Initial contact
and Terminal stance, respectively.

The overall fuzzy rule basis is presented in Table 3,
and the cut-off frequency of the TVCF is determined
based on this fuzzy rule. The proposed fuzzy rule basis
calculates ξ which is given in the last column of Table 3 as
the parameter which decides the cut-off frequency of the
TVCF as follows

ωc(t) = ξ(t)ωhigh + (1− ξ(t))ωlow (11)

Notice that if ξ = 1 then ωc = ωhigh thus signifying when
the estimate from the accelerometer is more trustworthy.

(18) is the inference function which decides ξ as a function
of the input variables x1 to x6 which present all the
membership values of the phases as (12) to (17).

x1(t) = µSwing(t) (12)

x2(t) = νSwing to Initial contact(t) (13)

x3(t) = µInitial contact(t) (14)

x4(t) = µMid stance(t) (15)

x5(t) = µTerminal stance(t) (16)

x6(t) = νTerminal stance to Swing(t) (17)

ξ(t) = x1(t)× x2(t)× x6(t) + x3(t) + x4(t) + x5(t) ∈ [0, 1]
(18)

This definition of ξ gives zero value only when the gait is
in the swing phase or the gait transition.

3. EXPERIMENTAL RESULTS

3.1 Experimental Apparatus

An experimental device was devised to verify the effective-
ness of the proposed TVCF to measure the attitude of the
ankle-foot prosthesis. A human subject wore the device
and walked on a flat surface, and the orientation angle
of the device was estimated using the measurements of
an accelerometer (NT-ACC7260, ±1.7 g) and a gyroscope
(P0-GRA-12-01, ±2000 deg/s) attached to the device.

At the same time, the orientation angle of the device was
also estimated by a vision system (High-speed camera TS3,
Fastec Imaging) to validate the output of the proposed
algorithm. Two red markers were attached to the device
to estimate the orientation angle of the device by using the
vision system, and the orientation angle was obtained by
tracking the positions of the red markers using MATLAB
as shown in Fig. 4. The orientation angle estimated by
the vision system was sufficiently accurate so that it was
considered as a reference value to evaluate the accuracy of
the proposed algorithm.

For the detection of the gait phase, two load cells were
installed on the ankle part of the device. The proposed
algorithm and data acquisition were implemented on Na-
tional Instrument’s Single Board RIO 9636 and LabVIEW
with a fixed sampling period of 0.012 (s).

3.2 Selection of Parameters

There are parameters to be determined to utilize the
TVCF, which are s, x0, and µ0. Those values were selected
as 0.03, 150N , and 0.1, respectively. If s value is large, then
fuzzy membership value µ will be changed rapidly, which
makes the gait transition shown in a very short period.
Therefore, s was tuned such that the gait transition is
detected enough. Also, threshold values were selected for
the gait phase to be well detected.

Meanwhile, the most important parameters to be deter-
mined are ωlow and ωhigh. In this paper, optimization
method was used to set them. ωlow was selected to mini-
mize the 2-norm of the error between the estimated orien-
tation angles by a vision system and the CF method during
the period where the accelerometer has a low reliability,
i.e., the swing phase and gait transition. Similarly, ωhigh

was set by optimization during stance phase only (i.e.,
initial contact, mid stance, and terminal stance). The
off-line optimization is conducted by MATLAB fmincon
function. ωlow and ωhigh were 0.03 rad/s and 5.36 rad/s,
respectively.

3.3 Experimental Results

For the verification of the TVCF method, the subject was
asked to walk at a normal speed, a slow speed, and a
fast speed so that various disturbances and conditions are
imposed for effective optimization and validation.

Figure 5 shows the result of gait phase/transition detection
and time-varying cut-off frequency for each walking speed.
In the figure, S, SIc, Ic, Ms, Ts, TSS, and S are denoted
as x1(t), x2(t), x3(t), x4(t), x5(t), and x6(t), respectively.
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Table 3. Fuzzy rule basis for time-varying cut-off frequency determination

Swing Swing to Initial contact Initial contact Mid stance Terminal stance Terminal stance to Swing ξ(t)

high N/A low low low N/A 0

low high low low low low 0

low low low low low high 0

low low high low low low 1

low low low high low low 1

low low low low high low 1

ωc(t) was determined by ωL, ωH , and ξ as in (11). With
the obtained ωc(t), the TVCF was applied.

At the same time, the CF method was also applied
to compare its performance to that of the TVCF. To
determine the fixed cut-off frequency for each walking
experiment, optimization was performed to minimize the
2-norm of the error between the orientation angle estimate
by vision system and that by CF method. The optimized
cut-off frequencies for each experiment are presented in
Table 4. It should be noted that the optimized cut-off
frequencies are low, making the algorithm independent on
the estimate by the accelerometer.

Figure 6 shows the orientation angle estimate of the
gyroscope, the accelerometer, the vision system, the CF
method, and the TVCF method for each walking speed,
respectively. Since the angle estimate by the gyroscope
is obtained by integrating the angular velocity, drift is
observed in a way that the estimate becomes decreased
as the time goes by. Also the initial value is required
for integration, which is set as the initial value of the
angle estimate by the accelerometer. Meanwhile, the angle
estimate by the accelerometer is very noisy, and it is
perturbed largely during the gait transition and in the
swing phase.

As shown in Fig. 6, the estimation results of both the CF
and TVCF are close to the orientation angle estimated
by the vision system. For more quantitative comparison,
the root-mean-square (RMS) values of errors between
the angles estimated by the vision system and those by
CF/TVCF method are presented in Table 4.

For the normal and slow speed walking, the TVCF method
brought a better estimation result from the viewpoint of
the RMS values of errors. For the fast walking, however,
the CF resulted in better estimation performance. These
results arise due to the worse angle estimate by the
accelerometer during fast speed walking as in Fig. 6c. Since
the CF method rarely relied on the accelerometer because
of the low cut-off frequency, the angle estimated by the CF
was more accurate than that by the TVCF in this case.

Table 4. Comparison of orientation angle estimation
performance

Normal speed Slow speed Fast speed

Error CF TVCF CF TVCF CF TVCF
RMS
(deg)

2.908 1.172 1.636 1.593 2.951 6.218

Optimal CF TVCF CF TVCF CF TVCF
ωc

(rad/s)
0.001 N/A 0.688 N/A 0.959 N/A

However, the low fixed cut-off frequency leds to the drift
problem. The drift on the estimate by the CF and the

gyroscope are observed in Fig. 7, and it is apparent that
the effect of the drift would be further increased due to
integration. On the other hand, the TVCF was able to
get rid of the drift as in the figure. Therefore, although
the angle estimation result of the TVCF method during
the fast speed walking experiment was worse than that of
the CF method, it is expected that the TVCF will give
a better result for prolonged operation time. In addition,
the walking speed of the amputees is not as fast as the
normal, and thus the proposed TVCF method is effective
for the development of an AAFP.

4. CONCLUSION

In this paper, a new approach for an orientation angle
estimation was proposed using a TVCF method. By using
the gait phase analysis function of an AAFP, to change the
cut-off frequency of the filter, the proposed method showed
improved the estimation performance while maintaining
ease of implementation. The effectiveness was verified
with experimental results, and the accurately estimated
orientation angle will be used to estimate the slope of
ground as a future work.
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Fig. 5. Experimental results of gait phase detection; (a)
normal speed walking, (b) slow speed walking, and
(c) fast speed walking.
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Fig. 6. Estimation of orientation angle; (a) normal speed
walking, (b) slow speed walking, and (c) fast speed
walking.
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Fig. 7. Zoomed plot of Fig. 6a.
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