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Abstract: This contribution presents a new methodology for the online identification, which
allows the modeling of the stationary and dynamic behavior of nonlinear combustion engines
with many input and output variables in short time with an appropriate model structure. The
used models are local polynomial model trees. The necessary enhancements and adaptations
of the identification algorithm for local polynomial model trees for the online methodology are
presented. To enable an online identification, not only the parameters but also the structure
of the models has to be adapted to the ongoing measuring procedure at a test bench. This
structure adaptation methods use iteratively recorded measured data for the determination of
an optimized model partition and regressor selection regarding the quality and complexity of
the model. This maximizes the iterative improvement of the mathematical model, leading to
a reduced test bench time. The applicability of the developed methodology is shown for the
identification of a model from both, an artificial test function as well as a real diesel engine.
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Identification methods; Online identification; Model structure adaptation.

1. INTRODUCTION

1.1 Online measurements

The procedure of conventional engine modeling is per-
formed in individual steps and with an alternation between
preparations and analysis at the office and measurement
at the test bench. This results usually in repetitions and
includes returns e.g. for the design of experiments after
model analysis if too few design points in the relevant
range have been measured. Such repetitions require ad-
ditional test bench time.

A significant improvement regarding the resulting mea-
surement time, analysis effort and quality of the models
can be achieved with an coupled (online) measurement
and modeling procedure (Kowalczyk [2013]). The online
procedure operates such that the results of the preceding
step are used for the design of the next step. For example
model attributes, like e.g. the relevant regressors of the
model, can be adaptated based on the newly measured
data.

Through the combination of the measurement actuation
with real-time hardware and data evaluation with a per-
sonal computer, a parallelization of the measurement and
the modeling process can be achieved as shown in Fig.1,
beginning with the 2nd iteration. With the help of the
parallelization, the conversion and analysis of the data of
the previous measurement iteration as well as model iden-
tification and analysis can be performed during the actual

running measurement. This makes an evaluation afterward
in the office (as in the classical approach) unnecessary,
saving the time needed for it. The parallelization requires,
especially for dynamic modeling, that the evaluation is
faster than the parallel measurement. Otherwise, standstill
periods occur, leading to poorly excited signals for the
identification process. A further advantage of the resulting
iterative batch processing is the ability to use the ideas of
offline analysis and identification methods (e.g. regressor
selection, net structure adaptation).

The online procedure is characterized by the use of an
automatic iterative approach, reduced user interventions
during the measurement and modeling process as well as
direct data processing, model identification and validation
at the test bench. Furthermore an automatic actuation,
data sampling, data analysis and model adaptation is
performed during the process operation without user in-
terventions.

1.2 Bias-Variance dilemma

In the offline identification, the dilemma between bias and
variance can be solved by determining a proper model
complexity. The model complexity of a polynomial model
structure can be adapted by the number of regressors
through changing the polynomial degree or the allowed
interaction. The complexity adaptation of neural network
model structures can be performed by changing the num-
ber of regressors of the local models and additionally
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Fig. 1. Process of the iterative online measurements for combustion engine modeling with a parallelization of the
measurement and modeling processes

through the model partition (e.g. number of local linear
models of LOLIMOT, Nelles [2001]).

The bias-variance dilemma (see Fig.2a) states that a model
with low complexity results in an underfitting solution
(high bias error), yielding in high errors on both training
and validation data. On the other hand, a model with a
high complexity results in an overfitting solution (high
variance error), yielding in low errors on training data
but still high errors on validation data. Assuming a fixed
data set size, a best complexity can be found regarding the
resulting validation error by using information criteria like
the Akaike information criterion or Mallows’ Cp statistics
(Miller [2002]).

In the introduced online measurements methodology, the
sample size increases iteratively. The increasing data set
size leads to different rules of thumb from a theoretical
point of view to cope with the bias-variance dilemma. High
variance can be fixed not only by simpler model structures,
but additionally by more training data samples. Fixing
the model structure, the bias error remains constant and
the variance error decreases with the number of samples,
resulting in an iteratively reduced total model error (see
Fig.2b). Thus, in an online methodology, the total model
error is automatically reduced by the increasing sample
size. Further reduction of the total model error can be
achieved by reduction of the bias error through adapta-
tion of the model structure. The combination of both,
the increasing sample size and adaptation of the model
structure, yields to a reduction of the bias and variance
error simultaneously, resulting in a higher model accuracy.
Therefore, in an online methodology, not the best trade-
off between bias and variance has to be found for a given
data set, but furthermore the model structure has to be
adapted target-oriented regarding the increasing number
of data samples.

1.3 Local polynomial model trees

The local polynomial model tree (LOPOMOT, Sequenz
[2013]) is the combination of an axis orthogonal split-
ting algorithm with adaptive polynomial models as local
models. The local model regressors are selected iteratively
with a stepwise selection algorithm, including or ignoring
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Fig. 2. Bias and variance for a) increasing number of
parameters with a fixed data set size and b) increasing
data set size with a fixed model complexity

regressors until the model error reaches a predefined limit.
The qualities of the resulting different local models are
compared, taking their complexities into account, with a
local formulation of Mallows’ Cp-statistic. The best model
partition resulting from the tree construction algorithm
is determined by a global formulation of Mallows’ Cp-
statistic, taking the model partitions M into account.
The global model output ŷ follows from the weighting of
the resulting local models ŷh with a pyramidal validity
function Φh(z) to (see also Fig.3

ŷ(u) =

M∑
h=1

Φh(z)ŷh(u). (1)

2. ONLINE LOCAL POLYNOMIAL MODEL TREES

The offline LOPOMOT algorithm is designed for the iden-
tification of fixed data sets. During the online methodol-
ogy, starting with only few data samples, new data samples
are recorded iteratively and added to the identification
data set. The real-time requirement (see section 1.1) en-
ables the use of offline identification methods as long as
the modeling does not take more time than the measure-
ment. For modeling of nonlinear stationary and especially
dynamic engine models, several hundred up to several
thousand measurement samples have to be recorded and
used for identification. The use of offline modeling methods
can result in modeling times longer than measurement
times, requiring the measurement to wait until the finish
of the modeling. To avoid the resulting waiting times
during the measurement and enable the online modeling,
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Fig. 3. LOPOMOT with adaptive local polynomial models
that are weighted with a pyramidal weighting function
to a global model output. The partition of the global
model is determined by a tree construction algorithm.

the LOPOMOT procedure has to be adapted. Online local
polynomial model trees (ONLOPOMOT) take into account
the iteratively increasing data set and make use of recur-
sive methods for parameter estimation, regressor selection
and model partitioning instead of building a completely
new model at every iterative modeling step. This speeds up
the modeling procedure significantly and enables a good
interaction with the measurement procedure.

2.1 Recursive online model analysis

In offline identification procedures, model analysis is done
with mathematical measures like the coefficient of deter-
mination (R2) or the root mean squared error (JRMSE):

R2 =

∑N
i=1(ŷi − ȳi)2∑N
i=1(yi − ȳi)2

; JRMSE =

√∑N
i=1(yi − ŷi)2

N

(2)
Especially for model trees, quality criteria can be distin-
guished by global, local and global-local measures:

JRMSE,global =

√∑N
i=1(yi − ŷi)2

N

JRMSE,local =

√∑O
i=1(yi − ŷh,i)2

O

JRMSE,global-local =

√∑O
i=1(yi − ŷi)2

O

(3)

Hereby N stands for the number of total samples and O
for the number of samples within the local model range.
The local measure determines the quality of the local
model (ŷh) within the local model range, while the local-
global measure determines the quality of the global model
(ŷ) within the local model range. Both take only the O
data samples within the local model range into account.
In contrast, the global measure determines the quality of
the global model within the global model range with all
available N data samples.

There are also normalized measures, but most of them use
the mean output ȳ to define the reference value. In the
online identification, the mean values change with every
new sample, changing the normalization factors. This

makes the corresponding normalized analysis measures
unsuitable for the decisions which local model to split
and in which local model range to place new data samples
to be measured. To enable the use of normalized criteria
in the online methodology, factors independent of the
mean output have to be used. This can be done either by
normalization to the local (VLM) and global (VGM) model
volume of the hyperquader

JNRMSEv = JRMSE ·
VLM

VGM
(4)

or the normalization to the local and global model samples

JNRMSEs = JRMSE ·
O

N
(5)

where VLM and VGM stand for the volume of the local and
global hyperquader. Using this normalization, the quality
remains the same for global models which consist of one
local model with all measured samples. If there are splits
present, the quality of small local models is rewarded in
comparison to big ones. Using the normalization to sam-
ples, local models with more data samples are rewarded.

2.2 Recursive parameter adaptation

The parameters of the local nonlinear models, which
are linear in their parameters, can be adapted with the
recursive least squares (RLS) algorithm (Isermann and
Münchhof [2011]) according to

Θ̂(k + 1)︸ ︷︷ ︸
new

estimate

= Θ̂(k)︸ ︷︷ ︸
old

estimate

+ γ(k)︸︷︷︸
correction

vector

e(k + 1)︸ ︷︷ ︸
equation

error

(6)

where the correction vector follows from

γ(k) =
P(k)Ψ(k + 1)

ψT (k + 1)P(k)ψ(k + 1) + 1
(7)

with the scaled estimate of the covariance matrix of the
estimation error according to

P(k + 1) =
(
I− γ(k)ψT (k + 1)

)
P(k) (8)

and the initial values

P(0) = αI and Θ̂(0) = 0. (9)

The forgetting factor is omitted for the online methodol-
ogy to gather as much information about the underlying
process as possible. The advantage of using RLS within an
online methodology is the fast and recursive calculation
in comparison to ordinary least squares. The recursive
parameter adaptation within ONLOPOMOT adapts only
the parameters of the local models h, which are active for
the new data samples u(k + 1)

Φh(u(k + 1)) ≥ 0.5. (10)

By this way, an unlearning of the properties of the inactive
models is avoided (Nelles [2001]).

2.3 Recursive model partition adaptation

Initial structure split The offline modeling LOPOMOT
algorithm for model partition separates the regressor space
into hyperquaders by iteratively splitting the worst local
model with a fixed splitting ratio. As the initial net is
generated based on the present data, the regressor space
is fully spanned between umax and umin in the offline case
as all data is present. In the online case, only few data ui
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Fig. 4. Axis orthogonal splitting and merging algorithm of
ONLOPOMOT

with i = 1 . . . S and S � N is available at the beginning
with

umin � ui � umax. (11)

Hereby S is the number of initial data samples. The bigger
the distances of ui to umax and umin are, the smaller
is the initially spanned regressor variation space, leading
to a global model with a small interpolation and big
extrapolation range after the end of the modeling. To avoid
the extrapolation behavior, the initial regressor space of
ONLOPOMOT is not spanned by the data, but by the
given limits of the measured variables umin and umax (see
Fig.4).

Splitting ratio adaptation Another problem arises with
the data capturing procedure. The measured data can’t be
guaranteed to be equally distributed. As shown in Fig.4,
iteratively captured data can be focused in a limited range
of the global model, making a split with a fixed ratio, e.g.
rsplit = 0.5, impossible due to the lack of data. Therefore
the ONLOPOMOT algorithm adapts the given fixed split
ratio for each dimension g to the range of all relevant
samples (∆RS,g) within the local model LM (see Fig.4)
by

r∗split,g = ∆RS,g · rsplit,g + uRS,g,min (12)

resulting in an individual adaptation of the splitting ratio
in each iteration to the present data samples. The splits
sLMh,g of the local model h follow to

sLMh,g = ∆LMh,g · r∗split,g (13)

Splitting dimension determination The LOPOMOT al-
gorithm splits the local model in all possible dimensions,
compares the resulting global quality criteria Jglobal and
inherits the split with the highest resulting quality. Again,
under the constraint of iteratively added data samples
which are not equally distributed, the criterion has to be
adapted. To avoid an iteratively repeated splitting in the
same dimension due to a lack of data distribution, the
global criterion is additionally weighted with the hyper-
quader side lengths of each dimension:

JRMSEd,global = JRMSE,global ·
∑L
g=1 ∆LMh,g

∆LMh,d
. (14)

This results in the decrease of global model qualities where
splits are made in dimensions with small side lengths,
resulting in favored splits in dimensions with longer side
lengths.

Structure merging In the case of iteratively measured
data, not only the splitting of the model tree but also
the merging becomes relevant. With new data, a former
split can become obsolete. Therefore, the ONLOPOMOT
algorithm not only includes a splitting, but also a merging
algorithm. Junge [1999] defined requirements for merging
of local linear model trees, which are adapted for online
local polynomial model trees:

(1) The merged local model LMm has to be a hyperquader
again. This can be accomplished by comparing the
side lengths of two local hyperquaders ∆LMk,g and
∆LMl,g in each dimension g = 1 . . . L. Only the to be
merged side lengths of the dimension d are allowed to
differ from each other, all other side lengths have to
be equal:

∆LMk,g
!
= ∆LMl,g with g 6= d (15)

(2) The to be merged local models LMk and LMl have
to be next to each other. This can be achieved by
ensuring the following equation for the centers of the
to be merged local models:

|cLMk,d − cLMl,d|
!
=

1

2
[∆LMk,d + ∆LMl,d] (16)

Additionally all other center dimensions g = 1 · · ·L
have to be equal:

cLMk,g
!
= cLMl,g with g 6= d (17)

Otherwise, the center cLMm
of the new local model

would be in a non active region and the local model
LMm would never have a high activity.

(3) The local model parameters have to be similar. This
can be guaranteed by limits on parallelism (∆angle)
and origin deviation (∆offset). Parallelism can be
determined by the angle between the normal vectors
of the local model parameter hyperplanes

arccos

(
Θ̂T
k Θ̂l

|Θ̂k||Θ̂l|

)
!
≤ ∆angle (18)

and origin deviation by the difference between the
offsets

|wk,0 − wl,0|
!
≤ ∆offset. (19)

Hereby Θ̂k is the parameter vector [wk,0, ..., wk,L]
T

and L the number of total regressors without the
offset.

Applying this three requirements, local models can be
found, which are supposed to be merged. The new re-
sulting local model can be estimated by determining the
relevant regressors and calculation of the new parameters.

2.4 Recursive regressor selection

The stepwise selection algorithm of the offline LOPOMOT
algorithm has the disadvantage in the online modeling,
that new incoming samples include new process informa-
tion, making an old selection procedure inappropriate. In
each iteration, the stepwise selection would have to be
started over again, leading to long training times in each
iteration. Furthermore, the stepwise selection based on
Mallows’ Cp-statistic is strongly correlated to the number
of samples, increasing when applied to increasing sample
sizes. In an online modeling algorithm, the regressor se-
lection should start already when only few samples are
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present and adapt to the incoming samples. Therefore, the
ONLOPOMOT algorithm uses a combination of the Lasso
algorithm (Hastie et. al [2009]) and a local formulation of
the corrected AIC criterion (Miller [2002]) to select the
significant regressors of the local polynomial models.

Lasso is a shrinkage and selection method for regression
by minimizing the sum of squared errors while putting a
bound on the sum of the absolute values of the parameters
Θ̂ (Hastie et. al [2009]). The resulting objective function,
which has to be minimized, follows to

Jλ(Θ̂) =

N∑
i=1

(
yi −XiΘ̂

)2

+ λ

L∑
g=0

∣∣∣Θ̂g

∣∣∣ (20)

for different λ > 0. The difficulty to find an appropriate
λ to weight the bound is overcome in ONLOPOMOT by
comparing the resulting local models for different λ values
by the corrected AIC criterion:

AICc = N · log

(
RSS

N

)
+ 2Leff +

2Leff (Leff + 1)

N − Leff − 1
(21)

Here RSS stands for the estimated residual sum of squares,
N the number of total samples and Leff the effective
number of parameters of the fitted local model. The
corrected AIC criterion, in comparison to the normal
AIC criterion or Mallows’ Cp-statistic, is suitable for
small sample sizes relative to the number of parameters
(N/Leff < 40) and generally suitable unless the probability
distribution is extremely non-normal. For N → ∞ the
corrected AIC approaches the normal AIC criterion (Miller
[2002]).

The use of the Lasso combined with a λ selection by the
AICc enables an adaptation of the local model regressors
to the non-linearities of the process during the online
modeling even with small sample sizes. It should be
mentioned here, that the AICc criterion is only used for
finding the appropriate λ, and not for comparing different
local models among each other because the AICc, as well as
other information criteria like AIC or Mallows’ Cp-statistic
are not suitable to compare models with different sample
sizes.

2.5 Online identification methodology

The resulting methodology of the ONLOPOMOT algo-
rithm is presented in Fig.5.

With the first sampled data, an initial model is identified,
consisting of one local model. Every time, a measuring
iteration is finished and the newly sampled data is added
to the data set, the following steps are performed:

(1) The global validation error (e.g. root mean square
error) for the S new samples is determined:

JRMSE,global =

√∑S
i=1(yi − ŷglobal,i)2

S
(22)

As long as the validation error is below a specified
threshold Gglobal, no model adaptation is performed
and new data is iteratively sampled.

(2) When the validation error JRMSE,global for a new
sample rises above the threshold, an adaptation of the
active local model parameters is performed with the
RLS for the new data samples. After the adaptation

Initial 
Identification
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Parameter adaption
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Regressor adaption
Lasso

Structure adaption
Split

Initial samples (iter = 0)

New samples (iter+2)
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Try Merging
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Fig. 5. Methodology of the ONLOPOMOT algorithm

of the local model parameters, the global-local model
error JRMSE,global-local is evaluated for all active local
models. If the error is below the specified threshold
GRMSE,global-local, the data sampling continues.

(3) If the error of the active local model is above the
specified threshold Gglobal-local, a regressor selection
is performed, with the Lasso algorithm starting at
λ(iter − 1). After the regressor selection, the local-
global error of all present (and not only the active
ones) local models is evaluated. If none of the local
model has an error above the threshold, sampling
continues.

(4) Otherwise, the local model with the highest vol-
ume normalized error JNRMSEv,global-local above the
threshold is split according to section 2.3. Using the
normalization to the volume, the quality of small local
models is rewarded, resulting in a preferred split in
bigger local models.

Additionally, after each adaptation of the model and
before new sampling, a merging of the local models is tried.
If possible, local models are merged, resulting in a global
model with a reduced global complexity.

To combine the measuring and modeling process, new
data is sampled within the worst local models. The
quality is determined by the sample normalized error
JNRMSEs,global-local of the global model in the local model
ranges. The use of the sample normalized error results in
a preferred placing of new to be measured data samples in
local model ranges with less present data samples.

3. EXAMPLES FOR ONLINE IDENTIFICATION

3.1 Online modeling of an exemplary stationary function

An exemplary function of two variables u1 and u2 is shown
in Fig.6a), consisting of several scaled gaussian distribu-
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tions. The modeling is performed for 200 iterations and
the model error determined as JRMSE. The initial model
is generated out of 9 data samples, each consisting of a
combination of values of the input and output variables
(x1, x2, y). In each iteration, 2 new random data samples
are generated, one in each of the two worst local models,
resulting in a total of 409 recorded samples (see Fig.6b)).
During regressor selection the maximum possible station-
ary order of the input variables is three (xK , x

2
K , x

3
K) and

up to two cross-terms of the input variables are allowed as
regressors (x1 · x2).
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Fig. 6. Stationary online modeling with ONLOPOMOT of
a test function. a) Test function to be modeled. b)
Local model parition of ONLOPOMOT and sampled
data points after end of modeling. c) Training result
for modeled test function. d) Validation result for
modeled test function

During the online modeling, 160 samples are ignored due
to good validity, 120 times the parameters of the local
models are adapted, 114 times the regressors updated and
42 times the model is split. The final model consists of 43
local models, where each has different relevant regressors
and parameters. The resulting stationary ONLOPOMOT
after the end of the measurement is shown in Fig.6c).
The gaussian test function can be modeled rather good,
with an error of JRMSE,global = 0.0061. Additionally,
in Fig.6d), the validation with a grid (40x40) is shown.
The validation error is also low with JRMSE,global =
0.0087. In comparison to ONLOPOMOT, using the offline
LOPOMOT algorithm and the same data samples, the
training error is higher with JRMSE,global = 0.071. As
shown in Fig.6b), the model split and merge algorithm of
ONLOPOMOT focuses splits in regions of stronger non-
linearity, although it performs iteratively. Additionally,
the online methodology combines the splitting of the
model and placing of new to be measured data samples,
increasing the data samples density in region of high
non-linearity, enabling a significant increase in modeling
quality.

As shown in Fig.7a), the training error decreases in gen-
eral during the iterative procedure. Additionally, also the
validation error of the iteratively added samples (b) as
well as the validation error of a separate data set (c)
decreases in general with the ongoing online measurement
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and modeling. Therefore, as already mentioned in section
1.2, the online modeling with the presented ONLOPO-
MOT algorithm enables the reduction of the model bias
and variance, resulting in models of high qualities.

Another advantage of the ONLOPOMOT algorithm is the
time needed for modeling. Fig.8 shows the iterative and
cumulated time for the online and offline algorithms. The
LOPOMOT algorithm needs more time with every new
iteration, as the data set size steadily increases. On the
other hand, the iterative time needed in the ONLOPO-
MOT algorithm even decreases, as adaptations (param-
eter, regressor and structure adaptation) are only made
for relevant samples and data samples not contributing
much to the modeling are ignored. The cumulated time
shows the resulting break-even point at iteration 49 (107
samples), where the total time needed of the offline model-
ing exceeds the online modeling time. This example shows
the capability of the presented methodology, to reduce the
time needed for modeling and therefore reduce the overall
time needed for the measurements procedure.

3.2 Online modeling of the diesel engine boost pressure

As a second example, the ONLOPOMOT methodology is
used for modeling of the dynamic boost pressure p2. Input
variables are the positions of the exhaust gas recirculation
(egr) valve and the variable geometry turbine (vgt) of
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the turbocharger at the operating point 2000rpm and
10mm3/cyc. Both are excited dynamically with steps of
5s length and amplitudes chosen in local model regions of
worst model quality (Kowalczyk [2013]). The step length
is chosen to be longer than the settling time to enable
the ”‘excitation”’ of the stationary and dynamic process
behavior. During regressor selection the maximum possible
stationary order of the input variables is five (xK , ..., x

5
K)

and delays with up to five samples can be selected as dy-
namic regressors (xK(k), xK(k−1), ..., xK(k−5)), resulting
in a nonlinear dynamic model. In Fig.9 the input variables,
resulting output variable and model output as well as the
design are shown.
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Fig. 9. Dynamic online modeling with ONLOPOMOT of
the boost pressure. a)+b) Time plot of the model-
ing inputs segr and svgt. c) Measured and predicted
output p2. d) Corresponding measurement design.

In contrast to the stationary case, measured data points
can’t be ignored during modeling. As shown in Fig.9d),
removing of single design points from the data would inter-
sect the progress of the variables, resulting in non-consistet
modeling data. Therefore all data is used for modeling.
The resulting dynamic ONLOPOMOT after the end of
the measurement is shown in Fig.9c). In total 420 samples
(sampling time T0 = 0.5s) in 7 iterations were measured
before the final model quality was reached. The boost pres-
sure is modeled with a quality of JRMSE,global = 0.0082.
The validation error, determined with a seperate space
filling design, is also good with JRMSE,global = 0.0234.
In Fig.9d) again the focusing of the ONLOPOMOT algo-
rithm in relevant regions can be seen. This example shows
the capability of the presented methodology, to determine
iteratively the proper model structure after only few mea-
surements and therefore reduces the needed amount of
measurements.

4. CONCLUSION AND OUTLOOK

A new methodology for online determination of stationary
and dynamic combustion engine models at test benches
was developed. In comparison to common approaches, the
steps of measurement are performed autonomously one
after the other, without any separation of measurement
at test benches and offline processing at the office. Fur-
thermore, this approach considers the measured data for
adaptation of the model structure.

First the online iterative methodology was introduced
and described. The developed methodology uses real-time
hardware (online real-time measurement) parallel to an
office computer (online processing), enabling the use of

offline identification methods in the online methodology.
The necessary extensions of the modeling process were
shown. To cope with the increasing sample size during the
iterative online modeling, recursive methods have to be
used for model analysis, parameter adaptation, regressor
selection and model partition adaptation. All this exten-
sions were merged in the online local polynomial model
tree methodology (ONLOPOMOT), which is capable of
recursive online modeling of nonlinear processes. The ap-
plicability of the resulting methodology was shown for
two emaples, the modeling of an simulated exemplary
stationary test function and the modeling of the dynamic
boost pressure of an engine at a test bench with two input
variables.

The implemented method enables a reduction of the mea-
surement and modeling expense by reducing the time
needed for modeling and measurement. Future research
is oriented in the target oriented placing of iterative mea-
surement points. So far, random samples were generated
in worst local model regions. By using active learning
methods (Kowalczyk [2014]), new to be measured data
samples can be placed where the highest relevance for the
modeling is.
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