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Abstract: This paper presents a modified Q-learning algorithm and provides conditions for
convergence to a pure Nash equilibrium in potential games. In general Q-learning schemes,
convergence to a Nash equilibrium may require decreasing step-sizes and long learning time. In
this paper, we consider a modified Q-learning algorithm based on constant step-sizes, inspired by
JSFP. When compared to JSFP, the Q-learning with constant step-sizes requires less information
aggregation, but only reaches an approximation of a Nash equilibrium. We show that by
appropriately choosing frequency dependent step-sizes, sufficient exploration of all actions is
ensured and the estimated equilibrium approaches a Nash equilibrium.

1. INTRODUCTION

Potential games, Monderer and Shapley (1996), are an
important class of games that can be used as template
for the design of decentralized algorithms in large-scale
problems, Scutari et al. (2006), Arslan et al. (2007). One
of the most known examples is the problem of distributed
traffic routing modelled as a large-scale congestion game,
Rosenthal (1973). In such a game, a large number of ve-
hicles or agents makes daily routing decisions to optimize
their own objectives in response to their own observations.

The above setup can be modelled as a large-scale repeated
game. In a repeated game, agents or players update and
adapt their strategies depending on the opponents’ actions
in the previous stage(s) of the game. The dynamics of
learning in repeated games is an area of active interest,
Fudenberg and Levine (1998), Young (2005). A variety
of algorithms have been proposed as well as analysis
of their long-term behaviour and convergence to Nash
equilibria. Guaranteed convergence to a Nash equilibrium
in potential games has been shown for adaptive play and
the broad class of finite-memory better-reply processes
Young (1993), Young (2005). However, the assumption is
that the agents’ rewards (utilities) for different joint action
profiles is a-priori known. In many large-scale games this
assumption on the utilities is not realistic.

One of the most studied learning algorithms is the well-
known fictitious-play (FP), Brown (1951). While known to
be convergent to a Nash equilibrium in potential games,
FP requires that each player can observe the (actions)
decisions of all other players. Each player computes the
empirical frequencies (i.e. running averages) of these ob-
served decisions. Then, each player updates its strategy in
a best-response manner to the empirical frequencies of all
the other players.

⋆ This work was supported by NSERC-CRD and Bell Labs/ Alcatel-
Lucent.

In a large-scale game players are inherently faced with
limited observational and computational capabilities. An
open research problem is how to design learning algorithms
with minimum information requirements for each player.

Recently, an elegant variant of Fictitious Play called Joint
Strategy Fictitious Play (JSFP) has been proposed in
Marden et al. (2009a), as a plausible decision making
model in large-scale potential games. In JSFP, each player
tracks the empirical frequencies of the joint actions of all
other players. In contrast to FP, the action of a player
is based on the (still incorrect) presumption that other
players are playing randomly but jointly according to
their joint empirical frequencies, i.e., each player views all
other players as a collective group. The authors showed
its beneficial features when applied to the large-scale
congestion game. However, while reducing the information
requirement, players still have to monitor the joint actions
and need to know their own utility so as to find their
optimal actions.

Players often have also limited information on the analyt-
ical structure of their own utility function, an even more
challenging problem. Such problem setting of games with
unknown utilities (rewards) and unobserved opponent ac-
tions, is a natural setup for Reinforcement Learning (RL)
algorithms, or payoff-based dynamics, Sutton and Barto
(1998). Agents observe only the actual utilities received
as a result of the joint actions of their opponents, and
use these actual utilities to choose future actions. In Mar-
den et al. (2009b), the authors investigate payoff-based
dynamics that converge to pure-strategy Nash equilibria in
weakly acyclic games, one of which, sample experimenta-
tion dynamics, can admit perturbations in agents’ rewards.
The algorithm alternates between two phases, exploration
and exploitation, and requires that several parameters
are set in advance, such as the exploration phase length,
exploration rates, and tolerances on payoff difference and
switching rates for deciding when to change strategies.

Q-learning is a useful approach for learning Nash equilibria
in games with unknown noisy utilities or rewards. Players’
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rewards are initially unknown and must be learned or
estimated online from actual observations.

Although Q-learning and the action adaptation processes
are well understood independently, the combined problem
of learning Nash equilibria in games with unknown reward
functions is less well understood. In Claus and Boutilier
(1998), the authors specify a joint action learner (JAL),
in which each player keeps track of the frequency of other
players’ actions, while updating the utility (reward) es-
timate for the joint action played. However, the authors
do not provide convergence conditions for their algorithm.
Their investigation relies on experimental evidence of con-
vergence, and, furthermore, it is restricted to team games,
i.e., with a common utility function. Convergence is proved
for identical interest games in Leslie and Collins (2003)
assuming that learning takes place at multiple time scales.
In Leslie and Collins (2005), players use variants of the
Q-learning procedure independent of each other, oblivious
of the effects of changes in other players’ actions on their
own payoffs. Convergence results to a Nash distribution
were developed in Leslie and Collins (2005) under the
assumption of multiple time-scales. Specifically, almost
sure convergence to a Nash distribution was shown in two-
player zero-sum games and in N-player partnership games.
In K.Tuyls et al. (2006), Kaisers and K.Tuyls (2010) a
continuous approximation of the discrete time system was
introduced to study the dynamics of Q-learning in several
examples.

Most prior results in Q-learning primarily focused on di-
minishing step-sizes. This allows the application of pow-
erful results in stochastic approximation for studying the
long-term stochastic processes’ behaviour via their ODE
approximations, Kushner and Yin (2003). Diminishing
step-sizes are also used in the recent Q-learning schemes
in Chapman et al. (2013), where convergence results are
obtained without the ODE approximation. However the
size of the learning problem faced by the agents grows
exponentially with the number of players, thereby reducing
the usefulness in large games. Moreover, diminishing step-
sizes result in a long learning time and slow convergence.

This paper represents an effort in this direction. Specifi-
cally, our contribution is an algorithm that combines the
strengths of Q-learning in terms of minimal information
requirements, while at the same time achieving faster
convergence, albeit to a near-optimal (approximate) Nash
equilibrium. Our standing assumption is that players do
not have information about the actions of the other play-
ers, and, moreover, they do not have complete information
of their own payoff structure. We consider a modified Q-
learning algorithm with constant step-size and develop
some convergence results for potential games. The trade-
off is convergence to near-optimal Nash equilibrium.

We achieve a faster convergence for the modified Q-
learning algorithm by introducing non-negligible, constant
step-sizes to reach a sub-optimal state in a reasonably
short time, and then approach a Nash equilibrium via
a slightly modified perturbation function as in Chasparis
et al. (2011). The main challenge is proving convergence to
Nash equilibria without the averaging effect of stochastic
approximation, as this results in long convergence time.
Our analysis techniques are similar to those used in the

JSFP case Marden et al. (2009a). However, when com-
pared to Fictitious Play algorithms, the setup here is com-
plicated by players’ lack of information on the analytical
structure of their own utility.

The paper is organized as follows. Section 2 reviews
background material. Section 3 introduces a modified Q-
learning scheme with a state-based perturbation function.
Section 4 establishes convergence to a pure Nash equilib-
rium, while Section 5 presents numerical results for a traffic
congestion game. Section 6 presents concluding remarks.

Notation

The following notations are used.

Notation Meaning
Ai finite action set of player i
Mi index set of actions player i

Mi = {1, . . . , |Ai|}
ai(k) ∈ Ai action of player i at time k
eij ∈ ∆i pure strategy of player i,

j-th unit vector, j ∈ Mi

ai(k) = eij player i’s j-th action, index notation
1ij/|Ai| ∈ ∆i mixed strategy of player i based on

uniform distribution on each action
xi(k) ∈ ∆i mixed strategy of player i at time k
a joint action (pure-strategy profile)
x mixed-strategy profile
a∗ ∈ A pure Nash equilibrium
x∗ ∈ ∆ mixed-strategy Nash equilibrium
Ui(a) ∈ R utility of player i for joint action a
Ui(x) ∈ R expected utility of player i

for joint mixed-strategy (profile) x
P (a) ∈ R potential value for joint action a

Qi(a) ∈ R|Ai| Q-vector of player i for joint action a

2. BACKGROUND

In this section we present a brief review of the background
material.

2.1 Finite strategic-form games

A finite strategic-form game G involves a set I of N
players, I = {1, . . . , N}, where each player i ∈ I has a
finite action set Ai and a utility function Ui : A → R,
with A = A1 × A2 × · · · × AN denoting the joint-action
set.

Let ai ∈ Ai be an action of player (agent) i ∈ I, and
a = (a1, a2, . . . , aN ) ∈ A the joint action profile of all
players. Let |Ai| denote the cardinality of the set Ai and
Mi = {1, . . . , |Ai|}, the index set of player’s i actions.
Sometimes we use index notation and write ai = eij ,
j ∈ Mi, to indicate the jth action selected by player i.
Let a−i denote the profile of actions for players other than
player i, i.e., a−i = (a1, . . . , ai−1, ai+1, . . . , aN ). With this
notation, we often write a joint action profile a as (ai, a−i),
or as (eij , a−i), if index notation is used. Similarly, we may
write Ui(a) as Ui(ai, a−i) or Ui(eij , a−i). A player’s goal is
to maximize its own utility conditional on the choices of
its opponents. A best response correspondence βi(a−i) is
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the set of optimal strategies for player i, given the strategy
profile of its opponents,

βi(a−i) = {a∗i ∈ Ai : Ui(a
∗
i , a−i) = max

ai∈Ai

Ui(ai, a−i)}, (1)

or, in index notation,

βi(a−i) = {eij∗∈Mi : Ui(eij∗ , a−i) = max
j∈Mi

Ui(eij , a−i)}.

In a Nash equilibrium, each agent plays a best response,
a∗i ∈ βi(a

∗
−i), for all i ∈ I, hence no individual player

has an incentive to unilaterally change its strategy. A
Nash equilibrium (N -tuple) profile, a∗ ∈ A, is a fixed-
point a∗ ∈ β(a∗) of the overall N -tuple best-response
correspondence, where β := (β1, . . . , βN ). Thus a∗ ∈ A
is called a pure Nash Equilibrium, if for all players i ∈ I,
Ui(a

∗
i , a

∗
−i) = maxai∈Ai Ui(ai, a

∗
−i).

Sometimes, a mixed strategy is used where each player
randomly chooses between several actions. Let xiai or
xij ∈ [0, 1] denote the probability that player i ∈ I
selects action ai = eij in the action set Ai. Then xi =
(xi1, . . . , xi|Ai|) is a probability distribution on its action
set Ai, or a mixed-strategy for player i ∈ I. Hence, a
mixed strategy xi is an element of ∆i, where

∆i = {xi ∈ R|Ai||1T
|Ai|xi = 1, xij ≥ 0, ∀j ∈ Mi},

with 1 denoting the all ones vector, is the set of probability
distributions over Ai. The vertices of ∆i are the unit
vectors eij . When xi = eij , player i chooses the j

th action
with probability one and such a strategy is called a pure
strategy. Hence, using index notation, ai can simply be
identified by unit vectors eij in ∆i, and the action set Ai

by the vertices of the simplex ∆i.

Likewise, we denote by x = (x1, x2, . . . , xN ) ∈ ∆ the
mixed-strategy profile of all players, where ∆ = ∆1×∆2×
· · ·×∆N , and x = (xi, x−i). Given a mixed-strategy profile
x ∈ ∆, the expected utility of player i, also denoted Ui, is
the multi-linear extension from A to ∆, given as

Ui(x) =
∑
a∈A

(
∏
s∈I

xsas)Ui(ai, a−i),

where each element xsas is the probability of player s play-
ing as. Equivalently, Ui(x) =

∑
j∈Mi

xij Ui(eij , x−i) where

Ui(eij , x−i) =
∑

a−i∈A−i
(
∏

s∈I/{i} xsas) Ui(eij , a−i) and

I/{i} denotes the set of players other than player i.

Similarly, a mixed-strategy profile x∗ ∈ ∆ is called a
mixed-strategy Nash Equilibrium, if for all players i ∈ I

Ui(x
∗
i , x

∗
−i) ≥ Ui(xi, x

∗
−i), ∀xi ∈ ∆i, xi ̸= x∗

i .

In the case when the inequality is strict, the Nash equi-
librium is called a strict Nash equilibrium. Such a Nash
equilibrium is a fixed-point of the mixed-strategy best-
response extension, i.e., x∗

i ∈ βi(x
∗
−i), for all i ∈ I, where

βi(x−i) = {x∗
i ∈ ∆i : Ui(x

∗
i , x−i) ≥ Ui(xi, x−i), ∀xi ∈ ∆i}

where βi(x−i) is the best-response set. To avoid set-valued
mappings (multiple elements in the best-response set), a
smooth best-response can be used, e.g.

σi(x−i) = arg max
xi∈∆i

{
∑

j∈Mi

xiaiUi(eij , x−i) + τ vi(xi)},

where τ > 0 is a temperature parameter and vi : ∆i → R
is a player-dependent smoothing function. One example is
Boltzmann selection, vi(xi) = −

∑
j∈Mi

xij log xij . This
results in the smooth best-response function

σi(x−i) =
eτ

−1Ui(eij ,x−i)∑
j∈Mi

eτ
−1Ui(eij ,x−i)

. (2)

As the temperature parameter τ → 0, this set approaches
the set of best responses.

2.2 Potential games

A potential game is characterized by a single function,
called potential function, that specifies the players’ joint
preference over outcomes Monderer and Shapley (1996).

Definition 1. A function P : A → R is a potential for the
game G if for all i ∈ I, for all a−i ∈ A−i,

P (ai, a−i)− P (a′i, a−i) = Ui(ai, a−i)− Ui(a
′
i, a−i), (3)

for all ai, a
′
i ∈ Ai, or, equivalently,

P (eij , a−i)− P (eij′ , a−i) = Ui(eij , a−i)− Ui(eij′ , a−i),

for all j, j′ ∈ Mi. A game that admits such a potential
function is called a potential game.

The local optima of the potential function are Nash equi-
libria of the game. Intuitively, a potential is a function of
action profiles such that the difference induced by a unilat-
eral deviation equals the change in the deviator’s payoff.
The existence of a potential function for a game implies a
strict joint preference ordering over game outcomes, which
in turn, ensures that the game has a number of useful
properties.

Theorem 2. Monderer and Shapley (1996) Every finite
potential game possesses at least one pure-strategy equi-
librium.

A step in a game G is a change in one player’s strategy. An
improvement step in G is a change in one player’s strategy
such that its utility is improved. A path in G is a sequence
of steps, (a(0), a(1), . . . , a(T )) in which exactly one player
changes their strategy at each step. A path has an initial
point, a(0), and if it is of finite length T , a terminal point
a(T ). A path is an improvement path in G if for all k,
Ui(a(k−1)) < Ui(a(k)) for the deviating player i at step k.
A game G is said to have the finite improvement property
if every improvement path is finite.

Theorem 3. Monderer and Shapley (1996) Every improve-
ment path in an ordinal potential game is finite.

The finite improvement property ensures that the be-
haviour of players who play “better responses” in each
period of the repeated game converges to a Nash equilib-
rium in finite time. These results ensure that a number
of simple adaptive processes converge to a pure-strategy
Nash equilibrium in the game.

2.3 Repeated games

In a repeated version of the game G, at every iteration
k ∈ {0, 1, 2, . . . }, each player i ∈ I selects an action
ai(k) ∈ Ai and receives the utility Ui(a(k)), function of
the joint actions a(k) = (a1(k), . . . , aN (k)) of all players.
Each player i ∈ I chooses action ai(k) according to the
probability distribution xi(k). This selection is a function
of the information and observations available to player i ∈
I up to iteration k. Both the action selection function and
the available information depend on the learning process.
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For example if the player knows the functional form
(analytical structure) of its utility function Ui and can
observe the actions of each of the other players at each
step, the well-known fictitious play (FP) algorithm can
be used. In a fictitious-play (FP) algorithm, each player
computes the empirical frequency vectors, q−i(k), of its
opponents and chooses its action as the best-response
against this vector, hence

βi(q−i(k)) := {a∗i ∈ Ai : Ui(a
∗
i , q−i(k)) = max

ai∈Ai

Ui(ai, q−i)}.

In case of a non-unique best-response, a random selec-
tion from the set βi(q−i(k)) is made as action selection.
Alternatively, the use of a smooth best-response leads
to a smooth fictitious-play (sFP) algorithm. The empiri-
cal frequencies generated by the FP converge to a Nash
equilibrium in potential games, Monderer and Shapley
(1996), but requires observations of the individual actions
of all other players. This is relaxed in joint strategy FP
(JSFP), Marden et al. (2009a), where each player tracks
the empirical frequencies of the joint actions of all other
players. In JSFP, the action of a player is based on the
assumption that other players are playing randomly but
jointly according to their joint empirical frequencies, i.e.,
each player views all other players as a collective group.

In cases in which the utility function is not known, a
useful approach is to use a Q-learning algorithm in order
to estimate the reward (utility) function in a recursive
manner, Sutton and Barto (1998). The action selection
can be based this time on estimated utilities, or Q-values,
which characterize the relative utility of a particular ac-
tion. Either a best-response or a smooth best-response can
be used as the action selection mechanism. The task of a
Q-learning agent is to learn a mapping from environment
to actions so as to maximize a numerical utility or reward
signal. One of the attractive features of Q-learning is the
fact that it does not assume knowledge about utility or
reward functions, rather these must be learned from the
environment. In each step, the player receives a signal
from the environment indicating its state and chooses an
action. Once the action is performed, it changes the en-
vironment, generating a reinforcement signal that is then
used to evaluate the quality of the decision by updating the
corresponding Q values. The Q-values are estimations of
the actual reward and the optimal policy is then followed
by selecting the actions where the Q-values are maximum.

In the single-agent case, assuming a stationary environ-
ment, i.e., that the probabilities of receiving specific rein-
forcement signals do not change over time, if each action is
executed in each state an infinite number of times and the
learning rate is decayed appropriately, the Q-values will
converge with probability 1 to the optimal ones, Sutton
and Barto (1998).

In the multi-agent setting, of N players playing a game
repeatedly, the process of learning Q values by observ-
ing actual utilities presents a significantly more complex
problem, since the utilities (rewards) available to each
player depend on the joint-actions or strategies of all the
other players, and hence are not stationary. In Leslie and
Collins (2005), each of the players are equipped with a
standard Q-learning algorithm and learn independently
without considering the presence of each other in the
environment. Each player i selects an action ai(k) = eij

based on strategy xi, receives a utility (reward) Ui(a(k)
and then updates Qi(k), such as for example,

Qij(k + 1) = (1− µi(k))Qij(k) + µi(k)Ui(a(k)), (4)

where µi(k) are learning rates or step-sizes, assumed to
be diminishing. In Leslie and Collins (2005) an extra
normalization was used in (4), where the utility error
prediction term is divided by the probability with which
ai(k) was selected. In (4), a(k) = (ai(k), a−i(k))) denotes
the joint-action. For the action selection, each player plays
according to a Q-value based smooth best-response, (2),
based on Boltzman selection,

xij(k) =
eτ

−1Qij(k)∑
j′∈Mi

eτ
−1Qij′ (k)

, (5)

closely related to the soft-max exploration method of
reinforcement learning Sutton and Barto (1998).

Based on standard theorems of stochastic approximation
Benaim (1999), the behavior of these learners in 2-player
games is analyzed by the corresponding ODE, Leslie and
Collins (2005). The strategy evolution is closely related to
the smooth best response dynamics, the same dynamical
system that characterizes stochastic fictitious play (FP),
Benaim and Hirsch (1999) despite the fact that individ-
ual Q-learning uses significantly less information. Using
techniques from Leslie and Collins (2003), extension to N -
player partnership games is studied for player-dependent
learning rates. The use of diminishing learning rates is
beneficial and allows one to use stochastic approximation
results, but in general leads to slow convergence time.
In the next section we introduce a modified Q-learning
algorithm.

3. A MODIFIED Q-LEARNING ALGORITHM

In this section we present the Q-learning algorithm we
consider. The two components of such an algorithm are
the action selection and the Q-value updating rule.

At each time-step k > 0, each player i ∈ I chooses
an action ai(k) = eij based on its mixed-strategy xi(k)
and its Q-value. Its probability vector xi(k) is updated
according to the recursion

xi(k + 1) = (1− αi(k))xi(k) + αi(k)β̂i(Qi(k)), (6)

where Qi(k) is the Q-value vector, β̂i is defined as

β̂i(Qi(k)) = {e
îj∗

, ĵ∗ ∈ Mi : Qîj∗
= max

j∈Mi

Qij(k)}, (7)

hence maximizing the Q-value or numerical utility, and
αi(k) is the player step-size.

The Q-value of each player Qi(k) acts as the estimation of
Ui(a(k)) following the joint action a(k) = (ai(k), a−i(k)) =
(eij(k), a−i(k)), providing the key information in the de-
cision making for each player. This Qi(k) is a |Ai|-
dimensional vector with components Qij(k + 1), j ∈ Mi.
Each of its components is updated similar to (4) as follows:
for the j-th component corresponding to the played action
at time-step k, ai(k) = eij ,

Qij(k + 1) = (1− µij(k))Qij(k) + µij(k)Ui(a(k)), (8)

where 0 < µij(k) < 1 is the learning rate (step size), while
for the other components j′ ∈ Mi, j

′ ̸= j not played at
time-step k,

Qij′(k + 1) = Qij′(k), (9)
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Thus in the algorithm we consider, for each player i ∈ I, at
time-step k > 0, a player chooses action ai(k) = eij with
probability xij(k) based on the mixed-strategy xi(k), and
updates xi(k) and Qi(k) as in (6), (7) and (8), (9).

We assume that:

Assumption 3.1. Player step-sizes are constant if not spec-
ified, i.e. for all players i ∈ I, actions j ∈ Mi,

µij(k) = µ, αi(k) = α,

where 0 < α < µ < 1.

An important component of Q-learning is the action
selection mechanism, responsible for selecting the actions
that the agent will perform during the learning process.

Our proposed action selection (6), (7) is based on greedy
selection, when the action with the highest Q-value is
selected with some inertia (α ̸= 1). This is a slightly
modified Q-learning algorithm: instead of a Q-value based
smooth best-response as in (5), inspired by the JSFP in
Marden et al. (2009a), the action selection (6), (7) uses a
Q-value based best-response with inertia.

Comparing the Q-value based best-response β̂i in (7)

to (1), it can be seen that β̂i acts as an estimated

best response. Let â∗i (k) := e
îj∗

= β̂i(Qi(k)), i ∈ I,
consider the overall N -tuple â∗(k) = (â∗1(k), . . . , â

∗
N (k)).

Then denoting β̂(Q(k)) := (β̂1(Q1(k)), . . . , β̂N (QN (k))),

it follows that â∗(k) = β̂(Q(k)) acts as an estimated
equilibrium at time-step k. Since it results from a process
that lacks utility information, this estimated equilibrium
would most likely be suboptimal. We can observe that, for
the JSFP to converge to a Nash equilibrium, we don’t need
to estimate the exact value of utilities for each action, but
a correct order of utilities of all actions. The Q-value of
each action are incomplete estimations of joint strategy
utility as in JSFP, while the action that has the largest
probability to be updated is the estimated equilibrium. We
prove in the following section that the corresponding Q-
values will eventually converge to the actual utility, if the
estimated equilibrium is no longer changing. Therefore, if
the action space of the game is well explored, the estimated
equilibrium will most likely to converge to an actual (true)
Nash equilibrium.

In fact the action selection mechanism should allow for a
trade-off between exploitation and exploration such that
the agent can reinforce the evaluation of the actions it
already knows to be good but also explore new actions.
The Boltzmann action selection (5) used in a standard
Q-learning algorithm, Leslie and Collins (2005), K.Tuyls
et al. (2006) incorporates this trade-off. The greedy action
selection, with constant step-sizes in (6), (7) might gener-
ally lead to suboptimal solutions. In order to incorporate
a means of exploring less-optimal strategies, in the second
part of the paper we introduce a perturbation in the Q-
learning algorithm.

Specifically, inspired by the perturbing scheme in Chas-
paris et al. (2011), we assume that each player i selects
the j-th action, j ∈ Mi according to a modified strategy
with probability

χij = (1− ρi(xi, ξ))xij + ρi(xi, ξ)1ij/|Ai|, (10)

where ρi(xi, ξ) is a perturbation function defined next.

Assumption 3.2. The perturbation function ρi : ∆i ×
[ϵ̄, 1] → [0, 1] is continuously differentiable. Furthermore,
for some ζ ∈ (0, 1) sufficiently close to one, ρi satisfies the
following properties:

• ρi(xi, ξ) = 0, ∀xi such that |xi|∞ < ζ ∀ξ ≥ ϵ̄;
• lim|xi|∞→1 ρi(xi, ξ) = ξ;

• lim|xi|∞→1
∂ρi(xi,ξ)

xij
|ξ=0 = 0, ∀j ∈ Ai.

This perturbation function is slightly modified from the
one in Chasparis et al. (2011) and ensures mutation and
exploration of all actions. Note that this mechanism is
similar to the ϵ-greedy exploration, where it selects a
random action with small probability ρi and the best
action, i.e. the one that has the highest Q-value at the
moment, with probability (1− ρi).

4. CONVERGENCE ANALYSIS

In this section, we give conditions under which the mod-
ified Q-learning algorithm (6) - (9) converges to a pure
strategy Nash equilibrium almost surely. In the first part
we consider constant learning rates (step-sizes), while in
the second part we consider frequency dependent step-sizes
based on perturbation (10), as a mechanism of exploration.

4.1 Convergence to estimated equilibria

In the following we show that in the absence of a mecha-
nism of exploring all actions, the modified Q-learning algo-
rithm (6) - (9) converges to an estimated equilibrium. This
is part due to the lack of full utility function information.

Proposition 4. Under Assumption 3.1, if for some K > 0,
an action profile a(k) = (eij , a−i) is repeatedly played in
the consequent K iterations, i.e., a(k + κ) = a(k), for all
1 ≤ κ < K, then

Qij(k +K) = (1− µ)KQij(k)

+ (1− (1− µ)K)Ui(a(k)).
(11)

Proof. Assume as in the statement that an action profile
a(k) = (eij , a−i) is repeatedly played, i.e., the jth action
is played by player i. Then from (6), (8) and (9), it
follows that if the jth action is played, the other actions
j′ ∈ Mi, j

′ ̸= j are never played during the following K
iterations, so that each Qij′ stays unchanged. Moreover,
for the played jth action and Qij , from recursively using
(8) it follows that

Qij(k +K) = (1− µ)KQij(k)

+ µ
1− (1− µ)K

1− (1− µ)
Ui(a(k)),

which yields (11).

�
Corollary 4.1. If for some sufficiently large K > 0, condi-
tions in Proposition 4 hold, then

lim
K→∞

Qij(k +K) = Ui(a(k)).

Corollary 4.1 can be verified simply by taking the limit
K → ∞ in (11) in Proposition 4, and using the Assump-
tion 3.1 that µ < 1.
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Remark 4.1. If conditions of Proposition 4 are satisfied,
from the description of the Q-learning algorithm (6), (8)
and (9), other actions j′ ∈ Ai are never played during K
iterations, so that each Qij′ stays unchanged.

The following result shows an absorption property of
estimated equilibria in Q-learning with constant step-sizes.
The proof is similar to the proof of Theorem 3.1 in Marden
et al. (2009a).

Proposition 5. Assume that at some time-step k, â∗ =
â∗(k) is played, where â∗ = (â∗i , â

∗
−i), â

∗
i = e

îj∗
and that

for every player i ∈ I, ∀j′ ∈ Mi and j′ ̸= ĵ∗, Qij′(k) <
Q

îj∗
(k), Qij′(k) < Ui(â

∗). Then at any consequent K-th

iteration, with probability of at least
∏K

κ=1(1−(1−α)κ)N ,
the following holds

Q
îj∗

(k +K + 1) = (1− µ)K+1Q
îj∗

(k)

+ (1− (1− µ)K+1)Ui(â
∗),

xi(k +K + 1) = (1− α)K+1xi(k)

+ (1− (1− α)K+1)â∗i .

Proof. We prove the result by induction. For K = 1,
based on the conditions in the statement, since for every
player i, ∀j′ ∈ Ai and j′ ̸= ĵ∗, Qij′(k) < Q

îj∗
(k), from (7)

it follows that â∗ is the estimated best-response at time-
step k, and â∗i = e

îj∗
is the component corresponding to

player i. Therefore using (6) it follows that at time-step
(k + 1),

xi(k + 1) = (1− α)xi(k) + α e
îj∗

.

Since e
îj∗

is the unit vector, this indicates x
îj∗

(k+1) ≥ α.

This holds for every player, and therefore at time-step
(k+1), â∗ is played with probability of at least αN . When

â∗ is played, hence â∗i = e
îj∗

, i.e., the ĵ∗-th action is played

by player i at time-step (k + 1). Then from (8) it follows
that the corresponding Q-value is updated as

Q
îj∗

(k + 1) = (1− µ)Q
îj∗

(k) + µUi(â
∗)

> (1− µ)Qij′(k) + µQij′(k),
(12)

where the middle inequality follows from the conditions
given in the statement. Thus, Q

îj∗
(k + 1) > Qij′(k), for

all j′ ̸= j. Since any other j′-th action, j′ ̸= ĵ∗ is not
played at time-step (k + 1), from (9) it also follows that
Qij′(k + 1) = Qij′(k). Therefore, Qîj∗

(k + 1) > Qij′(k +

1), ∀j′ ∈ Mi, j′ ̸= ĵ∗. This shows that, at time-step
(k + 1), â∗i = e

îj∗
remains the estimated best-response

component for player i. Repeating the above argument
for all players, it follows that at time-step (k + 1), â∗

remains the estimated best-response, and the claim follows
for K = 1.

As the next step of induction, suppose now that at every
consequent κ-th iterations, 1 ≤ κ ≤ K − 1, â∗ is played

with probability
∏K−1

κ=1 (1−(1−α)κ)N . When â∗ is played,
hence â∗i = e

îj∗
is played by player i, it follows that at

time-step (k +K), xi is updated as

xi(k +K) = (1− α)Kxi(k) + (1− (1− α)K) e
îj∗

, (13)

where e
îj∗

= â∗i . Moreover, by Proposition 4,

Q
îj∗

(k +K) = (1− µ)KQ
îj∗

(k) + (1− (1− µ)K)Ui(â
∗).

(14)

Since, for player i, any other j′-th action other than the
ĵ∗-th, j′ ̸= ĵ∗ is not played, it also follows that Qij′(k +
K) = Qij′(k). Moreover, Qij′(k +K) < Q

îj∗
(k +K), and

Qij′(k +K) < Ui(â
∗), ∀j′ ∈ Ai, j

′ ̸= ĵ∗.

Following the same argument as for K = 1, from (13) it
follows that at time-step (k + K + 1), â∗ is played with
probability of at least (1 − (1 − α)K)N . Hence from (8)
and the foregoing two inequalities it follows that

Q
îj∗

(k +K + 1) = (1− µ)Q
îj∗

(k +K) + µUi(â
∗)

> (1− µ)Qij′(k +K) + µQij′(k +K)

= Qij′(k +K).

Also, note that Qij′(k + K + 1) = Qij′(k + K), so that

Q
îj∗

(k+K+1) > Qij′(k+K+1), ∀j′ ∈ Ai, j
′ ̸= ĵ∗, hence

the estimated best response for player i is unchanged and
is given as â∗i = e

îj∗
. The same can be shown for all players

i ∈ I, and therefore,

β̂(Q(k +K + 1)) = β̂(Q(k)) = â∗,

which indicates that the estimated equilibrium is un-
changed. Substituting the above and (13), with â∗i = e

îj∗
,

into (6) yields that, at time-step (k +K + 1),

xi(k +K + 1) = (1− α)K+1xi(k)

+ (1− (1− α)K+1)â∗i .

Substituting (14) into (8) gives at time-step (k +K + 1),

Q
îj∗

(k +K + 1) = (1− µ)Q
îj∗

(k +K) + µUi(â
∗)

= (1− µ)K+1Q
îj∗

(k)

+ (1− (1− µ)K+1)Ui(â
∗),

which completes the induction argument.

�
The next corollary follows immediately by using 0 < α <
µ < 1.

Corollary 4.2. If conditions in Proposition 5 hold for some
sufficiently large K > 0, then with probability

∏∞
κ=1(1 −

(1− α)κ)N for every player i

lim
K→∞

Q
îj∗

(k +K) = Ui(â
∗), (15)

lim
K→∞

xi(k +K) = â∗i , (16)

where â∗ = (â∗i , â
∗
−i), â

∗
i = e

îj∗
.

Remark 4.2. Proposition 5 showed that if for every player,
the actual (true) utility of the estimated equilibrium is
greater than the numerical (estimated) utility of other
actions, the Q-value of the estimated equilibrium is likely
to converge to the true utility. The sufficient conditions
in Proposition 5 mean that actions other than â∗i are sub-
optimal not only for the estimated utility (Q-value) (hence
not played under the algorithm), but also sub-optimal
for the actual (true) utility. While intuitively these are
reasonable conditions, we do not have yet an argument to
show how strict they are. Under these conditions we can
give a more precise characterization as in the next result.

Theorem 6. If the conditions in Proposition 5 hold then for
sufficiently largeK, x(k+K) converges to a neighbourhood

of â∗, almost surely.
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Proof. From Proposition 5 and Corollary 4.2, (16) holds
for every player with the same probability

∏∞
κ=1(1− (1−

α)κ)N . We show that this probability is strictly positive,
using an approach as used in Proposition 6.1 in Chasparis
et al. (2011). The product

∏∞
κ=1(1− (1−α)κ) is non-zero

if and only if
∑∞

κ=1 log(1− (1− α)κ) > −∞, i.e.,

−
∞∑
κ=1

log(1− (1− α)κ) < ∞. (17)

Note that,

lim
κ→∞

− log(1− (1− α)κ)

(1− α)κ
= lim

κ→∞

1

1− (1− α)κ
= 1,

since 0 < (1 − α) < 1. Thus, from the limit comparison
test, (17) holds if and only if

∑∞
κ=1(1 − α)κ < ∞. This

obviously holds for 0 < (1− α) < 1, since
∞∑
κ=1

(1− α)κ =
1

1− (1− α)
=

1

α
< ∞.

Therefore, indeed

lim
K→∞

K∏
κ=1

(1− (1− α)κ) > 0,

i.e., as K → ∞, (16) holds and x(k + K) converges

to â∗ with non-zero probability, limK→∞
∏K

κ=1(1 − (1 −
α)κ)N > 0. In fact, from the above strictly positive limit
we can conclude that ∀ζ, such that 0 < ζ < 1, ∃K0

sufficiently large, such that (1 − (1 − α)κ) ≥ ζ, for all
κ ≥ K0, or (1 − α)κ ≤ (1 − ζ), for all κ ≥ K0. From
Proposition 5, this implies that after K0 iterations, x(k +
K0) enters a neighbourhood of radius (1− ζ) , B(1−ζ)(â

∗),

with probability
∏K0

κ=1(1− (1−α)κ)N . Following a similar
argument as in the proof of Theorem 3.1 in Marden et al.
(2009a) and Theorem 6.2 in Young (2005), we conclude
that there exists constants p0 =

∏∞
κ=1(1− (1−α)κ)N > 0,

K0 ≥ log1−α(1− ζ) > 0, both independent of k, such that
x(k+K) enters the neighbourhood of â∗ with probability
p0, hence converges to â∗ almost surely.

�
Remark 4.3. In the case when players use the JSFP algo-
rithm (assuming own utility information and observation
of opponents’ joint-actions), players reach a Nash equilib-
rium and stay there with probability p > 0 over a finite
time T > 0, cf. Theorem 3.1 in Marden et al. (2009a).
As shown in Theorem 6 when players use the Q-learning
algorithm and estimate their own utility function, players
are only guaranteed to reach the estimated equilibrium
with some probability.

4.2 Equilibrium under perturbation

In the previous section, we proved that the Q-learning
algorithm converges to an estimated equilibrium almost
surely. Next we impose some additional assumptions that
help to show that the estimated equilibrium can reach
an actual Nash equilibrium. Based on the perturbation
function in (10), we adjust the learning rates of Qij

depending on the probability xij of action ai = eij being
played.

Assumption 4.1. Player step-sizes of Q are adjusted based
on the frequency of a particular action, i.e., for all players
i ∈ I, actions j ∈ Ai,

µij(k) = (1− χij(k)),

where χij is defined in (10) and Assumption 3.2.

Assumption 4.2. Player utilities satisfy the following: for
all players i ∈ I, actions j, j′ ∈ Mi, j ̸= j′, and joint
actions a−i ∈ A−i

Ui(eij , a−i) ̸= Ui(eij′ , a−i).

Assumption 4.2 means that no player is indifferent between
distinct strategies; alternatively we could assume that all
pure equilibria are strict.

Assumption 4.3. After |xi|∞ > ζ, ∀i ∈ I, i.e., when every
player has entered the perturbation zone, no more than one
player choose action j′ other than ĵ∗ at each iteration.

In order to satisfy Assumption 4.3, we can either force
the perturbation to be asynchronous, so that it affects one
player at a time, or we can choose ζ in Assumption 3.2 to
be sufficiently large and ξ to be sufficiently small, so that
(1− ζ(1− ξ))2 is sufficiently close to 0.

Next we show that under the perturbation function in
Assumption 3.2, the estimated equilibrium would converge
to a Nash equilibrium almost surely.

Theorem 7. If for some sufficiently largeK > 0, conditions
in Proposition 5 hold, and in addition Assumption 4.1,
4.2, 4.3 hold, then the estimated equilibrium â∗(k) would
converge to a Nash equilibrium a∗ almost surely.

Proof. From Proposition 5 and Corollary 4.2, it follows
that (15) and (16) holds for player m, that is

lim
K→∞

Q
mĵ∗

(k +K) = Um(â∗(k)),

lim
K→∞

xm(k +K) = e
mĵ∗

.

Suppose that the perturbation becomes active at some
large enough time-step k̄, and player m choose a different
j′-th action other than the ĵ∗-th one, i.e., chooses a′m(k̄) =
emj′ other than â∗m(k̄) = e

mĵ∗
. By Assumption 4.2, this

is the only player to do so at time k̄. From (10), such
perturbation happens with probability of at least ξ/|Ai|
for player m. â∗m(k̄) was the component of player m in
the estimated equilibrium â∗ = (â∗m, â∗−m). Let a′(k̄) =

(a′m(k̄), â∗−m(k̄)) the new action profile (joint-action) at

time-step k̄. Since player m choose the j′-th action at k̄,
from (8) and Assumption 4.1, at (k̄+1), he would update
its Qmj′ to be

Qmj′(k̄ + 1) = χmj′(k̄)Qmj′(k̄)

+ (1− χmj′(k̄))Um(a′(k̄)).
(18)

By assumption, conditions of Proposition 5 hold, so that
for player m, Q

mĵ∗
(k̄) > Qmj′(k̄). Now consider the

following two cases:

• If Um(a′(k̄)) < Um(â∗(k̄)), then player m does not
find any response that is better.

• If Um(a′(k̄)) > Um(â∗(k̄)), then player m finds an
action a′m(k̄) that is a better response than â∗m(k̄),
i.e. the joint-action a′(k̄) becomes the new estimated
best response and this is denoted by â∗(k̄ + 1),

â∗(k̄ + 1) := a′(k̄) = (a′m(k̄), â∗−m(k̄)) (19)

̸= (â∗m(k̄), â∗−m(k̄)) = â∗(k̄).
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In the first case, i.e. Um(a′(k̄)) < Um(â∗(k̄))), i.e., at a
failed attempt to improve the utility, players would stay
at the estimated equilibrium â∗ almost surely, and the
potential stays unchanged.

The second case is a successful attempt to improve the
utility, i.e., when Um(a′(k̄)) > Um(â∗(k̄)). Consider (18)
and note that, since actions other than estimated best
response ĵ∗ have sufficiently small probability, i.e. χmj′(k̄)
is sufficiently close to 0, (1 − χmj′(k̄)) is sufficiently
close to 1. Thus, from (18), Qmj′ is updated to be
sufficiently close to Um(a′(k̄)), and therefore the j′-th
action, a′m(k̄) = emj′ becomes its new estimated best
response. From (3) it follows that when the utility of player
m is improved, the potential of the game is improved also.
Thus a successful attempt to improve the utility of player
m, i.e., Um(a′m(k̄), â∗−m(k̄)) > Um(â∗m(k̄), â∗−m(k̄)), would
result in an improved potential of the game G and a new
estimated best response profile â∗(k̄ + 1) as in (19).

In summary, the first case leads to an estimated best
response that is unchanged and results in an unchanged
potential of the game G, while the second case leads to a
new estimated best response that improves the potential
of the game G. Whenever a player m takes a successful
attempt and shifts to the new estimated equilibrium, the
utility of this player would improve by Um(â∗(k̄ + 1)) −
Um(â∗(k̄)). Hence, by (3),

P (â∗(k̄ + 1))− P (â∗(k̄)) = Um(â∗(k̄ + 1))− Um(â∗(k̄))

hence, the potential value of the whole profile would also
increase by the same amount. By the finite improve-
ment property (Theorem 3, Monderer and Shapley (1996)
Lemma 2.3), the estimated equilibrium â∗(k) converges to
an actual Nash equilibrium a∗ almost surely.

�
Remark 4.4. Theorem 7 and Corollary 4.2, show that in
a potential game, the Q-learning scheme with a perturba-
tion function as in Assumption 3.2 and Assumption 4.1
will converge to a Nash equilibrium almost surely, while
using less information than JSFP. Instrumental for this
is the finite improvement property of potential games.
Our analysis techniques are similar to those used in the
JSFP case Marden et al. (2009a). However, the setup
here is complicated by players’ lack of information on the
analytical structure of their own utility.

5. SIMULATIONS

In this section, we present simulation results of the Q-
learning algorithm (6) and (8), for an example of a
congestion game in a similar setup as in Marden et al.
(2009a). A typical congestion game consists of a set I of
N players and a set R of resources. For each player i, let
the set of pure strategies Ai be the set of resources. An
action ai ∈ Ai reflects a selection of (multiple) resources,
ai ∈ R. A player i is “using” resource r if r ∈ ai. For an
action profile a, let qr(a) be the number of drivers using
road r, i.e., {i ∈ I : r ∈ ai}. For each resource r ∈ R an
associated cost function cr is defined that reflects the cost
of using the resource as a function of the number of players
using that resource. In a congestion game, the utility of
player i using resources indicated by ai depends only on
the total number of players using the same resources, i.e.,

Ui(a) = −
∑
r∈ai

cr(qr(a)),

where the negative sign reflects the cost of using a resource
and its effect on a utility function. Any such congestion
game is a potential game Rosenthal (1973).

In the case of distributed routing, consider the simple case
ofN = 100 players seeking to traverse from node A to node
B along 10 different parallel roads, Marden et al. (2009a).
Each driver can select any road as a possible route, so
that the set of resources is the set of roads, R, and each
player can select one road. Each road has a quadratic cost
function with positive (randomly chosen) coefficients,

cr(q) = arq
2 + brq + cr, r = 1, . . . , 10,

where q represent the number of vehicles on that particular
road. The parameter α are chosen as 0.5 for all days and
all players, and µ is chosen as 0.97.

Fig.2, shows results obtained by implementing the JSFP
algorithm with a similar setup as in Marden et al. (2009a),
while Fig. 1 shows corresponding results for the Q-learning
algorithm. Comparing the two cases, it can be seen that
the two algorithms have similar convergence time, while
transient fluctuations in strategies and utilities over time
are smaller for the Q-learning algorithm. These advantages
are obtained even though Q-learning has less information
requirements. However, the lack of the utility structure
information results in a sub-optimal solution, compared
to the Nash equilibrium in JSFP. On the other hand,
when compared to other Q-learning algorithms, this is
a reasonably good sub-optimal point to stay on while
the perturbation function is still trying to optimize the
solution to reach a Nash equilibrium.

6. CONCLUSIONS

We considered a Q-learning scheme for distributed con-
vergence to Nash equilibria in potential games. The main
difference from prior schemes lies in the choice of step-sizes
and perturbation function. The non-negligible constant
step-sizes result in faster convergence to an estimated
equilibrium. This helps reduce the learning cost to a sub-
optimal point while searching for the Nash equilibria.
When compared to JSFP, the Q-learning with constant
step-sizes requires less information aggregation, but only
reaches a sub-optimal state that can be considered an
approximation of a Nash equilibrium. We showed that
by appropriately choosing frequency dependent step-sizes,
sufficient exploration of all actions is ensured and the esti-
mated equilibrium approaches the Nash equilibria. Future
work will consider relaxing these conditions, as well as
possible extensions to other classes of games.
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