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Abstract: This paper is about the bang-bang control strategy for a class of nonlinear stochastic
systems. The goal is to give a new approach to stabilize the considered systems which are
affected by multiplicative noises by using a state feedback control at first, then an observer-
based feedback control in a second time. The so called bang-bang controller permits to ensure
the almost sure exponential stability of the closed loop stochastic system.
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1. INTRODUCTION

During the last two decades many authors have studied the
stability of systems described by a stochastic differential
equation (SDE) driven by multiplicative noises. These
noises are zero-mean Brownian motions. The SDE are
characterized by the presence of random terms in their
models in order to take into account some randomness
in their evolution. This reflects that the behavior of the
solution can not be accurately described using a mathe-
matical model in most physical applications. Thus SDE
have generally two parts: the drift one which corresponds
to the dominant action of the system and the diffusion
one representing the randomness along the dominant be-
havior. The stochastic modeling permit to obtain perti-
nent models in various fields such as engineering, finance,
biology, population evolution and physics (the reader can
see Has’minskii [1980], Mao [1994, 1997], Klebaner [2001],
Øksendal [2003], Damm [2004] and references therein).

Notice that there are many types of definition to charac-
terize stability of the equilibrium point. Each definition
leads to different designs of control laws and observers for
the considered stochastic systems. These definitions allow
to express some statistical properties of the solution due
to the effect of noises on the solution behavior. The most
common stability definitions are the stability in probabil-
ity, the asymptotic stability, the almost sure exponential
stability (ASES) and the pth moment exponential stability
Kushner [1967], Kozin [1969], Has’minskii [1980], Mao
[1994, 1997], Damm [2004]. In the design of control and
observers, the most used stability definition is the mean-
square exponential stability (MSES) which corresponds
to 2nd moment exponential stability. This stability leads
to “good performance” in the design of control laws and
observers: for example, the well knownH∞ control is based
on the MSES Damm [2004], Dragan et al. [1997], Hin-

richsen and Pritchard [1998], Gershon et al. [2001], Zhang
et al. [2005]. The MSES can lead to some conservatism
since the equilibrium point of a SDE can be almost surely
exponential stable (ASES) but not MSES and, for a wide
class of SDE, the MSES of the equilibrium point implies
the ASES, but the converse is not true (theorem 4.4.2,
Mao [1997]).

This is one of the motivation of this paper; in fact
we search here a control law in order to ensure the
ASES of the considered systems through a bang-bang
control approach. We consider here a class of nonlinear
stochastic systems where the nonlinearity is composed by a
Lipschitz part and a bilinear in the control input part. And
precisely in Longchamp [1980] and in Mohler [1991] it is
proposed to use a bang-bang controller to stabilize bilinear
deterministic systems when all the states are measured.
Then, similarly to them, we decide to use this type of
control for the systems we consider in this paper. Notice
that at our knowledge, it is the first time that a bang bang
approach is used for stochastic systems.

The bang-bang control is a saturated control switching
between a minimum value and a maximum value. When
some components of the state vector are not available,
the bang-bang approach of Longchamp [1980] and Mohler
[1991] has been modified in Zhang et al. [2004] and in
Gérard et al. [2007] in order to include an observer in the
control law. Then a decoupling approach is used in order
to ensure the stability of the closed loop system.

This paper is organized as follows. In section 2, some
preliminaries results on the ASES of SDE are given.
Then, in section 3, the state feedback bang-bang control
law ensuring the ASES of the equilibrium point of the
considered closed-loop SDE is given. In section 4, it
is considered that all the state of the system are not
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available; so an observer-based bang-bang controller is
designed to guarantee the ASES of the closed-loop system.
Notice that the proposed designs lead to bilinear matrix
inequalities. So an iterative resolution method based on
linear matrix inequalities is given in the last part of the
appendix. Section 5 concludes the paper by recalling the
important results that have been given. More, some useful
results on SDE are recalled in the appendix.

Notations. IRn denotes the n-dimensional euclidean space.

‖A‖ =

√∑
i,j

A2
i,j =

√
tr(ATA) is the Euclidean norm of

the matrix A, while ‖x‖ =
√
xTx is the Euclidean norm of

the vector x. “a.s.” means almost surely. For a symmetric
matrix A, A > 0 means that the matrix A is positive
definite. Symbols <, 6 and > for matrices are defined
similarly.

2. PRELIMINARY RESULTS

We consider the following nonlinear system

dx = (At0x+`(x)+

m∑
i=1

uiAtix) dt+

d∑
j=1

Awjx dwxj(1a)

dy = Cxdt+Dxdwy (1b)

where x ∈ IRn is the state, u ∈ IRm is the control input and
y ∈ IRp is the measured output. wx ∈ IRd and wy ∈ IR are
independent Brownian motions. The function `(x) verifies
`(0) = 0 and the following Lipschitz condition with κ > 0

‖`(x)− `(x)‖ 6 κ ‖x− x‖ . (2)

We define the ASES as follows.

Definition 1. (Mao [1997], Hu and Mao [2008]) The equi-
librum point of the SDE (1a) is ASES if

lim sup
t→+∞

1

t
ln(‖x(t)‖) < −α < 0 a.s. (3)

∀ x0 ∈ IRn, lim sup
t→+∞

1

t
ln(‖x(t)‖) is the Lyapunov exponent

of the solution x.

The ASES of the equilibrum point of the SDE (1a) can
be analyzed by using an approach of Lyapunov type. For
this we apply the Itô formula (Mao [1997]) to the function
V (x) from IRn to IR+ and we obtain

dV (x) = LV (x) dt+ BV (x) dwx, (4)

with

LV (x) =
∂V

∂x
(x)f(x)+

1

2
tr

(
gT(x)

∂2V

∂x2
(x)g(x)

)
,

BV (x) =
∂V

∂x
(x)g(x).

The ASES of the equilibrum point of the SDE (1a) is given
by the following theorem.

Theorem 1. (Mao [1997], Hu and Mao [2008]) Consider
that there exist a Lyapunov function positive definite V (x)
and constants c0 > 0, c1 > 0, c2 ∈ IR and c3 > 0 such that,
if ∀x 6= 0 and ∀ t > 0,

c1‖x‖c0 6 V (x), (5)

LV (x) 6 c2V (x), (6)

‖BV (x)‖2 > c3V 2(x), (7)

then

lim sup
t→+∞

1

t
ln(‖x(t)‖) 6 2c2 − c3

2c0
a.s. ∀x0 ∈ IRn (8)

The equilibrium point x = 0 is ASES if c3 > 2c2.

The constant c2 in the theorem can be positive, negative
or zero, then LV (x) can not be negative definite in the
ASES case, unlike in the MSES one.

3. STATE-FEEDBACK BANG-BANG CONTROL

In this part, we consider that all the components of the
state x are available.

Then the following state feedback controller u(x) is consid-
ered in order to ensure the ASES of the equilibrium point
of the SDE (1a)

u(x) = −

 |α1| sgn(xTATt1Px)
...

|αm| sgn(xTATtmPx)

 (9)

The conditions to be fulfilled are given in the following
theorem.

Theorem 2. The control u(x) in (9) is a bang-bang control
ensuring the ASES of the equilibrium point of the SDE
(1a) if there exist P = PT > 0 and reals α1, . . . , αm,
ρ1 > 0, . . . , ρd > 0 and µ > 0 such that the following
inequality

(1, 1)a A
T
w1
P · · · · · · ATwdP P

PAw1
−P 0 · · · 0 0

... 0
. . .

. . .
...

...
...

...
. . .

. . . 0
...

PAwd 0 · · · 0 −P 0

P 0 · · · · · · 0
−In
µ


< 0 (10)

is verified with ρ =

d∑
j=1

ρj and

(1, 1)a = (At0 +

m∑
i=1

αiAti)
TP + P (At0 +

m∑
i=1

αiAti)

+ κ2µ−1In − ρP,
and if, for every j = 1, . . . , d, one of the two following LMI

ATwjP + PAwj −
√

2ρjP > 0, (11)

ATwjP + PAwj +
√

2ρjP < 0 (12)

is verified.

Proof. Let V (x) = xTPx be a Lyapunov function candi-
date with P = PT > 0.

The condition (5) holds with c0 = 2 and c1 = λmin(P ).

To prove condition (6), we calculate LV (x)

LV (x) = xT ((At0 +

m∑
i=1

uiAti)
TP + P (At0 +

m∑
i=1

uiAti)

+

d∑
j=1

ATwjPAwj )x− 2xTP`(x) (13)
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Since `(x) is a Lipschitz function verifying the condition
(2) and `(0) = 0, using lemma 5 (in the Appendix section)
with µ > 0 we have

LV (x) 6 xT ((At0 +

m∑
i=1

uiAti)
TP + P (At0 +

m∑
i=1

uiAti)

+

d∑
j=1

ATwjPAwj + κ2µ−1In + µPP )x (14)

Applying the theorem of the almost sure exponential
stability we must verify that LV (x) − ρV (x) 6 0, or
equivalently

xT ((At0 +

m∑
i=1

uiAti)
TP + P (At0 +

m∑
i=1

uiAti)

+

d∑
j=1

ATwjPAwj + κ2µ−1In + µPP − ρP )x 6 0 (15)

In order to include the control law (9) in the above
inequality, the idea is to add and subtract the terms αi
to it, then we obtain

xT ((At0 +

m∑
i=1

αiAti)
TP + P (At0 +

m∑
i=1

αiAti)

+

d∑
j=1

ATwjPAwj + κ2µ−1In + µPP − ρP )x

+ xT (

m∑
i=1

(ui − αi)AtiTP + P

m∑
i=1

(ui − αi)Ati)x︸ ︷︷ ︸ (16)

Concerning the underbrace term we have

xT (

m∑
i=1

(ui − αi)AtiTP + P

m∑
i=1

(ui − αi)Ati)x

= xT (

m∑
i=1

(− |αi| sgn(xTATtiPx)− αi)AtiTP

+ P

m∑
i=1

(− |αi| sgn(xTATtiPx)− αi)Ati)x (17)

The sign of (− |αi| sgn(xTATtiPx) − αi)xTATtiPx depends

on the sign of xTATtiPx as follows.

(i) If xTAtiPx > 0 and if

|αi| =
{

αi if αi > 0

−αi if αi < 0
(18)

then{
if αi > 0⇐⇒ −|αi| − αi = −2αi < 0

if αi < 0⇐⇒ −|αi| − αi = 0
(19)

(ii) If xTAtiPx < 0 and if{
if αi > 0⇐⇒ |αi| − αi = 0

if αi < 0⇐⇒ |αi| − αi = −2αi > 0
(20)

then the underbrace part is 6 0 and consequently

LV (x)− ρV (x) 6 0⇐⇒ (At0 +

m∑
i=1

αiAti)
TP

+ P (At0 +

m∑
i=1

αiAti) +

m∑
i=1

ATwjPAwj

+ κ2µ−1In + µPP − ρP 6 0 (21)

Applying Schur lemma to this inequality permits to obtain
the LMI (10).

Finally, to verify relation (7), we apply BV (x) to the
equation (1a) and we obtain

BV (x) =
[
xT (ATw1

P + PAw1
)x . . .

. . . xT (ATwdP + PAwd)x
]
. (22)

If there exists a real c3 = 2ρ with ρ =

d∑
j=1

ρj and ρj > 0

such that ‖BV (x)‖2 > c3V
2(x), then the relation (7) is

satisfied. Using the relation (22), we obtain

‖BV (x)‖2 − c3V 2(x)

=

d∑
j=1

xT (ATwjP + PAwj −
√

2ρjP )x

× xT (ATwjP + PAwj +
√

2ρjP )x. (23)

The condition ‖BV (x)‖2 > c3V
2(x) is verified if, for all

j with j = 1, . . . , d, one of the two LMI (11) and (12) is
verified.

Since c2 < ρ and c3 = 2ρ > 0, we have c3 > 2c2, and the
inequality (6) is verified and the equilibrium point of the
SDE (1a) where u is given by (9) is ASES. �

4. OBSERVER-BASED BANG-BANG CONTROL

In this section, we do not have access to all the components
of the state x; so, we consider all the system (1) with
measurement equation (1b).

The goal of this section is to design the following observer
based bang-bang controller for the nonlinear stochastic
system (1)

dx̂ = (At0 x̂+

m∑
i=1

uiAti x̂+ `(x̂)) dt

+ (K0 +

m∑
i=1

Kiui)(dy − Cx̂dt) (24)

The matrices Ki are the gains of the observer to determine
such that the SDE (1a) and the observation error e = x−x̂,
which is described by the following stochastic differential
equation (SDE)

de = ((At0−K0C+

m∑
i=1

(Ati−KiC)ui))e+`(x)−`(x−e)) dt

+

d∑
j=1

Awjxdwxj − (K0 +

m∑
i=1

Kiui)Dxdwy, (25)

are ASES.
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Recall that the bang-bang control input u in SDE (24) and
(25) is reconstructed using the estimated state x̂ given by
the observer (24) like

u(x̂) = −

 |α1| sgn(x̂TATt1F x̂)
...

|αm| sgn(x̂TATtmF x̂)

 (26)

As − |αi| 6 ui 6 |αi|, for i = 1, . . . ,m, we can define the
following convex polytope

P = {[− |α1| , |α1|]× . . .× [− |αm| , |αm|]} (27)

In this case the bang-bang (switching) controller is chosen
as a parameter varying in the polytope P where the
vertices are noted by S
S = {[β1, . . . , βm]T },∀i = 1, . . . ,m, βi ∈ {− |αi| , |αi|}

(28)

For all v = 1, . . . , 2m, we define the following vertices
Γv = [Γv1, . . . ,Γ

v
m] ∈ S.

Then, inserting the bang-bang control (26), the SDE (1a)
becomes

dx = (At0x+`(x)+

m∑
i=1

ΓviAtix) dt+
d∑
j=1

Awjxdwxj (29)

and the error equation (25) becomes

de = ((At0−K0C+

m∑
i=1

(Ati−KiC)Γvi ))e+`(x)−`(x−e)) dt

+

d∑
j=1

Awjxdwxj − (K0 +

m∑
i=1

KiΓ
v
i )Dxdwy (30)

Remark 3. Notice that the vertices Γvi (with i = 1, . . . ,m
and v = 1, . . . , 2m) in (29) and (30) depend on x̂ (see the
control u(x̂) in equation (26)). To simplify the notations,
we use Γvi instead of Γvi (x̂) since the proof of the almost
sure exponential stability in theorem 4 must be checked
with the values of all vertices in the set S for the convex
polytope P (see LMI (33) and (34)). �

If we put

fv1 (x) =

(
At0 +

m∑
i=1

ΓviAti

)
x+ `(x),

g1(x) = [Aw1x · · · Awdx 0],

fv2 (x, e) =

(
At0 −K0C +

m∑
i=1

(Ati−KiC)Γvi

)
e

+ `(x)− `(x− e),

gv2(x) =

[
Aw1

x · · · Awdx K0x+

m∑
i=1

KiΓ
v
i x

]
,

w =

[
wx
wy

]
,

for all v = 1, . . . , 2m, the SDE (29) and (30) become

dx = fv1 (x) dt+ g1(x) dw (31a)

de = fv2 (x, e) dt+ gv2(x) dw (31b)

The stochastic system (31) have a triangular form since e
does not appear in the SDE (31a).

In association with (31), the following “decoupled” SDE
are defined

dx = fv1 (x) dt+ g1(x) dw (32a)

de = fv2 (0, e) dt (32b)

The condition for ASES with the bang-bang observer-
based control given by (24) and (26) are presented in the
following theorem.

Theorem 4. The equation (24), in assocation with the
control given by (26) is an observer-based bang-bang
control ensuring the ASES of the equilibrium point of the
SDE (29) and (30) if there exist matrices F = FT > 0,
Q = QT > 0 and Yi (i = 0, . . . ,m) and reals α1, . . . , αm,
ρ1 > 0, . . . , ρd > 0 and µ0 > 0, µ1 > 0 such that the
following LMI

(1, 1) ATw0
F . . . ATwdF F

FAw0
−F 0 0 0

... 0 0
. . . 0

FAwd 0 0 0 −P
F 0 0 0

−In
µ0

 < 0 (33)

(1, 1)b Q
Q −In

µ1

 < 0 (34)

are verified for all v = 1, . . . , 2m with ρ =

d∑
j=1

ρj and

(1, 1) = (At0 +

m∑
i=1

ΓviAti)F + F(At0 +

m∑
i=1

ΓviAti)

+

d∑
j=1

ATwjFAwj + κ2µ−10 In − ρF

(1, 1)b =

m∑
i=1

((QAti−YiC)TΓvi + (QAti−YiC)Γvi )

+ (QAt0 − Y0C)T + (QAt0 − Y0C) + µ−11 κ2In.

and if, for any j = 1, . . . , d, one of the two LMI

ATwjF + FAwj −
√

2ρjF > 0, (35)

ATwjF + FAwj +
√

2ρjF < 0 (36)

is verified.

The gain matrices Ki are given by Ki = Q−1Yi for
i = 0, . . . ,m.

Proof. To verify the ASES, the theorem 6 proven in
Barbata et al. [2012] is used. This theorem allows to
decompose the problem into two subproblems, i.e. we
study the ASES of the equilibrium point of the SDE (32a)
and the ASES of the equilibrium point of the SDE (32b)
separately.

ASES of the equilibrium point of the SDE (32a):

Let Vx(x) = xTF x be a Lyapunov function candidate with
F = FT > 0.

The condition (5) holds with c0 = 2 and c1 = λmin(F).

By using Itô calculus on SDE (29) and assumption 1, ap-
plying the theorem of the almost sure exponential stability
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requires to verify that LVx(x)−ρVx(x) 6 0, or equivalently
that

(At0 +

m∑
i=1

ΓviAti)F + F(At0 +

m∑
i=1

ΓviAti)

+

d∑
j=1

ATwjFAwj + κ2µ−10 In + µ0FF − ρF 6 0 (37)

Applying the Schur lemma to (37) leads to inequality (33)
(for all v = 1, . . . , 2m).

The application of BVx(x) to the SDE (29) gives

BVx(x) =
[
xT (ATw1

P + PAw1
)x . . .

. . . xT (ATwdP + PAwd)x
]
. (38)

The condition ‖BVx(x)‖2 > c3V
2
x (x) is verified with c3 =

2ρ and ρ =

d∑
j=1

ρj if, for all j with j = 1, . . . , d, one of the

two LMI (35) and (36) is verified.

Since c2 < ρ, c3 = 2ρ > 0, we have c3 > 2c2 and, using
the convexity of the polytope P (see (27)), the inequality
(6) is verified and the equilibrium point of the SDE (32a)
is ASES.

ASES of the equilibrium point of the SDE (32b):

Let Ve(e) = eTQe be a Lyapunov function candidate with
Q = QT > 0.

The SDE (32b) is given by

ė =

(
At0 −K0C +

m∑
i=1

(Ati−KiC)Γvi

)
e− `(−e) (39)

and is deterministic, i.e. it is an ordinary differential
equation (ODE).

Using assumption 1, the time-derivative of Ve(e) along the
trajectory of the ODE (39) yields

V̇e(e) 6 e
T

(
m∑
i=1

((Ati−KiC)TΓviQ+Q(Ati−KiC)Γvi )

+(At0 −K0C)TQ+Q(At0 −K0C)

+µ−11 κ2In + µ1QQ
)
e (40)

Using the convexity of the polytope P, the equilibrium
point of the SDE (32b) is exponentially stable if the
inequality

m∑
i=1

((Ati−KiC)TΓviQ+Q(Ati−KiC)Γvi )

+ (At0 −K0C)TQ+Q(At0 −K0C)

+ µ−11 κ2In + µ1QQ < 0 (41)

is satisfied for all v = 1, . . . , 2m. Indeed, if inequality holds,
then there exists a real ξ > 0 such that

V̇e(e) 6 −ξ eT e 6
−ξ

λmax(Q)
Ve(e)

and we obtain

‖e‖ 6

√
λmax(Q)

λmin(Q)
‖e0‖

−ξ
λmax(Q)

t

where e0 = e(t0) with the initial time t0 = 0.

If we put Yi = QKi for i = 0, . . . ,m, applying the Schur
lemma to inequality (41) leads to the inequality (34). The
proof is ended since the ASES and the exponential stability
are equivalent for the ODE (32b). �

5. CONCLUSION

In this article we present a new method to stabilize a
nonlinear stochastic system with a Lipschitz nonlinearity
using a bang-bang control strategy. The stabilization is
done for the state feedback case and for the observer-based
feedback case. This kind of control realizes the almost sure
exponential stability of the equilibrium point of the closed-
loop stochastic nonlinear system.

APPENDIX

First Result

Lemma 5. (Petersen [1987]) We consider three matrices
A ∈ IRn×q, B ∈ IRp×n and C ∈ IRq×p with CTC 6 Ip,
then, for all real µ > 0, then

2xTACBx 6 µxTAATx+
1

µ
xTBTBx. (42)

Second Result

Consider the two following SDE

dx1 = f1(x1) dt+ g1(x1) dw (43a)

dx2 = f2(x1, x2) d t+ g2(x1) dw (43b)

and

dx1 = f1(x1) d t+ g1(x1) dw (44a)

dx2 = f2(0, x2) dt (44b)

where x1 ∈ IRn1 , x2 ∈ IRn2 , x1 ∈ IRn1 , x2 ∈ IRn2 and w is
an independent multidimensional Brownian motion.

Assumption 1. For all t > 0, there exists a real k > 0
such that

‖f2(x1, x2)− f2(0, x2)‖ 6 k (‖x1‖+ ‖x2 − x2‖) , (45)

tr
(
(gi(x1)− gi(x1))(gi(x1)− gi(x1))T

)
6 k ‖x1 − x1‖2

i = 1, 2. (46)

Theorem 6. (Barbata et al. [2012]) Under assumption 1,
the equilibrium point of the SDE (43) is almost surely
exponentially stable if and only if the equilibrium point of
the SDE (44) is almost surely exponentially stable.

On the determination of the coefficients αi

In theorem 2, the inequality (10) is bilinear since the
coefficients αi and the Lyapunov matrix P should be
determined.

This bilinear inequality can be “transformed” in to linear
matrix inequalities (LMI) in order to use standard LMI
solver for convex optimization problem.

To do that, we consider two inequalities in the sequel:
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• the inequlity I1 which corresponds to the inequality
(10) by replacing the term (1.1)a by

(1, 1)a = (At0 +

m∑
i=1

αiAti)
TP +P (At0 +

m∑
i=1

αiAti)

+ κ2µ−1In − ρP − βIn
with β ∈ IR.

• the inequality I2 which corresponds either to inequal-
ity (11) or to inequality (12).

The idea is to minimize a real β. If we find β < 0, then
the ASES is obtained. But, since β can be positive, the
inequality I1 < 0 can be solved even if the inequality (10)
is not verified, which allows to continue to try to find a
feasible solution to the theorem 2.

We present below the sketch of an iterative algorithm in
order to obtain the solutions αi and P .

• Step 0.
Set k = 0 and choose α1 ∈ IR, . . . , αm ∈ IR and ρ > 0.
Find P = PT > 0, µ > 0 and β ∈ IR that solve the
LMI problem

min
β

subject to I1 < 0, I2 < 0

Set β0 = β, P0 = P , α10 = α1, . . . , αm0 = αm,
µ0 = µ and ρ0 = ρ.
− If β0 < 0, go to step 3.
− If β0 > 0, go to step 1.

• Step 1.
k ←− k + 1.
Set P = Pk−1.
Find α1 ∈ IR, . . . , αm ∈ IR, µ > 0, ρ > 0 and β ∈ IR
that solve the LMI problem

min
β

subject to I1 < 0, I2 < 0

Set βk = β, Pk = P , α1k = α1, . . . , αmk = αm,
µk = µ and ρk = ρ.
− If βk < 0, go to the step 3.
− If βk > 0, go to the step 2.

• Step 2.
k ←− k + 1.
Set α = α1k−1

, . . . , α = αmk−1
and ρ = ρk−1.

Find P = PT > 0, µ > 0 and β ∈ IR that solve the
LMI problem

min
β

subject to I1 < 0, I2 < 0

Set βk = β, Pk = P , α1k = α1, . . . , αmk = αm,
µk = µ and ρk = ρ.
− If βk < 0, go to the step 3.
− If βk > 0, go to the step 1.

• Step 3.
End.

Several refinements can be made to this algorithm: stop-
ping criterion, limiting the number of iterations, . . .

For the theorem 4, we propose to use the scalars αi
obtained in theorem 2.
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