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Abstract: Real-time road traffic control has been the subject of active research efforts for more
than fifty years. In recent years, however, the convergence of ubiquitous sensing with seamless
communication technologies has motivated the development of more computationally efficient
control methods, able to operate in real-time in a live environment. In this work, we present a fast
decomposition method for network optimization problems, with application to real-time traffic
control. Our approach is based on a nonlinear programming formulation of the network control
problem and consists of an alternating directions method using forward numerical simulation in
place of one of the optimization subproblems. The method is scalable to realistic city-size road
networks for real-time applications, and is shown to perform well on synthetic and real traffic
networks.

1. INTRODUCTION

The theory of macroscopic traffic flow modeling is based
on the continuum approximation, under which a large scale
road network with millions of individual agents can be
represented by a network of scalar hyperbolic conservation
law. Foundational results on conservation law models of
traffic flow date back to Lighthill and Whitham [1955]
and Richards [1956], and more recently Lebacque [1996]
for consistency results between mathematical and physical
considerations, and Garavello and Piccoli [2006] for well-
posed network models of such systems.

A discretized version of continuous first order traffic flow
models, the cell-transmission model (CTM), was proposed
by Daganzo [1994, 1995], and shown (see Lebacque [1996])
to correspond to a numerical discretization of the associ-
ated partial differential equation (PDE) using a Godunov
scheme (see LeVeque [2002]), assuming piecewise affine
dynamics.

For control applications, a number of results have focused
on embedding a discretized first order macroscopic model
in a model predictive control (MPC) framework (see Garcia
et al. [1989]), with particular emphasis on the network
formulation of such models, see for instance Hegyi et al.
[2002, 2005], Lin et al. [2012]. Nonlinear programming
formulations were then proposed to solve the resulting op-
timization problem (see also Gomes and Horowitz [2006],
Jacquet et al. [2006], Papamichail et al. [2010], Lu et al.
[2010]).

Recently, approaches focused on optimizing for the net-
work model within a particular set of equilibria, such as
uniform density equilibria in Pisarski and Canudas-de-Wit

[2012], were proposed. Additionally, a variety of tractable
results exists for the stabilization problem, both locally
(see Blandin et al. [2010]) and globally in a distributed
framework (see Wongpiromsarn et al. [2012]).

However, real-time resolution of the open-loop nonlinear
traffic control problem remains largely open, notably due
to the size of the state space considered when solving the
continuum model using an explicit discretization method.
In that framework, the Courant-Friedrichs-Lewy (CFL)
condition (see LeVeque [2002]), required for stability of
explicit discretization methods, requires very small time
steps (order 1 second) on typical urban road networks,
leading to a large state-space even for relatively small time
horizons.

Alternative approaches have been investigated notably
in Portilla et al. [2013], in which the authors propose
a decentralized approach for the large-scale nonlinear
programming problem. While their method offers a 50%
computation time reduction with respect to the fully
centralized problem, computation times illustrated remain
long for real-time applications.

The main contribution of this work is a fast and highly
scalable algorithm for the traffic network optimization
problem. The algorithm relies on an effective decompo-
sition along the lines of an alternating directions method,
with two associated subproblems. The first subproblem is
concerned with optimizing the control variables given fixed
traffic states, whereas the second subproblem consists of
optimizing the traffic states given fixed control variables.
We treat the second problem using a forward simulation
procedure, which leads to far more efficient computational
results than methods based on decomposing the full non-
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linear programming problem on a partition of the set of
controllers.

The paper is organized as follows. Section 2 presents the
traffic model. Section 3 introduces the full nonlinear con-
trol model, and section 4 details the proposed decompo-
sition method. In section 5, we present numerical results
on both a small synthetic network and on a real urban
network. Section 6 concludes the paper with relevant di-
rections for future research.

2. TRAFFIC MODEL

2.1 Link model

We define a graph as G := (V,E), where V denotes a
set of nodes, and E a set of directed links connecting
the nodes of V. The graph G is assumed to be strongly
connected. Each link e ∈ E is directed from a tail node,
tail(e) ∈ V , to a head node head(e) ∈ V . For each node
v ∈ V , we define the sets of outgoing and incoming links
from and to that node as: O(v) := {e ∈ E|tail(e) = v} and
I(v) := {e ∈ E|head(e) = v}. We further assume that a

subset Ṽ ⊂ V of the junctions are controllable. A subset of
the links on the boundary of the network are designated as
sources which serve to inject demand into the network and
a subset are designated as sinks with unlimited capacity.

The traffic state at time t at location x is character-
ized by ρ(t, x), where ρ denotes the density of vehicles.
The traffic flow q is given by an empirical concave func-
tion of density, the fundamental diagram: q := Q(ρ),
defined over the interval [0, ρmax]. The critical density
ρc is the density at which the flux functions reaches its
maximum qmax = Q(ρc). In the following, the quantities
ρmax, ρc, qmax, may be link dependent and indexed accord-
ingly ρmax,e, ρc,e, qmax,e.

The link model is given by a first order scalar conservation
law for the vehicles, with the flux function Q(·):

∂ρ

∂t
(t, x) +

∂Q(ρ)

∂x
(t, x) = 0.

Given a discretization grid defined by a time step ∆t and
a space step ∆x, let ρni denote the value of the numerical
solution to the LWR PDE given by the Godunov scheme
(see LeVeque [2002]), a time step n, space cell i:

ρn+1
i = ρni +

∆t

∆x

(
qG(ρni−1, ρ

n
i )− qG(ρni , ρ

n
i+1)

)
, (1)

where the numerical Godunov flux qG(ρi, ρi+1) reads:

qG(ρi, ρi+1) =


Q
(
ρi
)

if ρi+1 ≤ ρi ≤ ρc
Q
(
ρi+1

)
if ρc ≤ ρi+1 ≤ ρi

qmax if ρi+1 ≤ ρc ≤ ρi
min

(
Q
(
ρi
)
, Q
(
ρi+1

))
if ρi ≤ ρi+1.

(2)

In the following, we note Ce the maximal space step index
on link e.

2.2 Junction model

At each node, the so-called junction model specifying the
dynamics across the junction is defined as in Garavello and

Piccoli [2006]. Let B ∈ R|O(v)|×|I(v)|
+ denote the (node and

time dependent in general) matrix of splitting rates. The

possibly non-unique junction flow qnin ∈ R|I(v)|+ into node v
is given by the solution to:

max
q∈R|I(v)|

+

1T q

s.t. 0 ≤ q ≤ S(ρnCe,e), e ∈ I(v),
Bq ≤ R(ρn0,f ), f ∈ O(v),

(3)

where the sending function S(·), defined on [0, ρmax] by

S(ρ) =

{
Q(ρ), if ρ ∈ [0, ρc]
qmax, if ρ ∈ [ρc, ρmax]

(4)

expresses the value of the maximal amount of flow that
can be sent under a given density value, and the receiving
function R(·), defined on [0, ρmax] by:

R(ρ) =

{
qmax, if ρ ∈ [0, ρc]
Q(ρ), if ρ ∈ [ρc, ρmax],

(5)

defines the value of the maximal amount of flow that can
be received under a given density value. In the following
section we present the control formulation.

3. CONTROL MODEL

We consider a MPC formulation for the discretized dy-
namics (1)-(2)-(3)-(4)-(5), with traffic lights modeled by
the maximal flow qmax on links incoming to the controlled
junction, and splitting rates B at the controlled junction.

3.1 Actuators model

For each junction, we consider that traffic lights timings
can be controlled, and specifically that the control vari-
ables are the green times allocated to the signal phases.
The set of phases as well as the cycle lengths are assumed
to be fixed. Let us note H the set of phases for a given
junction, and tj the green time (intersection and time
dependent in general) allocated to a phase j ∈ H. The
phase green times tj impact both the maximal sending
flow on the incoming links, and the splitting rates.

For a given incoming link e, we note ge ∈ [0; 1] the reduc-
tion from the total design capacity, due to the presence of
the traffic light and phase green times tj . This proportion
is given by the ratio of the maximal number of vehicles
sent across the junction in the presence of the traffic
light, compared to the number of vehicles sent across the
junction at capacity without a traffic light, which reads:

ge =
1

L

∑
j∈H

tj
∑

f∈j(1):e∈j(0)

ηef
qmax,e

, (6)

where L is the cycle length, j(0) denotes the origin
link of each movement of the phase j in H and j(1) a
destination link of each movement, and ηef the capacity
of the movement ef .

Under the action of the traffic light, the capacity reduction
ge is modeled as a change in the maximal capacity of the
link e. The corresponding flux function QcCe

(·) for the most
downstream cell Ce on link e, reads:{

QcCe
(ρ) = QCe(ρ) if QCe(ρ) ≤ ge qmax,Ce

QcCe
(ρ) = ge qmax,Ce

(ρ) if QCe
(ρ) ≥ ge qmax,Ce

(7)
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A second impact of the phrase green time tj lies in the
change in the matrix B of splitting rates at the controlled
junction. The matrix of controlled splitting rates Bc,
can be defined in terms of tj for controllable junctions.
Let e, f denote an incoming, respectively outgoing, link
at a controlled junction, and pef denote the element of
Bc corresponding to the pair (e, f), characterizing the
proportion of the flow on link e aiming for link f . The
splitting rate pcef for an adjacent pair of links (e, f) reads:

pcef =

∑
j∈H:(e,f)∈j tj ηef∑
j∈H:e∈j(0) tj ηef

. (8)

In the following section we outline how the actuators
model impacts the traffic model introduced previously. For
simplicity of notation, we omit the superscript c indicating
that the quantities are controlled.

3.2 Traffic dynamics resulting from control model

In the rest of the article, we assume that the flux function
Q(·) is a piecewise affine function with two components.
Using the actuators model from equation (7), it follows
that under the proposed control, the flux function (and
consequently the sending and receiving functions), is either
triangular or trapezoidal.

Allowing for a reduction of qmax yields a range of values
for the critical density, ρc ∈ [ρc1 , ρc2 ]. The sending function
reads:

S(ρ) =

{
νρ if ρ ∈ [0, ρc1 ]

qmax g if ρ ∈ [ρc1 , ρmax]
(9)

and the receiving function reads:

R(ρ) =

{
qmax if ρ ∈ [0, ρc2 ]

qmax + ω(ρ− ρc2) if ρ ∈ [ρc2 , ρmax]
(10)

where

ρc1 =
qmax g

ν
, ρc2 = ρmax +

qmax

ω
,

and
ω =

qmax

ρc2 − ρmax
.

In the following section we describe the proposed opti-
mization formulation and decomposition approach for the
nonlinear control model.

4. MATHEMATICAL PROGRAMMING
FORMULATION

4.1 Nonlinear control model

The nonlinear control model is formulated as the optimiza-
tion of an objective function defined over the network over
a finite horizon N ∆t. In the rest of the article we use
a proxy for the total distance travelled as the objective
function, which is expressed as a weighted sum of flows on
the link. The weighting factor between the flow on the most
downstream cell of the link and the others cells is given by
0 ≤ ζef � 1, which prioritizes the most downstream cell.

We remind the reader that xCe,e generically denotes the
value of the quantity x (or function x(·)) in the most
downstream cell of link e, that the value of the quantity
x into the others cells of the link e is labelled xi,e for

i = 0 . . . Ce − 1, and that x denotes the concatenation of
the xi,e, i = 0 . . . Ce, e ∈ E.

The equality constraint (11b) describes flow propagation
between cells corresponding to the link model (1), with
the Godunov flux defined according to equation (2), for
a flux function mapping the density to the flow (11c).
The constraints (11d)-(11e)-(11f) express a relaxation of
a discretization of the junction model (3)-(4)-(5).

Constraint (11g) defines the effect of the control at a
junction in terms of the upstream link and associated ca-
pacity reduction. Constraints (11h) states that the control
decision variables tn may be updated on the time scale ∆τ
and not in between.

Constraints (11i) and (11j) correspond to the fact that the
green times for each phase should sum to the cycle length,
which is constant, and should stay within certain bounds.

max
ρ,q,t

N∑
n=0

(∑
e∈E

gne q
n
Ce,e +

Ce−1∑
i=1

ζe,iq
n
i,e

)
(11a)

s.t. ρn+1
i,e = ρni,e +

∆t

∆x

(
qG(ρni−1,e, ρ

n
i,e)− qG(ρni,e, ρ

n
i+1,e)

)
,

n = 0 . . . N, e ∈ E, i = 1 . . . Ce − 1 (11b)

qni,e = Qi,e(ρ
n),

n = 0 . . . N, e ∈ E, i = 1 . . . Ce − 1, (11c)∑
e∈I(v)

Bvq
n+1
Ce,e
≤ Rn0,f , f ∈ O(v),

n = 0 . . . N, e ∈ E, v = head(e), (11d)

0 ≤ qn+1
Ce,e
≤ SnCe,e, n = 0 . . . N, e ∈ E (11e)

qn+1
0,e =

∑
i∈I(tail(e))

pi,eq
n+1
Ci,i

,

n = 0 . . . N, e ∈ E (11f)

gne =
1

Lv

∑
j∈Hv

tnv,j
∑

f∈j(1):e∈j(0)

ηef
qmax,Ce,e

,

n = 0 . . . N, e ∈ E (11g)

gn+1
e = gne , (n+ 1)τ 6= 0 mod ∆,

n = 0 . . . N, e ∈ E (11h)∑
i∈Hv

tnv,i = Lv, n = 0 . . . N, v ∈ Ṽ , (11i)

lv,i ≤ tnv,i ≤ uv,i, n = 0 . . . N, v ∈ Ṽ , i ∈ Hv, (11j)

qni,e ≥ 0, n = 0 . . . N, e ∈ E, i = 0, . . . Ce. (11k)

Constraint (11k) characterizes the domain of definition
of the traffic state variables q and ρni ∈ [0, ρmax,e] for
i = 0, . . . Ce, e ∈ E and for all n = 1, . . . N .

One may note that the optimization problem is noncon-
vex. First the constraint corresponding to the numerical
flux (2) is nonconvex due to the min function. Second,
constraint (11c) is an equality constraint for a concave flux
function. Finally, the objective function (11a) is bilinear.

The control variables t appear implicitly in several con-
straints. Upstream of a controlled junction, the flow value
and the numerical flux are expressed as a function of the
traffic control variable ge, using equation (11c) with the
expression (7), and resulting equation (2), respectively.
Additionally, the sending and receiving functions across
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the junction, which appear in constraints (11d) and (11e)
are impacted by the control actions through the modi-
fication of the flux function as detailed in equations (9)
and (10).

The model given by (11a)-(11k) is therefore a continuous
optimization problem with a nonconvex, nonlinear objec-
tive function and a nonconvex feasible region.

4.2 Fast decomposition approach

The very large size of the formulation (11a)-(11k) for
networks of even moderate size means that many tech-
niques typically used for nonlinear programming models
are not effective in this case, and do not permit real-time
optimization of the traffic control problem.

For that reason we develop a decomposition method in-
spired from an alternating directions approach. Here we
consider two subproblems, the first problem being a feasi-
bility problem consisting of finding traffic state variables
compatible with a set of control variables. The second
problem is an optimization problem for the control vari-
ables given fixed traffic state variables.

Solving the discretized network traffic model for a fixed
set of control variables can be done very efficiently in a
forward simulation framework. Conversely, given a set of
traffic state variables, the control variables can be updated
by solving a linear program in far fewer variables and
constraints.

The forward simulation sub-problem consists of iteratively
running the link model and the junction model defined in
section 2.1 and 2.2. The link model is articulated around
the numerical scheme from (1)-(2) with the controlled flux
function from (7). The junction model is based on solving
the linear program (3) with the controlled sending (9) and
receiving (10) functions.

The linear program sub-problem consists of the optimiza-
tion problem (11a)-(11k) for fixed values of the traffic state
variables ρ and q.

5. NUMERICAL EXPERIMENTS

In this section we illustrate the performance of the de-
composition approach introduced in this article in terms
of runtime and optimality, as compared to the original
nonlinear programming formulation. We consider a small
synthetic network shown in figure 1 consisting of 5 links
and 6 nodes, of which only 2 nodes are controlled by
actuators (the other nodes are either source nodes or sink
nodes), as well as a a real city-size network, shown in
figure 2

Additional details about the numerical experiments can
be found in table 1, including the scenario (i.e. which type
of experiment), the method used (the proposed decom-
position approach or the original nonlinear programming
formulation), which network was used, the number of ac-
tuators, links, and nodes as well as the number of source
nodes in parentheses, the time horizon of the forward sim-
ulation, and when in brackets the range of time horizons
tested, the initial condition (demand) or range thereof, and
similarly for the boundary condition, and the number of
randomly-sampled experiments generated,

S	  

S	  

S	   A

A

Fig. 1. Synthetic network: the marker A represents the
actuators, the marker S denotes the source nodes, and
the sink node is unmarked.

Fig. 2. Real urban network: the actuators are indicated
by red and blue markers. Red markers correspond to
arterial actuators whereas blue markers correspond to
freeway actuators.

5.1 Runtime and algorithmic performance

In order to the compare runtime of the proposed decompo-
sition approach with the original nonlinear programming
formulation, we consider an experimental setup where the
state space is of constant size for all instances of the
problem. An instance of the problem is characterized by its
prediction horizon N , spanning the range {360, . . . , 7200}.
We use IBM ILOG CPLEX Optimizer v.12.5 to solve
the relaxed formulation of (11a)–(11k). We terminate the
original nonlinear programming control problem when pri-
mal feasibility is achieved, and we stop the decomposition
method whenever the relative improvement in objective is
below a small threshold (10−6 in the experiments).

As illustrated in figure 3, the proposed decomposition
method is able to handle problems of large size much more
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Fig. 3. Runtime: comparison of scalability between the
nonlinear programming control formulation (blue cir-
cles) and our proposed decomposition method (red
crosses).
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Fig. 4. Improvement: for a real traffic network with
different starting points (differentiated by colors), and
fixed initial/boundary conditions.

efficiently than the original nonlinear programming control
formulation of (11a)-(11k), and leads to an improvement
of about two orders of magnitude.

One may note that the complexity of the forward simu-
lation which serves as the first subproblem in our decom-
position approach is linear in both space dimension time
dimension. The second subproblem used in our decompo-
sition approach is a linear program and is furthermore of
much smaller size than the original nonlinear formulation.

The algorithmic performance of the decomposition method
introduced in this article can be further illustrated by
considering the improvement in the objective function as
a function of the number of iterations of the optimization
method. In figure 4 we display the relation between the
CPU time of the decomposition approach, and the ob-
jective value obtained, for an objective function which is
maximized.

Fig. 5. Improvement on synthetic network: for the
network-wide distance travelled improvement (rela-
tive improvement after control optimization in pro-
portion of value before optimization).

Fig. 6. Improvement on real network: for the network-
wide distance travelled improvement on real 3000-link
traffic network (relative improvement after control op-
timization in proportion of value before optimization).

5.2 Control performance in non incident situation

In this section we quantify numerically the performance
of the decomposition approach proposed in terms of ob-
jective function improvement. We consider an instance
of the control problem with the total distance travelled
as an objective function, computed as the sum of flow
overall discretized time and space steps. We measure the
improvement by comparing the throughput after control
optimization with respect to the initial value, estimated
using a single forward simulation of the discretized network
traffic model.

In order to assess how the decomposition approach per-
forms under a variety of different real-world settings, we
randomly sample a large number of initial and boundary
conditions and measure the relative improvement for each
sample. The results are illustrated in figure 5 for the
synthetic network and in figure 6 for the real network.

It can be seen from the figures that although the improve-
ment level of the control objective varies, due to the non-
convex nature of the problem, the decomposition method
is always able to improve the objective, regardless of where
the optimization process was initialized.

5.3 Control performance in incident situations

In this section we consider the case of an incident happen-
ing on the road network, and analyze how the decomposi-
tion approach can improve the traffic conditions once the
incident occurs compared to the optimal situation before
the incident. Incidents are modeled as reductions of the
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Scenario Method Network Actuators Links Nodes Horizon Initial Boundary Samples

Runtime Decomp Synth. 2 5 6 (3) [360,7200] 4000 0 -
Runtime Global Synth. 2 5 6 (3) [360,7200] 4000 0 -

Improvement Decomp Real 85 2925 2441 (44) 4320 1000 65 7

Histogram Decomp Real 85 2925 2441 (44) 4320 [0,2000] [0, 130] 1048
Histogram Decomp Synth. 2 5 6 (3) 2160 [0,1100] [0, 130] 33222

Incidents Decomp Real 85 2925 2441 (44) 4320 1000 65 1

Table 1. Experimental setup: traffic network specifications and experiment settings. In the
Nodes column, numbers inside the () denote the number of source nodes.

link capacity qmax, for 4 different road links on the freeway
network. The initial and boundary conditions and network
specifications are presented in Table 1.

We first apply the decomposition method to the net-
work with no incidents. A 2.58% improvement on average
on the total distance travelled is observed compared to
the total distance travelled using a randomly generated
control plan. After the incident occurrence, the network
suffers from a 2.70% throughput reduction on average.
Re-optimization using the decomposition method enables
throughput increase equivalent to 98% of its previous
optimal value before the incident.

6. CONCLUSION

We provide a fast decomposition approach for the optimal
traffic control problem. The approach is based on the
nonlinear programming formulation of the discretized con-
trol problem and is inspired by an alternating directions
method using numerical simulation in place of an optimiza-
tion formulation of the flow as a function of fixed controls.
Numerical results demonstrate both the scalability of the
proposed approach as well as the solution quality in terms
of network throughput. Interesting avenues for further
work involve assessing the error bounds of the proposed
approach and explicitly taking into account uncertainty in
the model parameters.
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