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Abstract: This paper deals with linear time-invariant systems with multiple delays. We present
a necessary and sufficient stability condition, expressed in terms of the delay Lyapunov matrix.
This result generalizes the well known Lyapunov theorem for delay free linear systems. An
illustrative example shows how to apply the presented condition.
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1. INTRODUCTION

It is well known that the exponential stability of a linear
time-invariant system of ordinary differential equations is
equivalent to the positive-definiteness of a solution of the
corresponding Lyapunov matrix equation. This paper is
devoted to an extension of this result to the case of time-
delay systems.

The idea to use Lyapunov type functionals instead of
Lyapunov functions for stability analysis of time-delay sys-
tems was proposed in Krasovskii (1956). In Repin (1965)
an approach to compute functionals with prescribed time
derivatives was given. Then, the approach has been studied
in Infante and Castelan (1978), Huang (1989), Louisell
(1998). In Kharitonov and Zhabko (2003), a class of com-
plete type functionals was introduced. The functionals of
the class admit a quadratic lower bound if the correspond-
ing system is exponentially stable. In some sense these
functionals can be considered as a generalization of the
quadratic Lyapunov functions, usually used for ordinary
differential equations. It is worth mentioning that a com-
plete type functional is defined by an auxiliary Lyapunov
matrix, which in this case is matrix-valued.

Some aspects related with the computation of Lyapunov
matrices have been studied in Mondié et al. (2011), Jar-
lebring et al. (2011), Kharitonov (2013). The complete
type functionals have been applied for robust stability
analysis in Kharitonov and Zhabko (2003), for obtaining
exponential estimates of solutions of time-delay systems
in Kharitonov and Hinrichsen (2004), for the computa-
tion of the norm of the transfer matrix in Jarlebring
et al. (2011), and for some other purposes, see Kharitonov
(2013). However, we believe that the direct application
of the complete type functionals to the stability analysis
of linear systems have not received due attention. A cri-
teria of the exponential stability of a scalar single delay
equation have been given in Mondié (2012) and in Egorov
and Mondié (Vestnik, 2013). Some new sufficient stability
conditions based on Lyapunov functionals of complete type
were given in Medvedeva and Zhabko (2013).

Recently, in Egorov and Mondié (RNC, 2013) and Egorov
and Mondié (TDS, 2013), the complete type functionals
have been used in order to derive an extensive family
of necessary stability conditions for linear systems with
multiple delays. These conditions are based exclusively on
the corresponding Lyapunov matrix. It has been demon-
strated that these conditions can be effectively applied to
derive exact stability regions for time-delay systems with
parameters. The main contribution of the present paper
is to show that it is possible to single out among these
necessary conditions some that are the sufficient ones.
In other words, a necessary and sufficient condition for
the exponential stability of a linear system with multiple
delays is obtained.

Sections 2 and 3 are devoted to some preliminary results,
whereas the main result with its proof is given in Section
4. The paper ends with an illustrative example and con-
clusions.

2. PRELIMINARIES

In this paper we consider a linear delay system of the form

ẋ(t) =

m∑
j=0

Ajx(t− hj), t > 0, (1)

where A0, . . . , Am are constant real n×n matrices, delays
are ordered as follows: 0 = h0 < h1 < . . . < hm = H.

Assume that the initial function φ is piecewise continuous,
φ ∈ PC([−H, 0],Rn), i.e., it has a finite number of
discontinuity points of the first kind. The restriction of
the solution x(t, φ) of system (1) on the interval [t−H, t]
is denoted by

xt(φ) : θ → x(t+ θ, φ), θ ∈ [−H, 0].

The Euclidian norm for vectors is denoted ∥ · ∥. For
functions we use the seminorm ∥ · ∥H :

∥φ∥H =

√√√√√∥φ(0)∥2 +
0∫

−H

∥φ(θ)∥2 dθ.
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Definition 1. System (1) is said to be exponentially stable,
if there exist constants γ > 1, σ > 0, such that

∥x(t, φ)∥ 6 γe−σt∥φ∥H , t > 0.

A matrix-valued function K(t), which is solution of the
equation

K̇(t) =

m∑
j=0

AjK(t− hj), t > 0, (2)

with the initial conditions

K(0) = I, K(t) = 0, t < 0, (3)

is called the fundamental matrix of system (1). This matrix
satisfies also (see Bellman and Cooke (1963), p.180) the
equation

K̇(t) =

m∑
j=0

K(t− hj)Aj , t > 0.

The notation Q > 0 means that the symmetric matrix Q
is positive definite. And Q � 0 means that the matrix Q is
not positive semidefinite, i.e., there exists a vector µ, such
that µTQµ < 0. The square block matrix with i-th row
and j-th column element Aij is denoted {Aij}ri,j=1.

3. LYAPUNOV-KRASOVSKII FRAMEWORK

A functional, which satisfies the equality

dv0(xt(φ))

dt
= −xT (t, φ)Wx(t, φ)

for a fixed positive definite matrix W , was presented
in Kharitonov and Zhabko (2003). It has the form

v0(φ) = φT (0)U(0)φ(0)

+ 2φT (0)
m∑
j=1

0∫
−hj

UT (θ + hj)Ajφ(θ) dθ

+
m∑

k=1

0∫
−hk

φT (θ1)A
T
k

 m∑
j=1

0∫
−hj

U(θ1 + hk − θ2 − hj)

×Ajφ(θ2) dθ2

 dθ1.

Each term of the sum contains the matrix-valued function
U(τ), which is named the delay Lyapunov matrix, associ-
ated with matrix W . It satisfies the set of equations

U ′(τ) =

m∑
j=0

U(τ − hj)Aj , τ > 0, (4)

U(τ) = UT (−τ), τ > 0, (5)
m∑
j=0

[
U(−hj)Aj +AT

j U(hj)
]
= −W. (6)

Condition (4) is called dynamic property, condition (5) —
symmetric property, and (6) — algebraic property.

Theorem 2. (Kharitonov (2013)). The delay Lyapunov ma-
trix of system (1), associated with a given symmetric
matrixW , exists and is unique if and only if the Lyapunov
condition holds, i.e., there are no eigenvalues s1, s2 of the
system, such that s1 + s2 = 0.

In Kharitonov and Zhabko (2003), the so-called complete
type functionals, which admit a quadratic lower bound
when the system is exponentially stable, were introduced:

v(φ) = v0(φ)

+

m∑
j=1

0∫
−hj

φT (θ) [Wj + (hj + θ)Wm+j ]φ(θ) dθ,

where W0, W1, . . . , W2m are positive definite matrices.
In Egorov and Mondié (TDS, 2013), a more simple func-
tional

v1(φ) = v0(φ) +

0∫
−H

φT (θ)Wφ(θ) dθ

was introduced. The derivative of this functional along the
solutions of system (1) is equal to

dv1(xt(φ))

dt
= −xT (t−H,φ)Wx(t−H,φ).

Theorem 3. (Egorov and Mondié (TDS, 2013)). If system
(1) is exponentially stable, then there exists α > 0, such
that

v1(φ) > α∥φ∥2
H
, φ ∈ PC([−H, 0],Rn).

4. MAIN RESULT

Let us introduce the block matrix

Kr(τ1, . . . , τr) =
{
U(−τi + τj)

}r

i,j=1
, (7)

which depends exclusively on the delay Lyapunov matrix.
In the case of equidistant points

τi =
i− 1

r − 1
H, i = 1, r,

this matrix is of the form

Kr

(
0,

1

r − 1
H, . . . ,

r − 2

r − 1
H, H

)
=

{
U

(
j − i

r − 1
H

)}r

i,j=1

.

The main result of this contribution, a stability criterion
for linear time-delay systems, follows.

Theorem 4. System (1) is exponentially stable if and only
if the Lyapunov condition holds and for every natural
number r > 2 {

U

(
j − i

r − 1
H

)}r

i,j=1

> 0. (8)

Moreover, if the Lyapunov condition holds and system (1)
is unstable, then there exists a natural number r, such that{

U

(
j − i

r − 1
H

)}r

i,j=1

� 0.

Remark 5. For r = 2, condition (8) takes the form(
U (0) U (H)
UT (H) U (0)

)
> 0, (9)

for r = 3,  U(0) U(H/2) U(H)
UT (H/2) U(0) U(H/2)
UT (H) UT (H/2) U(0)

 > 0, (10)

for r = 4,
U(0) U(H/3) U(2H/3) U(H)

UT (H/3) U(0) U(H/3) U(2H/3)
UT (2H/3) UT (H/3) U(0) U(H/3)
UT (H) UT (2H/3) UT (H/3) U(0)

 > 0, (11)
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and so on.

Remark 6. In contrast with systems of ordinary differen-
tial equations, time-delay systems are infinite-dimensional.
This explains the fact that in order to determine the sta-
bility of such systems, a countable number of inequalities
have to be verified.

4.1 Proof of the main result. Necessity

For exponentially stable systems, the Lyapunov condition
holds. It remains to prove that inequality (8) holds for
every natural r. Actually, it is a direct consequence of the
main result of paper Egorov and Mondié (TDS, 2013).

Define the function

φ̄(θ) =
r∑

i=1

K(τi + θ)γi, (12)

where γ1, γ2, . . . , γr are constant vectors, the points
τ1, τ2, . . . , τr ∈ [0,H], and K(t) is the fundamental matrix
that was defined in Section 2.

Some new properties of the delay Lyapunov matrix, ob-
tained in Egorov and Mondié (TDS, 2013), were used to
deduce the equality

v1 (φ̄) = γTKr(τ1, . . . , τr)γ, (13)

where τ1, τ2, . . . , τr ∈ [0,H] and γ = (γT1 , γ
T
2 , . . . , γ

T
r )

T .
This equality in conjunction with Theorem 3 led to the
following result.

Theorem 7. (Egorov and Mondié (TDS, 2013)). If system
(1) is exponentially stable, then

Kr(τ1, . . . , τr) > 0, (14)

where τk ∈ [0,H], k = 1, r, and τi ̸= τj if i ̸= j, and the
matrix-valued function Kr is defined by (7).

In our case the points τi =
i− 1

r − 1
H belong to the segment

[0,H], and τi ̸= τj if i ̸= j. Thus, inequality (8) is just a
trivial consequence of Theorem 7.

4.2 Proof of the main result. Sufficiency

Assume that the Lyapunov condition holds, then the delay
Lyapunov matrix U(τ) exists. To prove the sufficiency of
Theorem 4, it is enough to show that for unstable system
there exists a natural number r, such that{

U

(
j − i

r − 1
H

)}r

i,j=1

� 0. (15)

This inequality is equivalent to the existence of a vector
γ, such that

γTKr

(
0,

1

r − 1
H, . . . ,

r − 2

r − 1
H, H

)
γ < 0. (16)

Let us introduce some technical results that are instru-
mental in our proof. The first result, based on the ideas,
introduced in Medvedeva and Zhabko (2013), establishes
that if the system is unstable the functional v1 does not
admit a lower bound.

Theorem 8. If system (1) is unstable and satisfies the
Lyapunov condition, then for every α1 > 0 there exists
a function φ̂, such that

v1(φ̂) 6 −α1. (17)

Proof. Integrating the equation

dv1(xt)

dt
= −xT (t−H)Wx(t−H),

we obtain

v1(xT (φ))− v1(φ) = −
T−H∫
−H

xT (t, φ)Wx(t, φ) dt. (18)

Set an arbitrary α1 > 0. System (1) satisfies the Lyapunov
condition, so it has no pure imaginary eigenvalues. As the
system is unstable, there exists at least one eigenvalue
λ = α + iβ with positive real part. Hence, there are two
vectors C1, C2, at least one of which is nonzero, such that

x̃(t) = eαt (cosβtC1 + sinβtC2)

is a solution of system (1), which is obviously not iden-
tically zero on [−H,T − H] for any T > 0. Therefore,∫ T−H

−H
∥x̃(t)∥2 dt ̸= 0. The function x̄(t) = ax̃(t) is also a

solution of the system, corresponding to the initial func-
tion φ̂(θ) = ax̃(θ), θ ∈ [−H, 0]. Here a is an arbitrary
constant.

If β ̸= 0, then set T = 2π/|β|, while for β = 0 set T = 1.
We have the equality

x̄(T + θ) = eαT φ̂(θ), θ ∈ [−H, 0].
The functional v1(φ) is a quadratic one, so

v1(x̄T (φ̂)) = e2αT v1(φ̂).

From equality (18) we obtain:

v1(φ̂) = −

T−H∫
−H

x̄T (t, φ̄)Wx̄(t, φ̄) dt

e2αT − 1

6 −a2
λmin(W )

T−H∫
−H

∥x̃(t)∥2 dt

e2αT − 1

.

Finally, inequality (17) follows by choosing

a =

√√√√√√√
α1 (e2αT − 1)

λmin(W )
T−H∫
−H

∥x̃(t)∥2 dt
.

2

Introduce now the class of functions of the form (12) with
equidistant points τi that we used in the proof of necessity:

F ([−H, 0],Rn) =

{
ψ ∈ PC ([−H, 0],Rn)

∣∣∣
ψ(θ) =

r∑
i=1

K(τi + θ)γi, τi =
i− 1

r − 1
H, γi ∈ Rn

}
.

We present a key result that establishes the fact that it
is possible to approximate any continuous function by an
element of F ([−H, 0],Rn).

Lemma 9. For any φ ∈ C ([−H, 0],Rn) and any ε > 0
there exists a function ψ ∈ F ([−H, 0],Rn), such that

∥φ− ψ∥H < ε.
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For the sake of clarity, this technical proof is given in the
Appendix.

Applying Theorem 8 and Lemma 9, we now complete the
proof of sufficiency of Theorem 4. To this end, suppose that
system (1) is unstable. Set an arbitrary number α1 > 0.
By Theorem 8, there exists φ̂, such that v1(φ̂) 6 −α1. It
is easy to see that functional v1(φ) is continuous at each
point, i.e., for any α1 > 0 there exists a number ∆ > 0,
such that

∥φ̂− φ∥H < ∆ ⇒ |v1(φ̂)− v1(φ)| < α1.

By Lemma 9, there exists ψ ∈ F ([−H, 0],Rn), such that

∥φ̂− ψ∥H < ∆.

By the above mentioned continuity property, |v1(φ̂) −
v1(ψ)| < α1. Therefore,

v1(ψ) < v1(φ̂) + α1 6 0.

As function ψ has the form

ψ(θ) =

r∑
i=1

K(τi + θ)γi,

equality (13) implies that

v1(ψ) = γTKr

(
0,

1

r − 1
H, . . . ,

r − 2

r − 1
H, H

)
γ < 0.

Thus, inequality (16), equivalently (15), is shown, and
sufficiency is established.

5. EXAMPLE

The following example illustrates how the presented cri-
terion can be applied to determine the exact stability
region for systems with parameters. Consider the time-
delay system

ẋ(t) = A0x(t) +A1x(t− 1) +A2x(t− 3), (19)

where

A0 =

(
0 1 0
0 0 1

−16 −25 −4

)
, A1 =

(
0 0 0
0 0 0
k1 0 0

)
, A2 =

(
0 0 0
0 0 0
0 k2 0

)
.

The matrix U(τ), τ ∈ [0, 3], is calculated for W = I,
using the semianalytical method, introduced in Garcia-
Lozano and Kharitonov (2004), which reduces the task
of construction of the delay Lyapunov matrix to the
boundary value problem for a system of linear ordinary
differential equations.

Let us consider the following set of parameters:

{(k1, k2)|k1 ∈ [−220, 220], k2 ∈ [−100, 100]} .
We check our stability conditions at points of an equally
spaced grid (120 by 120).

First, we take r = 2. As mentioned above, in this case
condition (8) takes the form (9). The points where this
inequality holds are depicted in Figure 1.

Then we increase the number r. For r = 3 we have
inequality (10), which improves the upper estimate of the
exact stability region for system (19), see Figure 2.

We take now r = 4, and apply condition (11) for the
points of Figure 2. The points where the condition holds
are depicted in Figure 3. Further increasing of the number
r does not give improvement of the obtained result.

−200 −150 −100 −50 0 50 100 150 200
−100

−50

0

50

100

k
1

k
2

Fig. 1. System (19), inequality (8) for r = 2

−200 −150 −100 −50 0 50 100 150 200
−100

−50

0

50

100

k
1

k
2

Fig. 2. System (19), inequality (8) for r = 3

−200 −150 −100 −50 0 50 100 150 200
−100

−50

0

50

100

k
1

k
2

Fig. 3. System (19), inequality (8) for r = 4, 5, 6, . . .

Let us enlarge the domain, depicted in Figure 3, and apply
the D-subdivision method, proposed in Neimark (1949).
The boundary of the obtained domain coincides with the
D-subdivision lines (see Figure 4). Obviously, the marked
region is a stable one, as when k1 = k2 = 0 system (19)
reduces to an exponentially stable delay free system. Thus,
we have obtained the exact stability region.

To demonstrate the computational complexity associated
with the increase of r, we note that the computation time
for obtaining Figure 1 is equal to 29 seconds, whereas the
time for obtaining Figure 3 is equal to 32 seconds.

Remark 10. It is worth mentioning that for every system
with parameters Theorem 4 guarantees the existence of a
finite number r, such that inequality (8) gives the exact
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Fig. 4. System (19), the exact stability region

stability region, since we check only a finite number of the
parameters’ values (in the presented example: grid of 120
by 120 points).

6. CONCLUSION

A necessary and sufficient stability condition, based on the
delay Lyapunov matrix, for linear systems with multiple
delays is presented. As shown, the obtained criterion can
be applied to determine stability regions in the space of
parameters.

REFERENCES

N.N. Krasovskii. On the application of the second method
of Lyapunov for equations with time delays. Prikladnaya
Matematika i Mekhanika, volume 20, pages 315–327,
1956.

M. Repin. Quadratic Lyapunov functionals for systems
with delay. Prikladnaya Matematika i Mekhanika, vol-
ume 29, pages 564–566, 1965.

E.F. Infante and W.B. Castelan. A Liapunov functional
for a matrix difference-differential equation. Journal of
Differential Equations, volume 29, pages 439–451, 1978.

W. Huang. Generalization of Liapunov’s theorem in a
linear delay system. Journal of Mathematical Analysis
and Applications, volume 142, pages 83–94, 1989.

J. Louisell. Numerics of the stability exponent and eigen-
value abscissas of a matrix delay system. In Lecture
notes in Control and Information Sciences 228. Stability
and Control of Time Delay Systems, pages 140–157.
Springer-Verlag, New York, 1998.

V.L. Kharitonov and A.P. Zhabko. Lyapunov-Krasovskii
approach for robust stability of time delay systems.
Automatica, volume 39, pages 15–20, 2003.
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Appendix A. PROOF OF LEMMA 9

Given a continuous function φ and a number ε > 0, we
have to find a natural number r and vectors γ1, . . . , γr,
such that ∥φ− ψ∥

H
< ε, where

ψ(θ) =
r∑

i=1

K

(
i− 1

r − 1
H + θ

)
γi.

The fundamental matrix K(t) has a bounded derivative
on [0, H], hence, there exists L > 0:

∥K(t1)−K(t2)∥ 6 L|t1 − t2|, t1, t2 ∈ [0,H].

Set M = ∥φ(−H)∥ and

ε1 =
ε√

H(1 + LM)eLH
.

As any continuous function on a segment is uniformly
continuous, there exists a number δ̄ > 0, such that for
any δ ∈ (0, δ̄) the inequality |t1 − t2| 6 δ implies ∥φ(t1)−
φ(t2)∥ < ε1. It is clear that there is δ1, such that:

1) δ1 ∈ (0, δ̄), 2) δ1 < ε1, 3)
H

δ1
is a natural number.

For this δ1 we define

r =
H

δ1
+ 1 and τk =

k − 1

r − 1
H = (k − 1)δ1, k = 1, r.

Let us find γk, k = 1, r, from the equalities:

φ(−τk) = ψ(−τk), k = 1, r.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11022



As K(t) = 0 for t < 0, and K(0) = I,

ψ(−τk) =
r∑

i=1

K(τi − τk)γi =

r∑
i=k+1

K(τi − τk)γi + γk.

Thus,

γr = φ(−τr),

γk = φ(−τk)−
r∑

i=k+1

K(τi − τk)γi, k = 1, r − 1.

We compute function ψ(θ). It remains to prove the in-
equality ∥φ− ψ∥H < ε. Consider first θ ∈ [−τr, −τr−1):

φ(θ)− ψ(θ) = φ(θ)− φ(−τr) + ψ(−τr)− ψ(θ)

= φ(θ)− φ(−τr) + [K(0)−K(θ + τr)] γr.

Obviously, ∥γr∥ = ∥φ(−τr)∥ = ∥φ(−H)∥ =M , therefore,

∥φ(θ)− ψ(θ)∥ 6 ∥φ(θ)− φ(−τr)∥
+ ∥K(0)−K(θ + τr)∥ ∥γr∥ < ε1 + Lδ1M.

For brevity we introduce the notation ε(1) = ε1 + Lδ1M .
The fundamental matrix K(t) is continuous for t > 0,
therefore,

lim
θ→−τr−1−0

∥φ(θ)− ψ(θ)∥ < ε(1).

In other words, ∥φ(−τr−1)−K(τr − τr−1)γr∥ < ε(1). But

φ(−τr−1) = ψ(−τr−1) = K(τr − τr−1)γr + γr−1.

As a consequence we arrive at the inequality ∥γr−1∥ < ε(1).

Similarly, on the next interval θ ∈ [−τr−1, −τr−2):

φ(θ)− ψ(θ) = φ(θ)− φ(−τr−1) + ψ(−τr−1)− ψ(θ)

= φ(θ)− φ(−τr−1) + [K(τr − τr−1)−K(θ + τr)] γr
+ [K(0)−K(θ + τr−1)] γr−1.

This means that

∥φ(θ)− ψ(θ)∥ < ε1 + Lδ1M + Lδ1ε
(1) = ε(2),

where ε(2) = ε(1)(1 + Lδ1). In addition, ∥γr−2∥ < ε(2).

By repeating the process, we obtain for k = 1, r − 1:

∥γr−k∥ < ε(k),

∥φ(θ)− ψ(θ)∥ < ε(k), θ ∈ [−τr−k+1, −τr−k).

Here ε(k) = ε(k−1)(1 + Lδ1), k = 2, r − 1. Obviously,

ε(1) < ε(2) < . . . < ε(r−1) = ε(1)(1 + Lδ1)
r−2

= (ε1 + Lδ1M)(1 + Lδ1)
r−2 < ε1(1 + LM) (1 + Lδ1)

r−1

=
ε√

HeLH

(
1 +

LH

r − 1

)r−1

.

It is not difficult to show that(
1 +

LH

r − 1

)r−1

6 eLH .

Therefore,

∥φ(θ)− ψ(θ)∥ < ε√
H

for θ ∈ [−H, 0). Hence,

∥φ− ψ∥H =

√√√√√∥φ(0)− ψ(0)∥2 +
0∫

−H

∥φ(θ)− ψ(θ)∥2 dθ

<

√√√√√( ε√
H

)2
0∫

−H

dθ =
ε√
H

√
H = ε.

Q.E.D.
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