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Abstract: After infecting a CD4+ T cell, Human Immunodeficiency Virus (HIV) can
either replicate and kill the cell or enter latency, a dormant state of the virus where viral
gene-expression is turned OFF. This cell fate decision between viral replication and latency
is controlled by the viral regulatory protein, Tat. This protein is known to activate its own
production, creating a positive feedback circuit. Our previous work has shown that a stochastic
model of this feedback circuit exhibits bimodal distributions of Tat levels, even though this
circuit lacks deterministic bistability. The modes of the distribution correspond to infected cells
with high Tat levels (corresponding to viral replication) or no Tat at all (corresponding to HIV
latency).

Experimental evidence points to an additional positive feedback loop mediated through a
microRNA: a host microRNA targets Tat mRNA for degradation and Tat protein blocks
synthesis of this microRNA. Here we investigate the interplay between Tat-mediated and
microRNA-mediated positive feedback loops using deterministic and stochastic modeling. Our
results show that these positive feedbacks together can exhibit deterministic bistability if the
microRNA-mRNA interaction is sufficiently strong. Intriguingly, stochastic analysis reveals
bimodal distributions for Tat even for parameter regimes where the coupled feedback system
is not bistable. In summary, addition of the micro-mediated feedback loop can lead to bimodal
Tat levels for wide a range of parameter values, and suggests a role for microRNAs in the viral
cell fate decision in vivo.
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1. INTRODUCTION

Human Immunodeficiency Virus (HIV) is a raging epi-
demic across the world, with millions of people currently
infected by the virus. HIV infects cells of the immune
system, in particular, CD4+ T cell lymphocytes. After
infecting an individual cell, HIV typically enters an active
replication state, which kills the infected cell producing
viral progeny (Seth et al. [2005], Perelson et al. [1996]).
However, in some infected cells HIV enters latency, a
quiescent or dormant state of the virus where viral gene-
expression is turned OFF (Chun et al. [1997]). While active
replication destroys CD4+T cells and leads to AIDS, HIV
latency is considered the biggest obstacle preventing HIV
eradication from a patient (Han et al. [2007], Richman
et al. [2009]). In particular, latently infected cells are long-
lived drug-resistant viral reservoirs and allow reemergence
of HIV to pre-treatment levels once anti-retroviral drug
therapy is discontinued (Richman et al. [2009]).

Tat, a HIV regulatory protein expressed immediately after
infection, is essential for viral replication. Tat activates
transcription of its own promoter creating a positive feed-

back circuit, which critically influences the viral cell fate
decision between viral replication and latency (Weinberger
and Shenk [2006], Pearson et al. [2008]). Experimental
data shows that stochastic expression of Tat protein cou-
pled with the positive feedback loop generates bimodal
distributions of Tat levels, where individual cells either
have high levels of Tat (corresponding to viral replication)
or no Tat at all (corresponding to HIV latency) (Singh
and Weinberger [2009]). Further work revealed that the
Tat feedback circuit lacks deterministic bistability (i.e.
the existence of two stable fixed points) (Weinberger and
Shenk [2006], Weinberger et al. [2008]). A key question to
be addressed is: how does bimodality arise in a monostable
genetic positive feedback circuit?

Detailed analysis has shown that bimodality is possible
in a stochastic model of the Tat positive feedback loop
(Singh [2012]). However, the parameter space where bi-
modality arises is quite restrictive (Singh [2012]). Recent
experiments have shown the existence of an additional
positive feedback loop mediated through a microRNA: a
host microRNA targets Tat mRNA for degradation and
Tat protein blocks synthesis of this microRNA (Triboulet

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 1146



et al. [2007], Corbeau [2008]). Here we investigate how
the addition of the microRNA-mediated positive feedback
loop affects Tat protein level distribution across a popu-
lation of infected cells. Our analysis reveals that a strong
microRNA-mRNA interaction can result in deterministic
bistability, where Tat levels can stably exist at high and
low levels. Moreover, stochastic simulations show that bi-
modal Tat levels arise for a wide range of parameter values,
including values when the coupled feedback system lacks
bistability.

The paper is organized as follows. Results from deter-
ministic and stochastic modeling of the Tat positive
feedback loop are presented in Section 2. In section
3, a deterministic model combining Tat-mediated and
microRNA-mediated feedback loops is developed and an-
alyzed. Stochastic simulations of the coupled feedback
system are also presented in Section 3. Finally, conclusions
and future work are discussed in Section 4.

2. MODELING TAT POSITIVE FEEDBACK CIRCUIT

Auto-regulatory positive feedback loops are common mo-
tifs in gene networks (Alon [2006]). One such positive
feedback loop is found in HIV: Tat protein expressed from
the HIV promoter activates transcription from its own
promoter (Figure 1).

Fig. 1. Simple positive genetic feedback circuit, where
a protein expressed from a gene up-regulates the
transcription of its own mRNA.

2.1 Deterministic modeling of the Tat feedback circuit

Let p(t) and m(t) denote the Tat protein level and the Tat
mRNA level at time t, respectively. Then, the time evo-
lution of p(t) and m(t) can be modeled deterministically
through the following set of ordinary differential equations
(ODEs):

dm

dt
= f1(p(t))− γmm(t) (1a)

dp

dt
= kpm(t)− γpp(t). (1b)

We denote by γp, γm and kp the protein degradation
rate, mRNA degradation rate and mRNA translation rate,

respectively. Positive feedback is incorporated by assuming
that the mRNA transcription rate

f1(p) =
km(b+ (c1p)

h)

1 + (c1p)h
(2)

is a monotonically increasing function of the protein level.
Here, km is the maximum transcription rate, c1 is the
strength of the positive feedback and h is the Hill coeffi-
cient, which determines how sigmoidal is the mRNA tran-
scription rate as function of the protein level. When p = 0,
transcription occurs at a basal rate of kmb, where 0 <
b < 1. In this system, b � 1 because transcription from
the HIV promoter is known to be defective in the absence
of Tat: RNA polymerase II stalls 50-70 nucleotides after
initiating transcription from the HIV promoter (Kao et al.
[1987]). These stalled polymerases abort transcription with
a high probability, making basal transcription from the
HIV promoter very weak. However, a few RNAPII are
still able to transcribe a full-length mRNA, which go on
to make the Tat protein. Tat directly binds to the stalled
RNAPII-RNA complex and hyperphosphorylates RNAP
II. This post-translation modification enhances RNAPII
transcriptional processivity and allows it to complete the
transcription process creating an efficient feedback loop
through Tat (Karn [1999], Stevens et al. [2006]).

Steady-state protein level p̄ is determined by the solution
of the following equation

kpf(p̄)

γm
= γpp̄. (3)

High or low Hill coefficients can effect the stability of the
system. When h = 1, the left-hand-side of (3) increases
linearly with p̄ and saturates. This leads to a single stable
fixed point and the system is deterministically monostable.
However, when the Hill coefficient is high, the left-hand-
side of (3) increases sigmoidally with p̄ and can result in
two stable equilibrium protein levels (i.e., bistability).

A bistable Tat feedback circuit could potentially explain
the two different fates of the infected cell, as the circuit is
locked in either a low or a high Tat level state. The former
state would correspond to HIV latency, and high Tat
levels leading to viral replication. However, experimental
measurements of h in the HIV system have shown that
the Tat feedback circuit has a Hill coefficient equal to
one (Weinberger and Shenk [2006]). Hence, deterministic
bistability cannot be used as a mechanism to explain the
existence of distinct high and low Tat level states of the
positive feedback circuit. In the remainder of this paper
we assume h = 1 in (2).

2.2 Stochastic modeling of the Tat feedback circuit

The environment within living cells is incredibly noisy
with biochemical species randomly bumping and reacting
with each other. This inherent probabilistic nature along
with low population counts of cellular species creates con-
siderable stochastic fluctuations in protein copy numbers
over time inside individual cells. Under such conditions, a
differential equation model no longer adequately captures
the system dynamics. Gene networks are typically ana-
lyzed through stochastic models (Cinquemani et al. [2008],
Singh [2011], Singh and Soltani [2013]) and these modes
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can exhibit behaviors such as noise-induced oscillations
(Bratsun et al. [2005]), stochastic focusing (Paulsson et al.
[2000]) and stochastic resonance, (Wanga et al. [2007])
that cannot be realized in deterministic models.

We begin by providing a brief overview of stochastic mod-
eling of genetic circuits. First transcription, translation
and mRNA/protein degradation are represented by the
following set of reactions:

gene1
f1(p)−−−→ gene1 +mRNA (4a)

mRNA
kp−→ mRNA+ protein (4b)

mRNA
γm−−→ φ; protein

γp−→ φ. (4c)

For the transcription reaction (4a), rate f1(p) is the same
as in (2). As before, protein and mRNA levels in an indi-
vidual cell at time t are denoted p(t) and m(t), but are now
integer-valued stochastic processes. Stochastic modeling of
the feedback circuit corresponds to a stochastic formula-
tion of these reactions, where each reaction is a probabilis-
tic event and fires at random times (Gillespie [2001]). More
specifically, the probability that the reactions (4a)-(4c)
occur in the infinitesimal time interval (t, t + dt) is given
by f1(p)dt, kpm(t)dt, γmm(t)dt, and γpp(t)dt, respectively.
Whenever a particular reaction occurs, m(t) and p(t)
change by integer amounts based on the stoichiometry of
the reaction. For example, protein count increases by one
whenever a translation reaction (4b) occurs.

Previously, we considered a special case γp � γm (i.e.,
the mRNA degrades much faster than the protein) (Singh
[2012]). In this limit, (4) reduces to the following system
of reactions

gene1
f1(p)−−−→ gene1 +B × protein (5a)

protein
γp−→ φ, (5b)

where a gene makes protein directly in bursts B, and B
is a geometrically distributed random variable with mean
1/α = kp/γm (Shahrezaei and Swain [2008], Singh and
Hespanha [2009]). A detailed stochastic analysis revealed
that this reduced system can exhibit a bimodal distribu-
tion for protein levels in spite of the fact that the system is
deterministically monostable (Singh [2012]). In particular,
if b is sufficiently small (i.e. rate of transcription is low in
the absence of the protein) such that

γp < km < γp/b (6)

and the positive feedback strength is sufficiently strong
c1 > c∗, where c∗ is given by:

c∗ =
a2 +

√
a22 − 4α2

(
km
γp
− 1
)2

2
(
km
γp
− 1
)2 (7a)

a2 = 2α

(
km
γp
− 1

)
+ 4α

(
1− kmb

γp

)
, (7b)

then the steady-state protein count distribution is bimodal
(Singh [2012]). Although these analytical results are re-
stricted to the case γp � γm, stochastic simulations of the
set of reactions (4) show (6) and (7) are good indicators
of bimodality for all values of γm and γp (Figure 2).

To understand why bimodality arises note that when
b = 0, f1(0) = 0 and no protein synthesis occurs in the
absence of the protein. Once the protein level hits zero
by random chance, recovery is impossible and p(t) = 0
with probability one for all future time (i.e., stochastic
extinction). A bimodal protein distribution results for low
non-zero values of b (Figure 2; middle plot), where one
of the modes represents high Tat levels corresponding to
the monostable state of the ODE model. The other mode
corresponds to no Tat protein, as the system is stuck
here for long times due to inefficient transcription in the
absence of Tat.

The Tat feedback system has all the hallmarks for noise-
induced bimodality: dysfunction transcription in the ab-
sence of Tat (low b) and a strong positive feedback loop
(high c1). Although these results are encouraging, the
parameter regime were bimodality arises is very restrictive:
low values of b and c1 values slightly higher than c∗. The
steady-state probability of p = 0 decreases dramatically
with increasing c1, and for c1 values significantly higher
than c∗, the protein distribution is effectively unimodal
(Figure 2; right-most plot). Below we investigate how
these results are affected by the addition of a micro-RNA
mediated positive feedback loop.

3. DETERMINISTIC MODELING OF
MICRORNA-MEDIATED FEEDBACK LOOP

microRNAs are small non-coding RNA molecules that reg-
ulate gene-expression in a variety of regulatory networks
(Siciliano et al. [2013]). They typically bind to mRNAs,
targeting them for degradation or preventing the mRNA
from being translated. Recent work provides evidence
of both host microRNAs targeting viral gene-expression,
and microRNAs expressed from the HIV genome altering
specific cellular functions for viral replication. Here, we
consider the case where a host microRNA targets Tat
mRNA for degradation. Tat blocks the production of this
microRNA by inhibiting the microRNA biogenesis ma-
chinery, therefore creating a second positive feedback loop
as shown in Figure 3.

3.1 Model formulation

Coupled Tat-mediated and microRNA-mediated feedbacks
are modeled through the following set of ODEs:

dm

dt
= f1(p(t))− γmm(t)− kr(t)m(t) (8a)

dr

dt
= f2(p(t))− γmicror(t)− kr(t)m(t) (8b)

dp

dt
= kpm(t)− γpp(t) (8c)

where m(t), r(t) and p(t) denote mRNA, microRNA and
protein levels at time t, respectively. The term kr(t)m(t)
is (8a) and (8b) represents loss of m(t) and r(t) via the
reaction

mRNA+microRNA
k−→ φ (9)

where the microRNAs bind to mRNAs to form a complex
that is degraded instantaneously. Rate k is referred to as
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Fig. 2. Distribution of Tat protein in a stochastic model of the Tat feedback circuit. Distributions were obtained
by stochastic simulation of (4) using software StochKit2 (Sanft et al. [2011]), which is based on the Stochastic
Simulation Algorithm (Gillespie [2001]). Parameters were taken as kp = 80, γp = 1, km = 100, γm = 1, b = 0.001.
For these values c∗ = 0.000153 from (7). The positive feedback strength was taken as c1 = 0.00010, c1 = 0.000165,
and c1 = 0.00032 from left to right. For c1 < c∗ the distribution is unimodal with a zero model (left). Bimodality
arises in the middle plot for c1 values slightly great than c∗, however for higher values of c1 the distribution is
effectively unimodal (right plot). Note that (6) and (7) are good indicators of bimodality here in spite of the fact
that γm = γp.

Fig. 3. Schematic of the Tat-mediated and microRNA-
mediated positive feedback loops. A positive feedback
is generated when Tat inhibits production of a host
microRNA, and the microRNA blocks Tat synthesis
by degrading its mRNA (Triboulet et al. [2007],
Corbeau [2008]). Arrows represent activation, and
bars at end of the line denote inhibition.

the mRNA-microRNA interaction strength and microR-
NAs are assumed to decay at a constant rate γmicro.
Affect of Tat on the microRNA is captured through the
microRNA production rate

f2(p) =
kmicro

1 + c2p(t)
(10)

which monotonically decreases with increasing p(t). Here
kmicro is the maximum microRNA production rate and
c2 can be interpreted as the strength of Tat inhibition.
When k = 0 (i.e., no microRNA interaction), (8) reduces
to the deterministically monostable system (1). Below,
we investigate if the additional microRNA feedback could
push the system towards bistability.

3.2 Bistability condition

For simplicity we assume c = c1 = c2, i.e., the Tat
feedback strength is equal to the strength of Tat-mediated
microRNA inhibition. Given inefficient Tat transcription
in its absence, we further assume b ≈ 0. Setting the left-
hand-side of (8) to zero and solving for the steady-states
reveals three fixed points. First is the trivial equilibrium

m̄ = 0, p̄ = 0, r̄ =
kmicro
γmicro

. (11)

The other two are

p̄ =
−β1 ±

√
4ckγm

kp
γp
α1 + β2

1

2cγmk
,

m̄ =
γpp̄

kp
, r̄ =

f2(p̄)

γmicro + km̄
,

(12)

where

β1 = γmk +
ckp
γp

(γmγmicro − kkm), (13a)

α1 = −γmγmicro − kkmicro +
cγmicrokmkp

γp
, (13b)

and m̄, p̄, r̄ denote steady-state levels of mRNA, Tat,
and microRNA, respectively. Standard stability analysis
of these fixed points reveals parameter regimes for monos-
tability and bistability.

For sufficiently low Tat feedback strength c <
γmγp
kmkp

the

trivial equilibrium

m̄ = 0, p̄ = 0, r̄ =
kmicro
γmicro

(14)

with no Tat and high levels of microRNA is the only viable
(non-negative values for m̄, p̄, r̄) and stable fixed point. For
sufficiently high Tat feedback strength c >

γmγp
kmkp

and weak

microRNA-mRNA interaction such that
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Fig. 4. Distribution of Tat protein in a stochastic model of the dual Tat-mediated and microRNA-mediated positive
feedback loops. Parameter values taken as kp = 3200, km = 27, kmicro = 5, γm = 20, γp = 1, γmicro = 50, b = .01
and c = 0.001. For these values the critical interaction strength above which the system is bistable is k > 664. From
left to right, k = 800, k = 500, and k = 0. Note that the Tat distribution is bimodal when the system in bistable
(left). Moreover, is some cases bimodality also arises when the system in monostable (middle plot). Distributions
were obtained by stochastic simulation of (19) on StochKit2. Parameter values were chosen such that is the absence
of the microRNA (k = 0), Tat copy number distribution is unimodal with a non-zero mode.

k <
γmicro(

ckmkp
γp
− γm)

kmicro
, (15)

the trivial equilibrium (14) is unstable and

p̄ =
−β1 +

√
4ckγm

kp
γp
α1 + β2

1

2cγmk
,

m̄ =
γpp̄

kp
, r̄ =

f2(p̄)

γmicro + km̄
,

(16)

with high protein and low microRNA levels is the only
viable and stable equilibrium. Finally for

c >
γmγp
kmkp

, k >
γmicro(

ckmkp
γp
− γm)

kmicro
(17)

the system is bistable with both the no-protein equilibrium
(14) and the high-protein equilibrium (16) being stable
fixed points and

p̄ =
−β1 −

√
4ckγm

kp
γp
α1 + β2

1

2cγmk
,

m̄ =
γpp̄

kp
, r̄ =

f2(p̄)

γmicro + km̄
,

(18)

being an unstable fixed point. In summary, for sufficiently
high Tat feedback strength and strong microRNA-mRNA
interaction (as determined by (17)), the system of dual
positive feedbacks is bistable.

3.3 Stochastic Modeling with microRNA Feedback

While bistability is often a good indicator of bimodal dis-
tributions in the stochastic version of the model, bimodal-
ity in a stochastic model does not often imply deterministic
bistability. To investigate distributions of Tat levels across
a cell population we perform stochastic simulation of the
coupled feedback system. Model (8) can be represented by
the following set of reactions:

gene1
f1(p)−−−→ gene1 +mRNA (19a)

gene2
f2(p)−−−→ gene2 +microRNA (19b)

mRNA
kp−→ mRNA+ protein (19c)

mRNA+microRNA
k−→ φ (19d)

mRNA
γm−−→ φ; microRNA

γr−→ φ (19e)

protein
γp−→ φ (19f)

which are analyzed using the stochastic simulation package
StochKit2 (Sanft et al. [2011]). As expected, when the
microRNA-mRNA interaction strength k is sufficiently
high such that the system is bistable (as determined by
(17)), Tat distributions are bimodal (left plot in Figure 4).
Intriguingly, bimodal distributions are observed for mod-
erate values of k for which the system is deterministically
monostable (middle plot in Figure 4). Thus, bimodality is
observed not only for parameter values corresponding to
bistability, but also much beyond it.

4. CONCLUSIONS

A system of dual positive feedback circuits mediated by
the HIV Tat protein and a host microRNA were mod-
eled (Figure 3). Experimental data shows bimodal Tat
levels across a population of infected cells (Weinberger
et al. [2005]). We investigated parameter regimes where
bimodality, i.e., some cells have high Tat levels and oth-
ers have no Tat, is feasible. Although the Tat feedback
loop is itself monostable, deterministic modeling revealed
that the dual feedback system is bistable if the Tat posi-
tive feedback strength and the mRNA-microRNA interac-
tion strength are sufficiently strong. Stochastic modeling
showed bimodal distributions for Tat levels for parameter
regimes where the coupled feedback system is bistable, and
also for cases where the system lacks bistability (Figure 4).
In summary, addition of the micro-mediated feedback loop
enhances the region of parameter space where Tat levels
are bimodal. Our results suggest that microRNA control of
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HIV gene expression may be critical in stabilizing Tat lev-
els at high and low levels in different infected cells, which
ultimately leads to different viral infection outcomes.
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