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Abstract: We consider the problem of output regulation for the class of minimum-phase
nonlinear systems described in normal form. We assume that the ideal steady state control input
fulfills a nonlinear regression law that is linearly parametrized in the uncertain parameters and
we propose an internal model-based design that combines high-gain and identification tools. The
identification tool by which the internal model is updated, is discrete-time by thus obtaining
a hybrid internal model. The present paper is part of a wider research activity of the authors
in which the attempt is to combine high-gain tools typically used in the context of nonlinear
output regulation with identification tools that are here used to estimate the optimal regression
law by best fitting the friend and its time derivatives.

1. INTRODUCTION

1.1 Background

Nonlinear output regulation is a well established research
field in the nonlinear control theory that received increas-
ing attention by the community in the last years. The
problem of designing internal model-based regulators is
particularly challenging in presence of uncertainties in
the regulated plant, and in particular in the ideal steady
state control law that secures zero regulation error. In
the literature relevant results addressing the design of
robust regulators, such as Huang [1995] and Serrani et al.
[2001], can be found. In Ding [2003], Delli Priscoli et al.
[2006] and Marino et al. [2008] efficient approaches to the
problem with the use of the adaptive observers theory
can be found, both in the linear case and in the nonlin-
ear case and in global and semiglobal case. Hybrid tools
have been also investigated in the attempt of designing
robust regulators able to offset parametric uncertainties
and exogenous disturbances. For instance, Serrani [2006]
studies the interconnection of a hybrid adaptive law with
a feedforward model of the disturbance. Recently (Isidori
et al. [2012]), a design solution that does not rely upon
conventional adaptation schemes has been proposed. The
solution relies upon high-gain methods originally proposed
in Byrnes et al. [2004] by using regression-like arguments
to derive a nonlinear internal model able to offset the
presence of uncertainties in the steady state control law
(see also Marino et al. [2011]).

1.2 Contribution

The paper deals with the problem of adaptive output
regulation in the particular case in which the steady state
control action satisfies a nonlinear regression law that

⋆ This research has been conducted in part under the collaborative
project SHERPA (ICT 600958) supported by the European Commu-
nity under the 7th Framework Programme.

is linearly parametrized in the uncertainties. The design
solution proposed by the authors in this context builds
on the high-gain methods of Byrnes et al. [2004] for the
design of the internal model. The novelty of the paper
is to augment the internal model with an hybrid system
aiming to identify on-line the regression law involving the
ideal steady state control input (the so-called “friend”)
and its time derivatives. The main idea is to employ the
internal model structure presented in Byrnes et al. [2004]
also as a “dirty derivative observer” of the friend and its
time derivatives that are then used in the dynamic hybrid
identifier for online identification of the internal model
structure.

1.3 Organization

The paper is organized as follows. In Section 2 some useful
preliminaries about high-gain nonlinear output regulation
and the main idea developed in the article. are presented.
Section 3 presents the details of the proposed approach
while Section 4 describes a simple example in order to test
the proposed methodology.

2. PRELIMINARIES

2.1 Nonlinear Output Regulation

In this section we briefly recall some basic concepts re-
garding the nonlinear output regulation with high gain
methods (Byrnes et al. [2003], Byrnes et al. [2004]) that are
instrumental for the main result of the paper. We consider
the following class of nonlinear systems in normal form
and with relative degree equals to one 1

ẇ = s(w) (1)

ż = f(z, w, e) (2)

ė = q(z, w, e) + b(z, w, e)u . (3)

1 All the forthcoming results can be easily extended to systems with
higher relative degree by means of standard tools.
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In the previous system one can recognize two main subsys-
tems: the first, described by (1), is the so-called exosystem
with state w ∈ W ⊂ R

s generating possible references
signals to be tracked and/or possible disturbances that
must be rejected. The set W is a compact set that is
assumed to be invariant for the exosystem dynamics (1).
The second subsystem is the controlled plant given in (2)-
(3) in which (z, e) ∈ R

n × R is the state, u ∈ R is the
control input, and e is the regulation error. All functions
in the overall system, i.e. s(·), f(·, ·, ·), q(·, ·, ·) and b(·, ·, ·)
are smooth in their arguments, with the function b(·, ·, ·),
the so-called high-frequency gain of the system, that is
assumed to be bounded from below by a positive number
b, i.e

b(z, w, e) ≥ b ∀(z, w, e) ∈ R
n ×W × R .

In this framework, the control objective can be formulated
as follows: given the sets W ⊂ R

s, Z ⊂ R
n and E ⊂ R of

initial conditions for the system (1)–(3), design a controller
processing the error e, namely

ξ̇ = α(ξ, e), ξ ∈ R
d

u = β(ξ, e)

with initial conditions in Ξ ⊂ R
d such that all trajectories

of the closed loop system starting from W × Z × E × Ξ
are bounded and limt→∞ e(t) = 0 uniformly in the initial
conditions.

We shall approach the previous problem under assump-
tions that are customary in the literature of output regu-
lation. In particular we assume the existence of a smooth
function π : Rs → R

n that solves the regulator equation

Ls(w)π(w) = f(π(w), w, 0), (4)

for all w ∈ W . This implies the existence of a compact set

A := {(w, z) ∈ W × R
n : z = π(w)}

that is invariant for the dynamics

ẇ = s(w), ż = f(z, w, 0) . (5)

The previous system is easily recognized to be the zero
dynamics of system (1)-(3) relative to the input u and to
the output e. As in most of the literature about output
regulation, we make a minimum-phase assumption on
system (5) that is formalized as follows.

Assumption. The set A is locally asymptotically stable
for (5) with a domain of attraction of the form W×D with
D an open set of Rn such that D ⊃ Z. ⊳

For notational convenience, in the following we let z :=
col(w, z) so that system (5) can be compactly rewritten
as

ż = F (z) with F (z) := col(s(w), f(z, w, 0)) . (6)

Furthermore, with a mild abuse of notation, we let
q(z, e) = q(w, z, e) and b(z, e) = b(w, z, e).

In the design of the regulator a crucial role is played by
the function c(z) defined as

c(z) = −q(z, 0)/b(z, 0) . (7)

This function is readily seen to be the “friend” associated
to the zero dynamics of system (1)–(3) (see Isidori [1995]),
namely the control input that makes the set A × {0}
invariant for the system (1)–(3). In the context of output
regulation, the output signals generated by system (6) with
output (7) with initial conditions ranging in A are the
steady state control inputs that must be generated by the

controller in order to keep the regulation error identically
to zero. It is thus apparent that system (6) with output
(7) with initial conditions ranging in A plays a crucial role
in the design of the regulator.

As a matter of fact it is a well-known fact (Marconi et al.
[2007]) that the output regulation problem is solved if
one is able to design smooth functions M : R

d → R
d,

G : Rd → R
d×1, and γ : Rd → R, such that, for some

smooth function τ : Rs × R
n → R

d, the set

graph(τ(z)) := {(z, ξ) ∈ A× R
d : ξ = τ(z)}

is locally asymptotically stable for the system

ż = F (z), ξ̇ = M(ξ) +G(ξ)c(z) (8)

with a domain of attraction W ×D×C with C an open set
of Rd satisfying C ⊃ Ξ, and, in addition,

γ(τ(z)) = c(z) ∀ z ∈ A . (9)

In this context, in fact, the controller that solves the
problem at hand is a system of the form

ξ̇ = M(ξ) +G(ξ)(γ(ξ) + v)
u = γ(ξ) + v
v = −κ(e)

(10)

where κ(·) is a properly defined class-K function. As a
matter of fact, the closed loop system given by (1)–
(3) and (10) is a system that has relative degree one
relative to the input v and output e and has a zero
dynamics precisely given by (8). Furthermore, due to
(9), the set graph(τ(z)) × {0} is an invariant set for the
closed loop system with v = 0. Under this circumstances,
standard high-gain arguments can be used to show that
an “high-gain” function 2 κ(·) succeeds in making the set
graph(τ(z)) × {0} locally asymptotically stable with a
domain of attraction containing the compact set of initial
conditions.

As shown in Marconi et al. [2008], functionsM(·), G(·) and
γ(·) with the desired properties can be always constructed
by following a design procedure that, however, is not, in
general, constructive. A relevant context where a construc-
tive design procedure can be given is the one presented in
Byrnes et al. [2004] asking that the friend c(z) fulfills a
regression formula of the form

Ld
F (z)c(z) = ϕ(c(z), LF (z)c(z), . . . , L

d−1
F (z)c(z)), ∀ z ∈ A

(11)
for some d and some locally Lipschitz function ϕ : Rd → R.
In this case, in fact, the theory of high-gain observers
(Gauthier et al. [2001]) can be used to show that the above
properties are fulfilled with

G(ξ) = G := col(λ1g, λ2g
2, . . . , λdg

d) , (12)

where g is a design parameter and the λi’s that are
coefficients of an Hurwitz polynomial,

M(ξ) := col(ξ2, . . . , , ξd, , ϕs(ξ)) −Gξ1 , (13)

where ϕs(·) is a uniformly bounded and globally Lipschitz

function such that ϕ(c(z), LF (z)c(z), . . . , L
d−1
F (z)c(z)) =

ϕs(c(z), LF (z)c(z), . . . , L
d−1
F (z)c(z)) for all z ∈ A, and γ(ξ) =

ξ1. By choosing M(·), G, and γ(·) in this way, it turns out
that there exists a g⋆ > 1 (depended on the Lipschitz

2 The κ(e) can be indeed taken as a linear function ke with
k a sufficiently large gain if the set graph(τ(z)) is also locally
exponentially stable for (8).

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8177



constant and on the bound of ϕs(·)) such that, having
defined

τ(z) = col(τ1(z), . . . , τd(z))
:= col(c(z), . . . , Ld−1

F (z)c(z)) ,
(14)

the set graph(τ(z)) is locally asymptotically stable for (8)
and (9) is fulfilled.

2.2 Main Idea

In this paper we propose a design procedure that builds on
the framework of Byrnes et al. [2004], by thus assuming a
relation of the form (11) involving the friend c(z) and its
time derivatives. Our goal is to present a design procedure
that accounts for possible uncertainties in the function
ϕ(·). For sake of simplicity we assume that the function
ϕ(·) is linearly parametrized in the uncertainties, namely
we assume that there exist a p > 0 and a known smooth
function φ : Rd → R

p such that

ϕ(ξ1, . . . , ξd) = θTφ(ξ1, . . . , ξd) (15)

where θ ∈ R
p is a vector of uncertainties. We assume

that θ ∈ P , with P a known compact set of R
p. By

bearing in mind that what really matter in the design of
the regulator is the value of ϕ(·) evaluated at τ(z), it is
apparent that a crucial objective in the regulator design is
to estimate the vector θ by computing the best “fitting”
between the d-th derivative of the friend, Ld

F c(z) and the

regressor φ(c(z), . . . , Ld−1
F c(z)), for all possible z ∈ A. The

problem at hand can be clearly cast as a identification
problem. If the friend c(z) and its derivative up to the
order d + 1 were known, the problem could be addressed
by running identification algorithms, such as least-square
methods, to compute the parameter that best fits the data.
Since c(z), . . . , Ld

F c(z) are not measurable in the output
regulation context, the idea that is pursued in the paper is
to estimate their value by employing the “dirty derivative”
(using the terminology in Teel et al. [1995]) features of
the internal model of the form indicated at the end of the
previous section. Namely, the ability of the ξ-system in (8),
withM(·) andG given in (13) and (12) to roughly estimate
the friend c(z) and its time derivative up to the order d−1,
with an estimation error that can be arbitrarily decreased
by increasing g, regardless the specific expression ϕs(·) in
(13) (provided that a bound on the Lipschitz constant is
fixed). Since the identification problem potentially requires
the knowledge also of the Ld

F c(z), the regulator that is
presented later has dimension d + 1, namely one more
with respect to the one presented above. The extra state
variable ξd+1, that is redundant as far as the internal
model property is concerned, has precisely the role of
providing a “dirty estimate” of Ld

F c(z) that turns out to
be crucial in estimating the actual value of θ.

In order to precisely present the regulator structure, let
φ′ : Rd+1 → R be the locally Lipschitz function defined as

φ′(ζ1, . . . , ζd+1) =

d
∑

i=1

∂φ(ζ1, . . . , ζd)

∂ζi
ζi+1

and let φ′
s : Rd+1 → R a globally Lipschitz and uniformly

bounded function such that

φ′
s(c(z), . . . , L

d
F (z)c(z)) = φ′(c(z), . . . , Ld

F (z)c(z)) ∀ z ∈ A .

Then, along the lines of Byrnes et al. [2004], our controller
takes the following hybrid form whose flow and jump

dynamics are governed by a clock variable, denoted by
τc, that resets every τc,max instances, in details it flows
according to

τ̇c = 1, τc ∈ [0, τc,max]
[

ξ̇[1,d]
ξ̇d+1

]

=

[

ξ[2,d+1]

θ̂Tφ′
s(ξ)

]

+ [λ1g, . . . , λd+1g
d+1]Tu (16)

and jumps according to

τ+c = 0, τc ∈ {τc,max}
[

ξ+[1,d]
ξ+d+1

]

=

[

ξ[1,d]
θ̂Tφs(ξ[1,d])

]

(17)

with u = ξ1 + v and where, for compactness, ξ[a,b] denotes

the sub-vector of ξ = (ξ1, . . . , ξd+1)
T containing only the

components from a to b, v is a residual input and θ̂ is
an estimate of the uncertainty θ. The estimation of θ, as
said, takes advantage of the fact that system (16)-(17) can
be tuned to have ξ approximating c(z), . . . , Ld

F c(z). In our
design the dynamic identifier is a hybrid system that flows
according to

τ̇c = 1
η̇ = Fη(η, ξ) η ∈ R

m

}

τc ∈ [0, τc,max] (18)

and jumps according to

τ+c = 0
η+ = Jη(η, ξ)

}

τc ∈ {τc,max} (19)

with the estimate θ̂ of the form

θ̂ = Γη(η) (20)

where the functions Fη(·), Jη(·) and Γη(·) are smooth
functions. Intuitively, the previous system must be de-
signed so that if ξ is replaced by c(z), . . . , Ld

F c(z), then

θ̂ asymptotically converge to θ. The fact that ξ is not
coincident with the friend c(z) and its time derivative,
will require additional robustness properties that will be
detailed in Section 3.1.

3. MAIN RESULT

3.1 Identifier Design Requirement

We start by making explicit the requirements to be fulfilled
by the dynamic identifier (18), (19), (20). With a mild
abuse of notation with respect to the previous section we
let

τe(z) = col(c(z) , LF c(z) , . . . , L
d
F c(z))

Identifier Design Requirement. System (18), (19),
(20) is said to satisfy a “Identifier Design Requirement”
if there exists a smooth function σ : R × R

s × R
n → R

m

such that the hybrid system flowing according to

τ̇c = 1, ż = F (z)
η̇ = Fη(η, τe(z) + d) η ∈ R

m

}

τc ∈ [0, τc,max] (21)

and jumping according to

τ+c = 0, z+ = 0
η+ = Jη(η, τe(z) + d)

}

τc ∈ {τc,max} (22)

is ISS with restrictions relative to the set

gr(σ(τc, z)) = {(τc, z, η) ∈ [0, τc,max]×A× R
m :

η = σ(τc, z)}
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with respect to the input d. That is (see Liberzon et al.
[2012]), there exists r > 0 such that, letting ζ =
col(τc, z, η), for all ζ(0, 0) ∈ [0, τc,max]× (W ×Z)×X , and
for all bounded d satisfying ‖d(·, ·)‖∞ ≤ r, the trajectory
of system (21)-(22) is bounded and

‖ζ(t, j)‖gr(σ(τc,z)) ≤

max{β(‖ζ(0, 0)‖gr(σ(τc,z)), t+ j) , γ(‖d(t, j)‖)}

where β(·, ·) and γ(·) are respectively a class-KL and a
class-K function. Furthermore, there exists θ̄ > 0 such
that

‖Γη(η)‖ ≤ θ̄ ∀ η ∈ R
m (23)

and the following holds

Ld
F c(z) = Γη(σ(τc, z))

T φ(c(z) , LF c(z) , . . . , L
d−1
F c(z))

(24)
for all z ∈ A and for all τc ∈ [0, τc,max]. ⊳

We will show later in Section 3.3 a possible design of a
system of the form (18), (19), (20) fulfilling the previous
requirement.

3.2 Closed loop analysis

Again with a mild abuse of notation with respect to the
previous section, we let

G(ξ) = G := col(λ1g, λ2g
2, . . . , λdg

d, λd+1g
d+1) , (25)

where g is a design parameter and the λi’s that are
coefficients of an Hurwitz polynomial, and

M(ξ) := col(ξ2, . . . , , ξd+1, , θ̂
Tφ′

s(ξ)) −Gξ1 , (26)

The closed loop system is a hybrid system flowing when
τc ∈ [0, τc,max] according to

τ̇c = 1
ż = F (z) + Υ(z, e)e

ξ̇ = M(ξ) +G(ξ1 + v) +B(Γη(η)− θ)Tφ′
s(ξ)

η̇ = Fη(η, ξ)
ė = q(z, e) + b(z, e)(ξ1 + v)

(27)

and jumping whenever τc ∈ {τc,max} according to

τ+c = 0
z+ = z

ξ+ = col(ξ[1,d],Γ
T
η (Jη(η, ξ))φs(ξ[1,d]))

η+ = Jη(η, ξ)
e+ = e

(28)

where B ∈ R
d+1×1 is the column vector with all the entries

that are zero except the last one that is 1, and Υ(·, ·) is an
appropriately defined function. This is a system that has
relative degree one with respect to the input v and output
e and a zero dynamics that flows when τc ∈ {τc,max}
according to

τ̇c = 1
ż = F (z)

ξ̇ = M(ξ) +Gc(z) +B(Γη(η) − θ)Tφ′
s(ξ)

η̇ = Fη(η, ξ)

(29)

and jumping according to

τ+c = 0
z+ = z

ξ+ = col(ξ[1,d],Γ
T
η (Jη(η, ξ))φs(ξ[1,d]))

η+ = Jη(η, ξ)

(30)

for all τc ∈ {τc,max}. In the following we analyze such a
system, by showing that if the dynamic identifier (18),

(19), (20) fulfills the previous design requirement then,
for a sufficiently large value of g, the zero dynamics
have a well-defined attractor that is locally asymptotically
stable. To this purpose, we regard the zero dynamics as
interconnection of two systems. The first is a hybrid system
described by

τ̇c = 1, τc ∈ [0, τc,max]
ż = F (z)

ξ̇ = M(ξ) +Gc(z) +BΛ(η, ξ, z) +Bu1
(31)

and
τ+c = 0, τc ∈ [0, τc,max]
z+ = z

ξ+ = col(ξ[1,d],Γ
T
η (Jη(η, ξ))φs(ξ[1,d]))

(32)

with Λ(η, ξ, z) = (Γη(η)−θ)T (φ′
s(ξ)−φ′

s(τe(z))), regarded
as a system with state (z, ξ) ∈ W × R

n × R
d+1, input

u1 ∈ R and output y1 ∈ R
d+1 defined as

y1 = ξ − τe(z) .

The second is an hybrid system flowing according to

τ̇c = 1, τc ∈ [0, τc,max]
ż = F (z)
η̇ = Fη(η, τe(z) + u2)

(33)

and jumping according to

τ+c = 0, τc ∈ {τc,max}
z+ = z

η+ = Jη(η, τe(z) + u2)
(34)

The latter is regarded as a system with state (τc, z, η) ∈
[0, τc,max] × W × R

n × R
m, input u2 ∈ R

d+1 and output
y2 ∈ R defined as

y2 = (Γη(η)− θ)Tφ′
s(τe(z)) .

It easy to see that the zero dynamics are obtained by the
interconnection

u1 = y2 u2 = y1 .

Proposition 1. Consider system (31)-(32) with input u1

and output u2, and let Γη(·) appearing in Λ(·) be fulfilling
(23) for some θ̄. Then there exists a g⋆ ≥ 1 such that for
all g ≥ g⋆ such a system is pre-ISS relative to the set

E := {(τc, z, ξ) ∈ R×A× R
d+1 : ξ = τe(τc, z)}

with respect to the input u1. In particular, there exists a
c such that for all z(0) ∈ W × Z, ξ(0) ∈ Ξ, and for all
bounded u1(t), the trajectories of the system are bounded
and the following asymptotic bound holds true

lim
t→∞

sup ‖y1(t)‖ ≤
c

g
lim
t→∞

sup ‖u1(t)‖ .

In other words there exists a locally Lipschitz Lyapunov
function V : R×A×R

d+1 → R≥0 such that the following
hold

• there exist positive αξ, ᾱξ such that

αξ||(τc, z, ξ)||E ≤ V (τc, z, ξ) ≤ ᾱξ||(τc, z, ξ)||E ;

• there exist χξ > 0 and cξ > 0 such that

V (τc, z, ξ) ≥
χξ

g
||u1|| ⇒ V̇ (τc, z, ξ) ≤ −cξV (τc, z, ξ);

• there exists 0 < λξ < 1 such that we have

V (τc, z, ξ) ≤ max{λξV (τc, z, ξ), χξ||u1||}.
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Furthermore, let ‖u1‖∞ ≤ ū. Then for all ǫ > 0 and for all
t⋆ > 0 there exists a g⋆2 > 0 such that for all g ≥ g⋆2 the
following holds

‖y1(t)‖ ≤ ǫ ∀ t ≥ t⋆ .

Now we move the attention to system (33)-(34) with input
u2 and output y2. By the “Identifier Design Requirement”
such a system is pre-ISS relative to the set gr(σ(τc, z)) with
non zero restrictions r on the input u2. In the following it
will be shown that the restriction on the input is fulfilled
in (arbitrarily small) finite time. To this end, we observe
that, by the requirement (23), by the fact that θ ∈ P , P a
compact set, and since φ′

s(·) is a bounded function, there
exists a positive δ̄ such that

‖y2‖ ≤ δ̄ ∀ (η, z) ∈ R
m × R

s+n .

From this, using the claim in the second part of Propo-
sition 1, it is immediately concluded that for all t⋆ > 0,
there exists a g⋆ such that for all g ≥ g⋆ ‖u2(t)‖ ≤ r for
all t ≥ t⋆.

Theorem 1. There exists a g⋆ > 0 such that for all g ≥ g⋆

the set

B = {(τc, z, η, ξ) ∈ [0, τc,max]×A× R
m × R

d+1 :
η = σ(τc, z) , ξ = τe(τc, z)}

is locally asymptotically stable with a domain of attraction
containing the set of initial conditions [0, τc,max] × W ×
Z × X × Ξ. Furthermore, q(z, 0) + b(z, 0)ξ1 = 0 for all
(τc, z, η, ξ) ∈ B.

Proof: (Sketch) Using LF c(z) = θTφ′
s(τe(z)) for all

z ∈ A and using (24), it turns out that

‖y2‖ ≤ c1‖(τc, z, η)‖gr(σ(τc,z))

for some positive c1. From this the asymptotic stability of
the set B follows by the small gain theorem in Liberzon
et al. [2012] by using the fact that the restriction on the
input u2 can be fulfilled in an arbitrarily small time (so
that finite escape time can be prevented) and using the
first part of Proposition 1. The second part follows from
the definition of τe(z) and of c(z). ⊳

The result of the previous theorem is instrumental to the
analysis of the overall closed-loop system (27)-(28). The
fact that such a system has relative degree one (from the
input v to the error e), that the zero dynamics has an
asymptotically stable attractor B, and that B × {0} is an
invariant set for the system with v = 0 (as it immediately
follows from the second part of Theorem 1), allows one to
claim the following final theorem.

Theorem 2. Let g be fixed according to Theorem 1. Then
there exists a class-K function κ(·) such that the set B×{0}
is locally asymptotically stable for (27)-(28) with v = κ(e)
with a domain of attraction that contains the set of initial
conditions [0, τc,max]×W × Z ×X × Ξ× E.

3.3 A Possible Design of the Identifier

In this part we briefly sketch a possible design of the hybrid
identifier fulfilling the requirements specified in section 3.1.
As typical in adaptive control we make a persistence of
excitation assumption detailed in the following.

Assumption. (Persistence of excitation) There exist pos-
itive T ⋆ and δ such that

det

∫ t+T

t

φ(τ(z(z0 , s)))φ(τ(z(z0 , s)))
T ds ≥ δ

for all t ≥ 0, T ≥ T ⋆ and z0 ∈ A, having defined z(z0, s)
the trajectory of ż = F (z) at time s with initial condition
z0. ⊳

Note that, by continuity arguments, there exist positive r
and δ′ such that

det

∫ t+T

t

φ(τ(z(z0 , s)) + d)φ(τ(z(z0 , s)) + d)T ds ≥ δ′

for all t ≥ 0, T ≥ T ⋆ and z0 ∈ A, and for all
d such that ‖d‖ ≤ r. Now, starting from Ld

F c(z) =

θTφ(c(z), . . . , Ld−1
F c(z)), post multiplying both sides for

φ(c(z), . . . , Ld−1
F c(z))T , and taking the integral from 0 to

τc,max, with τc,max > T ⋆, it turns out that

θT =

∫ τc,max

0

Ld
F c(z(z0, s))φ(τ(z(z0 , s))

T ·
[
∫ τc,max

0

φ(τ(z(z0 , s))φ(τ(z(z0 , s))
T

]−1

(35)
This expression motivates a possible identifier flowing
according to

τ̇c = 1 , η̇1 = ξd+1φ(ξ)
T , η̇2 = φ(ξ)φ(ξ)T , η̇3 = 0

when τc ∈ [0, τc,max], and jumping according to

τ+c = 0 , η+1 = 0 , η2 = 0 , η3 = η1η
†
2

when τc ∈ {τc,max}, where η†2 is the pseudo inverse of η2,

and taking θ̂ = ηT3 . The estimate parameter θ̂ is kept
constant in the clock interval and it is updated at each
clock by properly elaborating the value of η1 and η2. The
latter integrate the quantities ξd+1φ(ξ)

T and φ(ξ)φ(ξ)T

during the clock interval in order to obtain a parameter
estimation in the spirit of (35). It turns out that the
previous system has the ISS property with restrictions
required in Section 3.1.

4. SIMULATION RESULTS

In this section we show a simple, yet relevant, example of
application of the theory proposed above. As regulated
plant we consider a controlled Van der Pol oscillator
described by

ẋ1(t) = x2(t)

ẋ2(t) = −x1(t) + (1− x2
1(t))x2(t)− w1(t) + u(t)

with initial conditions (x1(0), x2(0)) = (x10, x20), where
u(t) is the control input, while w1(t) is an exogenous input
generated by an autonomous Duffing oscillator (playing
the role of exosystem)

ẇ1(t) = w2(t) w1(0) = w10

ẇ2(t) = −α⋆w3
1(t)− β⋆w1(t) w2(0) = w20

with θ := col(α⋆, β⋆) that is the constant vector uncertain-
ties. Let the regulation error be defined as e(t) := x1(t) +
x2(t) and let z(t) := x1(t). Simple calculations show that
the system in the new coordinates is in the form (2)-(3),
namely

ż(t) = −z(t) + e(t) (36)

ė(t) = (2− z2(t))e(t) + (z2(t)− 3)z − w1(t) + u(t) (37)

with initial conditions (z(0), e(0)) = (z0, e0) := (x10, x10+
x20). It is readily seen that in this case z = (w1, w2, z) and
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c(z) = w1. For the design of the internal model part it is
possible to observe that the regression law (11) is directly
fulfilled by the steady state input with d = 2, leading
to a third order internal model. On the other hand, the
hybrid identifier has dimension equals to 9, because of the
presence of a clock τc(t) ∈ R, a vector η1(t) ∈ R

2, a matrix
η2(t) ∈ R

2×2 and the vector of estimated parameters

θ̂(t) := col(α̂(t), β̂(t)). In Table 1 it is possible to find
the list of the parameters used in this example, with

(α⋆, β⋆) = (1,−0.5) (w10, w20) = (2.4, 1.3)

(x10, x20) = (1.2, 2.3) (g, k, τc,max) = (10, 100, 1)

(ξ10, ξ20, ξ30) = (0, 0, 0) (τc,0, η10, η20, θ̂0) = (0, 0, 0, 0)

Table 1. List of parameters used in the simu-
lation.

(ξ10, ξ20, ξ30) and with (τc,0, η10, η20, θ̂0) that are the initial
conditions of the internal model and the hybrid identifier
respectively. The outcome of the simulation is represented
in Figure 1, where the error variable e(t) and the error
between the real and estimated parameters are plotted. At
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Fig. 1. The behaviors of the three errors, namely, the
regulation error e(t) = x1(t)+x2(t), the error between

α⋆ and α̂(t) and finally the error between β⋆ and β̂(t).

time t = 50 s we simulated a change of value in the vector
of real parameters from (1,−0.5) to (0.5,−1) just to check
the efficiency of the hybrid identifier. Fig. 1 confirms good
performances of the proposed controller. In particular,
observing the two small figures, it is possible to see how
the error e(t) reaches exactly the zero value only when the
estimation error converges to zero.

5. CONCLUSIONS

We have considered the problem of designing an internal
model based controller by putting particular attention
on the class of controlled plants described by equations
(1)-(2)-(3) and on the particular framework in which the
steady state control input is generated by a nonlinear
regression law, linear in all the uncertain parameters. We
have shown how it is possible to construct an overall
regulator composed by two main systems: the first is the
internal model designed according to Byrnes et al. [2004],

which plays the role of the steady state input generator,
and the hybrid identifier that provides an estimate of
the regression law underlying the friend and its time
derivatives, by thus guaranteeing an asymptotically zero
regulation error. The proposed method have been also
validated by simulations. Future work in this direction are
on the investigation of other identification techniques, such
as neural network, wavelets, and others, and to address the
output regulation problem in a stochastic environment.

REFERENCES

A. Isidori. Nonlinear Control Systems 3rd ed. Springer-
Verlag, New York, 1995.

A.R. Teel and L. Praly. Tools for semiglobal stabilization
by partial state and output feedback. SIAM Journal on
Control and Optimization, 33, 1443-1488, 1995.

J. Huang. Asymptotic tracking and disturbance rejection
in uncertain nonlinear systems. IEEE Trans. Automatic
Control, 40, 1118-1122, 1995.

J.P. Gauthier and I. Kupka. Deterministic observation
theory and applications. Cambridge University Press,
Cambridge, UK, 2001.

A. Serrani, A. Isidori and L. Marconi. Semiglobal non-
linear output regulation with adaptive internal model.
IEEE Trans. Automatic Control, AC-46, 1178-1194,
2001.

A. Ding. Global stabilization and disturbance suppression
of a class of nonlinear systems with uncertain internal
model. Automatica, 39(3), 471-479, 2003.

C.I. Byrnes and A. Isidori. Limit sets, zero dynamics,
and internal models in the problem of nonlinear output
regulation. IEEE Trans. Automatic Control, 48, 1712-
1723, 2003.

C.I. Byrnes and A. Isidori. Nonlinear Internal Models for
Output Regulation. IEEE Trans. Automatic Control,
Vol. 49, No. 12, Dec. 2004.

F. Delli Priscoli, L. Marconi and A. Isidori. A new ap-
proach to adaptive nonlinear regulation. SIAM Journal
on Control and Optimization, 45(3), 829-855, 2006.

A. Serrani. Rejection of harmonic disturbances at the
controller input via hybrid adaptive external model.
Automatica, 42, 1977-1985, 2006.

L. Marconi, L. Praly and A. Isidori. Output stabilization
via nonlinear Luenberger observers. SIAM Journal on
Control and Optimization, 45(6), 2277-2298, 2007.

L. Marconi and L. Praly. Uniform practical output
regulation. IEEE Trans. Automatic Control, 53(5),
1184-1202, 2008.

R. Marino and P. Tomei. Adaptive nonlinear regulation
for uncertain minimum phase systems with unknown
exosystem. Proceedings of the 47th IEEE conference on
decision and control, Cancun, Mexico, 2008.

R. Marino and P. Tomei. An adaptive learning regulator
for uncertain minimum phase systems with undermod-
eled unknown exosystems. Automatica, Vol. 47, 739-747,
2011.

A. Isidori, L. Marconi and L. Praly. Robust design of non-
linear internal models without adaptation. Automatica,
Vol. 48, 2409-2419, July 2012.
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