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Abstract: In present computer networks, cyber attacks, such as compromising and energy
depleting attacks, can cause malfunction or even failure of nodes, and can be significantly
harmful to the convergence property of the average consensus algorithms. In this paper, we aim
to distributively find the most critical nodes in the sense that removing it causes the largest
destruction to the converging speed of an average consensus algorithm among all the nodes.
The algebraic connectivity is used to assess the destruction and thus the importance of a node.
We design two methods to estimate the algebraic connectivity and analyze their bounds for
the estimation error. Based on this, we propose a fully distributed algorithm for the nodes to
iteratively find the most critical one. Simulation results demonstrate the effectiveness of our
algorithm.

Keywords: critical nodes, algebraic connectivity, Fiedler vector, distributed algorithm

1. INTRODUCTION

As a class of important distributed computing methods,
the average consensus algorithm has gained intensive at-
tentions recently (Olfati-Saber et al. (2007) and references
therein). It requires only limited communication and com-
putation resources for each node, with robustness against
unreliable communications and topology changes. Such
features have made the algorithm a powerful tool for a
variety of applications particularly in large-scale networks,
such as formation control/flocking in multi-agent systems,
distributed time synchronization in wireless sensor net-
works, load balancing in communication networks, and
time synchronization in oscillators. (Olfati-Saber et al.
(2007), He et al. (2013), He et al. (2014), etc).

Relying on network communications among the nodes, the
average consensus algorithm is usually subject to cyber
attacks, which raises the critical problem of secure con-
sensus(Khanafer et al. (2012)). For example, an adversary
can apply denial of service (DoS) attacks to break down
some communication links so to prevent the network from
converging to consensus(Ganeriwal et al. (2005)). In this
regard, there have been many works studying both the
adversary strategies and secure mechanisms to protect the
consensus algorithms (Pasqualetti et al. (2007), Khanafer
et al. (2012) Ghosh and Boyd (2006)).

Another type of malicious attack is directly executed on
the nodes by adversaries. For example, in battery powered
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networks, e.g., wireless sensor networks, an adversary can
physically cause a node failure by injecting an excessive
number of packets to deplete the energy of this node. If
the adversary is powerful enough or there are multiple
adversaries that break the network-wide connectivity by
attacking some nodes, it is trivial to see that consensus is
no longer achievable. In this paper, we consider the non-
trivial case that the adversary can only attack one node
at a time. In this case, although consensus may still be
guaranteed, the performance of the consensus algorithm
in terms of converging speed could be varied.

We study the importance of the nodes and design an
efficient algorithm to find the most important node. Given
global network connectivity information, a smart adver-
sary may choose the most critical node to attack in order
to maximize the time to consensus across the residual
network. In fact, the algebraic connectivity of a network, is
the smallest nonzero eigenvalue of state transition matrix
of consensus, and thus characterizes the convergence speed
(Xiao and Boyd (2004), Olshevsky and Tsitsiklis (2009)).
A secure consensus algorithm should be able to protect
the converging performance from such a smart adversary.
Therefore, our goal is to identify the most critical node
that its removal causes the biggest destruction in terms of
longest converging time (or lowest converging speed).

Since the algebraic connectivity is a subtle property of
the network topology, it is challenging, if not impossi-
ble, to distributively find the most critical node based
on the algebraic connectivity without knowledge of the
whole network topology. In the literature, maximizing the
adjacency matrix spectral radius of the residual network
after a node removal has been studied in Restrepo et al.
(2006), Milanese et al. (2010). In Watanabe and Masuda
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(2010), an estimation method has been proposed to es-
timate the algebraic connectivity of the residual network
after deleting a node based on Fiedler vector of the original
graph (Fiedler (1973)). Masuda et al. (2013) propose a
semi-definite programming based approach to optimize
the algebraic connectivity of the residual network after
node removals. Nevertheless, the above two approaches are
substantially centralized that require global information of
the network topology.

In this paper, we propose a novel distributed approach to
identify the most critical node whose removal causes the
largest decrease of the algebraic connectivity. Specifically,
our contributions can be summarized as follows. We for-
mulate the node importance problem as a combinatorial
optimization problem and derive an efficient method to
estimate it. Based on matrix perturbation theory and
matrix norm theory, we develop a theoretical bound for
the estimation error. We propose a distributed algorithm,
which runs on each node, to identify the most critical
node. Through simulations, we show that our algorithm
achieves the similar results as the exhaustive searching
based optimal solution.

The remainder of this paper is organized as follows. The
problem of interest is formulated in Section 2. Section 3
presents the estimation method and derives the estimation
error bound. Section 4 describes the distributed algorithm
in details. Section 5 presents simulation results and Section
6 concludes this paper.

2. PRELIMINARIES AND PROBLEM
FORMULATION

Consider an undirected network described by the graph
G = (V,E) with nodes set V = {1, 2, ..., n} and edges E
representing the communication links. Denote the set of
neighbors of node i by Ni = {j : (i, j) ∈ E}. di = |Ni|
is the degree of the node i. The network topology is
characterized by a symmetric adjacency matrix A = [aij ],
where aii = 0, aij = 1 if (i, j) ∈ E and aij = 0
otherwise. In the following, 1 stands for the vector with
all its elements equal to 1, ei represents the vector with its
ith element equals to 1 and the others equal to zero. ∥ · ∥
is the 2-norm operator.

2.1 The average consensus algorithm

The general form of an average consensus problem has the
following dynamics(Olfati-Saber et al. (2007)):

ẋ(t) = −Lx(t) (1)

where L = [lij ] is the Laplacian matrix of the network with
lii =

∑
j aij , and lij = −aij for any i ̸= j. Apparently, the

convergence analysis of the consensus problem reduces to
spectral analysis of the Laplacian matrix of the network
topology. L has a simple eigenvalue zero and all the other
eigenvalues are nonnegative iff the network is connected
(Xiao and Boyd (2004)). With a little abuse of notation,
we use λ(G) to represent corresponding eigenvalues of L.
Without loss of generality, assume that λ1(G) = 0 <
λ2(G) ≤ · · · ≤ λn(G), where λi(·) represents the i-
th smallest eigenvalue of a matrix. λ2(G) is called the
algebraic connectivity of the network. λ2 plays a vital role
in the convergence of consensus and network robustness

(Fiedler (1973), Xiao and Boyd (2004)). For convenience,
we denote α(G) = λ2(G). The corresponding eigenvector is
called the Fiedler vector. Let µ be the normalized Fiedler
vector, i.e., Lµ = αµ and ∥µ∥ = 1. Similar to Bertrand
and Moonen (2012), we make the following assumption.

Assumption 1. λ2 is a simple eigenvalue of the Laplacian
matrix L, which guarantees the uniqueness of the Fiedler
vector µ.

Let Gi denote the graph originated from G with node i
and all its incident edges removed. Define an n-dimensional
matrix Li as the Laplacian matrix associated with node i,
where lii = di, for all j ∈ Ni ljj = 1, lij = lji = −1, and
all the other entries are 0. We specify the n-dimensional
matrix Li as the Laplacian matrix of Gi except that the
elements in i-th row and i-th column are all zero. Note that
all the matrices defined above are n-dimensional. From
the definition of Li, it is easy to find that the algebraic
connectivity of the network after deleting node i is the
third smallest eigenvalue of Li, i.e., λ3(L

i).

2.2 Problem formulation

In this paper, we aim to identify the most critical node
whose removal causes the lowest convergence speed (i.e.,
the largest decrease in algebraic connectivity) among all
the nodes in V . That is, we want to find node i that solves
the following optimization problem

min λ3(L
i)

s.t Li = L− Li, i ∈ V
(2)

Given the Laplacian matrix L, an exhaustive search based
method can find the optimal node by comparing the al-
gebraic connectivity of the n residual graphs. In addition,
SDP (semi-definite programming) method in Masuda et al.
(2013) can be also applied to solve this problem. However,
both approaches are centralized and not scalable. In this
paper, we aim to find a distributed method to the above
problem. Below we first propose an efficient method to es-
timate node importance by using the matrix perturbation
theory.

3. NODE IMPORTANCE ESTIMATION

We first give basic matrix perturbation theory to analyze
eigenvalue change under node removal. Then, we present
two different methods to estimate the Fiedler eigenvector
after perturbation, and derive an approximation value
of algebraic connectivity descent. The accuracy of the
approximation mainly depends on the estimation accuracy
of Fiedler vector. We bound the Fiedler vector angle
error, based on which we propose an upper bound for the
estimation error.

3.1 Eigenvalue perturbation analysis

Considering a symmetric matrix A with a pair of nontrivial
eigenvalues λ and µ, we have

Aµ = λµ, µTA = µTλ

Suppose that A is perturbed with a matrix ∆A and the
eigenpair varies with ∆λ and ∆µ, respectively, i.e.,

(A+∆A)(µ+∆µ) = (λ+∆λ)(µ+∆µ),

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1844



Let ν = µ + ∆µ, following the similar deduction in
Hultgren (2011), we get a new eigenvalue perturbation
equation as

∆λ =
µT∆A(µ+∆µ)

µT (µ+∆µ)
=

µT∆Aν

µT ν
(3)

From (3), it is easy to estimate the eigenvalue after pertur-
bation using the original eigenvalue and the corresponding
eigenvectors. Since we can formulate node removal as a
matrix perturbation, the above analysis lays a foundation
for our evaluation of node importance.

3.2 Different estimation methods

For system (1), removing node i yields the perturbation
matrix ∆L = −Li. Thus from (3), we get variation of the
algebraic connectivity after removing node i as

∆αi =

∑
j∈Ni

(νj − νi)(µi − µj)

N∑
k=1

µkνk

(4)

where µi and νi stand for the ith element of µ and ν,
respectively, and ν represents the eigenvector correspond-
ing to the new Fiedler vector. From (4) we know that in
order to calculated ∆αi distributively, each node needs
to calculate µ and the new Fiedler vector ν based on
local information exchanges, which, however, is extremely
hard. In the following, we propose to estimate the vector
ν, which is a first step to the design of our fully distributed
algorithm in Section 4.

Lemma 1. (Mohar and Alavi (1991)). For an arbitrary
eigenpair µ and λ of the Laplacian matrix L, the following
conditions hold:

• 1Tµ = 0;
• (λ− di)µi =

∑
j∈Ni

µj , for all i ∈ V ;

• νi = 0, for an eigenvector ν of Li.

From matrix perturbation theory (Nayfeh (2008)), we
know that the eigenvector of a matrix with a small (in the
sense of some kind of matrix norm) perturbation doesn’t
change much. Then, in order to estimate ∆αi in (4), there
are two estimation methods for the unknown ν.

Method 1. ν = µ

Substituting ν = µ into equation (4), we get:

∆αi ≈
µT∆Lµ

µTµ
= −

∑
j∈Ni

(µi − µj)
2 (5)

The intuition behind ν = µ is that the perturbation is
so small that ∆µ is close to 0. This kind of estimation
resembles the criterion in Ghosh and Boyd (2006), where
−(µi − µj)

2 is used to evaluate the importance of an edge
on algebraic connectivity. Consequently, the importance
of a node is determined by the sum of importance of its
incident edges.

Method 2. ν = µ− µiei

This method was first proposed in Watanabe and Masuda
(2010) utilizing the fact that νi = 0. Based on equation
(4), we get the eigenvalue reduction:

∆αi ≈
µT∆L(µ− µiei)

µT (µ− µiei)
=

∑
j∈Ni

µj(µi − µj)

1− µ2
i

(6)

Among the two estimation methods above, we have taken
the advantage of properties of Fiedler vector Lemma 1
shows. However, it might be difficult to compare the
relative optimality of these methods because different
methods gain fluctuant effects with respect to different
topologies and even distinct nodes. As one dimension to
evaluate the accuracy of the estimation methods above, we
try to bound the angle ∠(µ, ν) and ∠(µ − µiei, ν), since
the difference between µ and ν heavily depends on their
angle.

3.3 Characterizing the estimation error bound

Below we bound the estimation error of ν and ∆αi

accordingly. We first give some property of Li.

Lemma 2. ∥Li∥ = di + 1 holds for all i ∈ V .

Proof. Note that Li is symmetric and it is easy to see that

the eigenvalue sequence of Li is {
n−di︷ ︸︸ ︷
0, ..., 0, 1, ..., 1︸ ︷︷ ︸

di−1

, di + 1}.

Applying the 2-norm to matrix Li, we get, ∥Li∥ = di + 1.

Without loss of generality, we assume ∥µ∥ = 1 and ∥ν∥ = 1
in the rest of this section. Let α and α̃ denote the algebraic
connectivity of L and L+∆L respectively.

Lemma 3. (Mohar and Alavi (1991), Fiedler (1973)).
Removing a node from original network G, we have:
max{0, α− 1} ≤ α̃ ≤ λ3.

Lemma 3 gives a compact upper and lower bounds for the
algebraic connectivity using the current two eigenvalues,
which provides a reference for our expected descent in
algebraic connectivity and will be used in the simulation
part.

Theorem 1. The angle between µ and ν satisfies:

sin∠(µ, ν) ≤ min{
√
di + 1,

√
n− di − 1}

min{α̃, λ3 − α̃}

Proof. Let Y be a matrix with columns consisting of
vectors pairwise orthonormal and are all orthonormal with
µ. Vector ν can be normalized as,

1 = ∥ν∥ =

∥∥∥∥∥
[
µT

Y T

]
ν

∥∥∥∥∥ =

√
(µT ν)

2
+ (Y T ν)

2

Note that cos∠(µ, ν) = µT ν since ∥µ∥ = ∥ν∥ = 1. Thus,
sin∠(µ, ν) =

∥∥Y T ν
∥∥. Since (L + ∆L)ν = α̃ν, we have

α̃ν−Lν = ∆Lν and hence Y T , Y T α̃ν−Y TLν = Y T∆Lν.
In the sense that L is real and symmetric, we certainly
get n orthogonal eigenvectors. If we choose all the other
eigenvectors of L except µ to form Y , we have

[
µT

Y T

]
L
[
µ Y

]
=


α 0 · · ·
0 λ1 0
... 0

. . .

 =

[
α 0

0 [M ]

]
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In the meanwhile, we have the following conditions hold,
Y TY = I, Y TLY = M ; then Y TLY Y T = MY T = Y TL.
Thus we get, Y T α̃ν − MY T ν = Y T∆Lν; then Y T ν =
(α̃I −M)−1Y T∆Lν. Apparently,∥∥Y T ν

∥∥ ≤ ∥∥∥(α̃I −M)
−1

∥∥∥∥∆Lν∥

From the structure of ∆L, we get

(∆Lν)j =


νj , j ∈ Ni

0, j /∈ Ni, and j ̸= i

−
∑

j∈Ni

νj , j = i

Then, one can prove that

∥∆Lν∥ < min{
√
di + 1,

√
n− di − 1}

Thus

sin∠(µ, ν) <
∥∥∥(α̃I −M)

−1
∥∥∥ ·min{

√
di + 1,

√
n− di − 1}

In the meanwhile,∥∥∥(α̃I −M)
−1

∥∥∥ = max
i ̸=2
{ 1

|α̃− λi|
} = max{ 1

α̃
,

1

λ3 − α̃
}

Finally

sin∠(µ, ν) ≤ min{
√
di + 1,

√
n− di − 1}

min{α̃, λ3 − α̃}
,

which completes the proof.

Now we are ready to bound the angle ∠(µ−µiei, ν) of the
second estimation method.

Corollary 1. cos∠(µ− µiei, ν) =
cos∠(µ,ν)√

1−µi
2
.

Proof. we have the following equality:

cos∠(µ− µiei, ν) =
(µ− µiei)

T
ν

∥µ− µiei∥ ∥ν∥
=

µT ν − µiei
T ν√

1− µi
2

Because ei
T ν = νi = 0,

cos∠(µ− µiei, ν) =
cos∠(µ, ν)√

1− µi
2

which completes the proof.

Remark 1. From Corollary 1, some other bounds can

be obtained easily, e.g., cos∠(µ, ν) ≤
√
1− µi

2, and
sin∠(µ, ν) ≥ |µi|, which means that the larger µi is, the
bigger the angle deviates from 0.

Remark 2. Because
√
1− µ2

i ≤ 1, Corollary 1 shows an
intuitive explanation that the second estimation outper-
forms the first one.

The above angle error only reflects the estimation error
of algebraic connectivity indirectly. In the following, we
directly bound the relative estimation error of the eigen-
value. Denote the estimation error of ∆αi as δi. Then,

δi = |µT∆Li · (
ν

µT ν
− ω

µTω
)|

=

∣∣∣∣∣∣
∑
j∈Ni

(µi − µj)(
νj − νi
µT ν

+
ωi − ωj

µTω
)

∣∣∣∣∣∣ (7)

where ω represents the estimation of ν.

Theorem 2. If the estimation vector ω satisfies ω =
ν + kγ, where k is an arbitrary real number and γ is
orthonormal with µ (e.g., γ = 1), then δi = 0.

Proof. If ω = ν + kγ, then µT (ω − ν) = kµT γ = 0, thus
µT ν = µTω. Since we have νi = 0, finally we get δi = 0.

Considering the estimation method in (4), i.e., ω = µ −
µiei, we have the following theorem.

Theorem 3. An upper bound for δi is:

δi ≤ min{δ̄1,i, δ̄2,i, δ̄3,i}
where
δ̄1,i = |λ3 − λ2 −

∑
j∈Ni

µj(µi−µj)
1−µi

2 |,

δ̄2,i = |max{−1,−λ2} −
∑

j∈Ni

µj(µi−µj)
1−µi

2 |,

and δ̄3,i is described below in (9).

Proof. From Lemma 3 we get max{−1,−λ2} ≤ ∆αi ≤
λ3−λ2, and from the definition of δi, the following equation
holds:

δi = |∆αi −
∑
j∈Ni

(ωj − ωi)(µi − µj)

µTω
| (8)

Substituting the bound of ∆αi into (8) yields the bounds
δ̄1,i and δ̄2,i.
Based on the Method 2 in(equation (6)) and that µTω =
µT (µ − µiei) = 1 − µ2

i (according to Corollary 1), (7)
becomes

δi =

∣∣∣∣∣∣
∑
j∈Ni

(µi − µj)(
νj

cos∠(µ, ν) −
µj

1− µi
2
)

∣∣∣∣∣∣ (9)

Based on Theorem 1, we can obtain a pair of upper
and lower bounds for cos∠(µ, ν). Using these bounds,
we can further obtain another upper bound, denoted by
δ̄3,i of δi based on (9). The explicit expression for δ̄3,i is
straightforward and omitted here to save space.

Based on Theorem 3, the estimation error of algebraic
connectivity after removing one node is upper-bounded.
If only for relative node importance comparison, the es-
timation in (6) provides an efficient replacement for the
unknown vector ν.

4. DISTRIBUTED ALGORITHM DESIGN

In this section, we propose a distributed algorithm to
identify the most critical node. In Bertrand and Moonen
(2012), the authors proposed a distributed algorithm to
compute the Fiedler vector based on power iteration.
With this method, node i can finally has access to the
i-th element of the Fiedler vector. Unfortunately, the
converged vector is not necessarily normalized and the
vector’s length is unknown to every node. If we take
a new parameter S to denote the square of length of
the converged Fiedler vector, we immediately obtain an
intuitive distributed algorithm to find the most critical
node: after the convergence of the vector, we can apply an
average-consensus to estimate S and a parallel minimum-
consensus to identify the most important node. The major
problem with this method is that the time needed to reach
the final results is too long: it tends to be the addition
of two sequential infinite process, i.e., the power iteration
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process and the average-consensus process. To obtain a
more practical implementation, we need to modify the
criteria.

Since µ is not normalized, based on the above second
estimation method, we transform equation (6) into ∆αi ≈∑
j∈Ni

µj(µi−µj)

S−µi
2 . Note that the numerator of the criteria is

totally node-specific while the denominator requires the
global information of S. However, the square differences µ2

i
among nodes are usually small compared to S, especially in
large densely connected networks. Thus node importance
∆αi can be reduced into

∆βi =
∑
j∈Ni

µj(µi − µj) (10)

Theorem 4. For a pair of nodes i, k, the two criteria based
on ∆α and ∆β yields the same importance order of the
two nodes iff

S ≥ ∆βiµk
2 −∆βkµi

2

∆βi −∆βk

Note that ∆βi can be calculated in a distributed way
after we calculate Fiedler vector according to Bertrand
and Moonen (2012). Furthermore, as we only care about
the correct direction of Fiedler vector, we can modify
the algorithm to identify the most critical node in a
parallel way. Algorithm 1 shows the details of the proposed
distributed method. Algorithm 1 generates a number of

Algorithm 1: Distributed critical node identification

Initialization: every node i stores a flag bit fi = 1, set
t← 0;
if (t mod D) = 0 then

each node checks whether fi = 1 or not;
Node(s) with fi = 1 is (are) the most critical;

else
at all nodes, set fi = 1;
Calculate ∆βi according to current µi and µj , j ∈ Ni;
Each node i transmits ∆βi to its neighbors in Ni and
computes:

∆βi(t+ 1) = min{∆βj(t),∆βi(t)}, j ∈ Ni

end
if ∆βi(t+ 1) ̸= ∆βi(t) then

set fi = 0;
∆βi(t+ 1)← ∆βi(t), t← t+ 1;

end
Return to step 2;

critical node(s) every D period if D is larger than the
diameter of the network. For simplicity, we can just set
D = N − 1. Upon the convergence of the Fiedler vector
calculation process, our algorithm will yield a converged
optimal node. The critical nodes found by Algorithm 1 will
quickly converge in D steps.

Although we can exhaustively search the optimal node,
such method requires network-scale times of eigenvalue
calculations, i.e., its time complexity is O(n4). In contrast,
Algorithm 1 only needs to compute the original eigenspace
once, i.e., its time complexity is O(n3).

5. SIMULATION RESULTS

We evaluate the proposed method over a network with
topology as shown in Fig 1(a). There are n = 100 nodes
with communication range d = 10 in a square area of
50× 50. Fig 1(a) also shows that optimal nodes produced
by, exhaustion (red dot), centralized (blue diamond) and
distributed estimation (pink pentagon) methods overlap,
while that by the degree-based(green square) algorithm is
quite different. The estimation error of (what) among the
network nodes is displayed in Fig 1(b). We can see that
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Fig. 1. Random network with n = 100, d = 10, 50× 50.

the estimation error is very small in the order of (10−2)
compared to the magnitudes of algebraic connectivity
descent(which may be the scale of 1 according to Lemma
3). The reason why we don’t use the relative estimation
error is that we don’t distinguish between nodes whose
removal lead to very small algebraic connectivity descent.
Thus the estimation proved to be an effective criteria to
evaluate node importance.

Under the same circumstance of Fig 1(a), we calculate
four normalized criteria(i.e., degree, exhaustion for alge-
braic connectivity after removal of each node, centralized
criteria in equation (6), distributed criteria of (10))of each
node.For degree vector, we normalize degree vector d as

normalized di =
max(d)− di

max(d)−min(d)
, i = 1, ..., n

For other three measurements,

normalized ci =
ci −min(c)

max(c)−min(c)
, i = 1, ..., n

Normalized criteria of four methods are plot in Fig 2. It
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Fig. 2. Relative importance of nodes.

shows that the lines for centralized/distributed criteria
almost parallel with the exhaustion one, which means
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their estimation method reflects the relative importance
of nodes at all the nodes. The most critical node tends out
to be node 89. However, the degree-based criterion fails
to characterize node importance. For example, for nodes
20 ∼ 23, the order of node importance as obtained based
on the degree-based criterion is inverse to that obtained
by the other three methods.

To further evaluate our algorithm a number of different
random networks have been generated with diverse node
density and communication range. The results are shown
in bar graphs where the height represents the algebraic
connectivity after removal of optimal node identified by
those four methods. Note that we only care about the rel-
ative optimality, so we subtract the lower bound (α−1)(see
Lemma 3) for convenience. In Fig 3(a), we have compared
four methods with fixed communication range d = 20 and
different numbers of nodes n = 50, 100, 150, 200, 250.
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Fig. 3. Different methods of exhaustion,maximum-
degree,centralized,distributed from left to right.

In all cases in Fig 3(a), both centralized and distributed
methods show the same results with exhausted search,
which indicates that they identify they always identify
the same optimal node. In contrast, the nodes identified
by the maximum-degree node are often not optimal. We
also carry out simulations with varied communication
ranges(i.e. varied connectivity) with d = 10, 15, 20, 25, 30
and fixed n = 200 in Fig 3(b),which again advocate
the effectiveness of the proposed distributed algorithm.
In addition, horizontal comparison shows that the higher
connectivity a network has, the closer the optimal solution
to the lower bound.

6. CONCLUSION AND FUTURE WORK

We have studied the problem of evaluating node impor-
tance in a network running the average consensus algo-
rithm and formulate it as a combinatorial optimization
problem. To identify the optimal node, a centralized crite-
ria has been proposed and an efficient estimation method
to approximate the algebraic connectivity descent has been
given. In addition, the bounds for the estimation error has
been discussed. A distributed algorithm to identify the
most critical node has been proposed. Extensive simula-
tions based on various network topologies show that our
algorithm finds the optimal node. The proposed method
can be useful for consensus designers to protect consensus
convergence property against node attacks. In our future
work, we will consider the scenario of removing multiple
nodes.
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