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Abstract: A minimum-time Model Predictive Control (MPC) problem is considered. By
employing a time scaling transformation and cost regularization, it is shown that this prob-
lem becomes amenable to the application of parametric Integrated Perturbation Analysis -
Sequential Quadratic Programming (IPA-SQP). The IPA-SQP framework exploits neighboring
extremal optimal control and sequential quadratic programming based updates to efficiently and
rapidly compute approximations to solutions in receding horizon optimal control. An interesting
feature of the minimum-time MPC problem is that, after reformulation, the optimization needs
to be performed simultaneously with respect to the control sequence and a constant parameter
(terminal time) over the prediction horizon. Two examples are considered. The first example
is for a double integrator with a control constraint. The second example is based on a two-
dimensional model of a hypersonic vehicle.

Keywords: Minimum-time optimal control, model predictive control, neighboring extremal
control, parameter optimization, integrated perturbation analysis and sequential quadratic
programming

1. INTRODUCTION

In this paper, we consider a minimum-time Model Pre-
dictive Control problem. Minimum-time optimal control
problems are well studied, see e.g., Bryson et al. (1975);
Athans et al. (2006); Gao (2004); Bako et al. (2011);
Kalman (1957). In simple cases, such as for a double inte-
grator with control constraints, a feedback law can be com-
puted explicitly. In more general cases, the explicit com-
putation of a feedback law is infeasible and a minimum-
time open loop (feed-forward) trajectory is generated by
applying either direct or indirect computational methods,
see e.g., Ben-Asher et al. (2010). To provide robustness
to unmeasured uncertainties and disturbances, open-loop
control can be augmented with a feedback stabilizer to
the computed open-loop trajectory. Keerthi and Gilbert
(1987); Mayne and Schroeder (1997) developed another
approach to minimum-time control for linear systems in
discrete-time based on set theoretic techniques.

Applying Model Predictive Control (MPC) philosophy to
minimum-time control involves recomputing the open-loop
state and control trajectory subject to pointwise-in-time
state and control constraints, terminal state constraint,
and the current state as the initial conditions. The com-
puted control trajectory is applied open-loop till the next
time instant when it is recomputed. As in traditional MPC,

see Camacho et al. (2004), by recomputing the minimum-
time control based on updated state information, robust-
ness to unmeasured disturbances and uncertainties is im-
proved.

The minimum-time MPC approach has been used in
Starek and Kolmanovsky (2012), Petersen et al. (2013) for
low thrust orbital maneuvering and for hypersonic glider
guidance, respectively. In these applications, minimum-
time MPC has been exploited to improve robustness to
unmeasured disturbances and uncertainties. For instance,
the ability to perform Earth-to-Mars low thrust orbital
transfers despite thrust errors and perturbation forces has
been demonstrated in Starek and Kolmanovsky (2012).
Additionally, the finite-time convergence of the minimum-
time control is advantageous for applications that involve
way point following. In hypersonic glider applications, way
points have to be reached in minimum-time subject to
exclusion zone and control input constraints (see Petersen
et al. (2013)).

The observation that the minimum-time feedback control
possesses finite-time stability and robustness properties is
easily made in continuous-time, as the cost-to-go function,
V (x), under appropriate assumptions, satisfies the Bell-

man equation, V̇ (t) = −1, leading to finite-time conver-
gence of V (x(t)) to 0 and x(t) to xT , where xT denotes
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the target state (e.g. a way point) for the minimum-time
control (Starek and Kolmanovsky (2012)).

If the perturbations do not destroy the property, V̇ (t) ≤
ε < 0, it is shown in Starek and Kolmanovsky (2012) that
finite-time convergence is maintained despite these pertur-
bations. The minimum-time MPC solutions represent an
approximation to the minimum-time feedback control.

To generate the minimum-time MPC law, a fast nonlinear
optimizer is necessary. In this paper, such an optimizer is
developed based on an Integrated Perturbation Analysis -
Sequential Quadratic Programming (IPA-SQP) framework
in Ghaemi (2010); Ghaemi et al. (2007, 2008, 2009). The
IPA-SQP uses the method of Neighboring Extremal (NE)
optimal control of Bryson et al. (1975) to predict the
solution to the optimal control problem at the next time
instant based on the solution available at the current time
instant; then the prediction is corrected based on an SQP
type update. Both the prediction and the correction steps
are merged together in an efficient single update, and are
exploited the sequential character of the system dynamic
model.

The existing results on IPA-SQP, however, cannot be
directly applied to the minimum-time MPC problem since
the time horizon does not stay constant over time. We,
therefore, employ a time scaling transformation to obtain
a fixed end time problem, with the terminal time appearing
as a multiplicative parameter in the dynamic equations of
the continuous-time model. We then convert the model
to discrete-time and formulate an optimization problem
where both the control sequence and the time horizon,
now appearing as a parameter, have to be optimized.
The reformulated variant of the problem fits nicely into a
parametric IPA-SQP algorithm developed in Ghaemi et al.
(2010). This parametric IPA-SQP algorithm is applicable
to simultaneous optimization of the control sequence and
a parameter. See Gao et al. (2011) for an application
of parametric IPA-SQP to ship path following. Since
appropriate regularity properties need to be satisfied to be
able to apply the IPA-SQP algorithm, the cost functional
is regularized.

The paper is organized as follows. In Section 2, we de-
scribe the minimum-time MPC problem, the time scaling
transformation and the cost regularization steps necessary
to reformulate the problem to make IPA-SQP algorithm
in Ghaemi et al. (2010) for simultaneous optimization of
control time history and a parameter applicable. The IPA-
SQP algorithm is described in Section 3. Two examples
are considered. The first example is of a double integra-
tor with a control constraint. This example is treated in
Section 4. The results are compared with the minimum-
time open-loop and closed-loop control, since in this case
the minimum-time control can be easily constructed. The
second example, treated in Section 5, is an application
of minimum-time MPC to a two dimensional hypersonic
vehicle flight model from Jorris (2007) with a control con-
straint (a similar model arises in generating Dubins’ paths
for mobile robots and aircraft (Souerès and Boissonnat
(1998)).

2. PROBLEM FORMULATION AND
TRANSFORMATION

The minimum-time MPC is based on solving a minimum-
time optimal control problem for steering the system from
the current state x0 at the current time t0 to the origin at
the terminal time tf :

min J = tf , (1)

subject to

ẋ(t) = f(x(t), u(t)),

x(t0) = x0,

x(tf ) = 0,

C(x(t), u(t)) ≤ 0, t0 ≤ t ≤ tf ,

(2)

where x ∈ Rn and u ∈ Rm are state and control
input, respectively. Here, C defines constraints. To be able
to apply the IPA-SQP framework, the cost function is
regularized by augmenting a control penalty. The cost is
modified to

min J = tf + ε

∫ tf

t0

u(t)Tu(t)dt, (3)

where ε is a small positive scalar number, i.e., ε ∈ R+.
This cost must be minimized subject to (2).

A time scaling transformation is now employed to convert
the free terminal time problem to a fixed terminal time
problem,

τ =
t− t0
tf − t0

. (4)

Since t0 ≤ t ≤ tf , it follows that

0 ≤ τ ≤ 1. (5)

The dynamics of the system is then expressed as

x′ ,
dx

dτ
=
dx

dt

dt

dτ
= (tf − t0)f(x, u). (6)

The transformed model (6) is converted to discrete-time,

x(k + 1) = x(k) + ∆τ(tf − t0)f(x(k), u(k)), (7)

where ∆τ = 1/N , and N is the number of control nodes
employed in discretizing the trajectory. The cost functional
in (3) is then converted to

Jd = tf + ε

N−1∑
k=0

∆τ(tf − t0)u(k)Tu(k). (8)

The adjustable variables are the control time sequence,
{u(0), u(1), · · · , u(N − 1)} and the parameter p = tf − t0
that need to be simultaneously optimized.

As a final step of reformulating the problem, we replace the
hard terminal constraint, x(tf ) = 0, by a penalty added
to the cost (8) so that the cost being minimized becomes

J̄d = ρx(N)Tx(N) + p+ ε

N−1∑
k=0

∆τpu(k)Tu(k), (9)

where ρ > 0 is the penalty factor. This change is not essen-
tial but simplifies subsequent numerical implementation
and mitigates potential terminal constraint infeasibility.

To summarize, the problem to which IPA-SQP framework
will be applied has the following form,

min
u(·),p

J̄d, (10)
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subject to

x(k + 1) = x(k) + p∆τf(x(k), u(k)),

x(t0) = x0,

C(x(k), u(k), tf ) ≤ 0.

(11)

The minimum-time MPC is a feedback law uMPC(x0)
defined based on the solution of the above optimization
problem with t0 as the current time and x0 as the current
state. The number of control nodes, N , is maintained con-
stant, and, consequently, the control corrections become
finer as the state gets closer to the origin. To avoid control
time subinterval becoming infinitesimally small after the
convergence within a prescribed tolerance of the origin
is achieved, the control is no longer recomputed, and an
open-loop trajectory is simply followed to completion.

In the following section, we review the IPA-SQP algorithm
from Ghaemi et al. (2010) for discrete-time systems with
inputs, parameters and constraints.

3. REVIEW OF THE PARAMETRIC IPA-SQP
ALGORITHM

The receding horizon optimization problem, at time in-
stant t, treated by IPA-SQP has the following form,

min
u(·),p

J(x(·), u(·), p),

where

J(x(·), u(·), p) = Φ(x(t+N), p) +

t+N−1∑
k=t

L((x(k), u(k), p),

subject to

x(k + 1) = f(x(k), u(k), p), f : Rn+m+r → Rn,
x(t) = xt, xt ∈ Rn,
C(x(k), u(k), p) ≤ 0, C : Rn+m+r → Rl,

k = t, . . . , t+N − 1,

C̄(x(k), p) ≤ 0, C̄ : Rn+r → Rq, k = t, . . . , t+N,
(12)

where C and C̄ denote the mixed state-input constraints
and state-only constraints, respectively. The parameters
are included as optimization variables. We assume that
the function L, f, Φ, C, and C̄ are twice continuously
differentiable with respect to their arguments.

Let x0(·), u0(·), and p0 be the nominal optimal solution of
(12). The Hamiltonian function is defined as

H(k) = L(x(k), u(k), p) + λ(k + 1)Tf(x(k), u(k), p)

+ µ(k)TCa(x(k), u(k), p) + µ̄(k)TC̄a(x(k), p),
(13)

where λ(·) is the sequence of co-states associated with the
dynamic equations, Ca(x(k), u(k), p) and C̄a(x(k), p) de-
note vectors consisting of the active constraints, and µ(k)
and µ̄(k) are the vectors of the corresponding Lagrange
multipliers.

If the nominal solution x0(·), u0(·), and p0 is optimal,
the following necessary optimality conditions implied by
Karush-Kuhn-Tucker (KKT) conditions hold

λ(k) = Hx(k), k = t, ..., t+N − 1, (14)

Hu(k) = 0, k = t, ..., t+N − 1, (15)

λ(t+N)=Φx(x(t+N), p)+µ̄(N)TC̄ax(x(t+N), p), (16)

t+N−1∑
k=t

Hp(k)

+ Φp(x(t+N), p) + µ̄(N)TC̄ap (x(t+N), p) = 0,

(17)

x(k + 1) = f(x(k), u(k), p), f : Rn+m+r → Rn, (18)

x(t) = xt, xt ∈ Rn, (19)

µ(k) ≥ 0, k = t, ..., t+N − 1, (20)

µ̄(k) ≥ 0, k = t, ..., t+N, (21)

where Hx and Hu denote the partial derivative of H with
respect x and u, respectively.

The IPA-SQP algorithm is based on NE optimal control
to predict the change in the solution with the change
in problem data which is the state of the system in our
case. The NE solution (Bryson et al. (1975)) is the first-
order correction that approximates the optimal state and
control sequences for the perturbed initial state. Given the
nominal optimal solution, the NE solution can be shown
to minimize the second-order variation of the Hamiltonian
function subject to the linearized constraints (i.e., it is a
solution of the following problem subject to the linearized
constraints):

min
δu(·), δp

δ2J̄ ,

where,

δ2J̄ =
1

2

[
δx(t+N)

δp

]T [
Φ11 Φ12

Φ21 Φ22

] [
δx(t+N)

δp

]

+
1

2

t+N−1∑
k=t

[
δx(k)
δu(k)
δp

]T[
Hxx(k) Hxu(k) Hxp(k)
Hux(k) Huu(k) Hup(k)
Hpx(k) Hpu(k) Hpp(k)

][
δx(k)
δu(k)
δp

]
,

(22)

subject to

δx(k + 1) = fx(k)δx(k) + fu(k)δu(k) + fp(k)δp, (23)

δx(t) = δxt, (24)

Cax(x(k), u(k), p)δx(k) + Cau(x(k), u(k), p)δu(k)

+ Cap (x(k), u(k), p)δp = 0, (25)

C̄ax(x(k), p)δx(k) + C̄ap (x(k), p)δp = 0, (26)

where,

Φ11 =Φxx(x(t+N), p)+
∂

∂x
(µ̄(N)TC̄x(x(t+N), p)), (27)

Φ12 =Φxp(x(t+N), p)+
∂

∂p
(µ̄(N)TC̄x(x(t+N), p)), (28)

Φ21 =Φpx(x(t+N), p)+
∂

∂x
(µ̄(N)TC̄p(x(t+N), p)), (29)

Φ22 =Φpp(x(t+N), p)+
∂

∂p
(µ̄(N)TC̄p(x(t+N), p)). (30)

The subscript letters in (22)-(30) denote the variables with
respect to which the partial derivatives are taken.

We then obtain the closed-form solution of (22)-(26) for
the initial state perturbation δxt,

δu(k) = K(k)δx(k) +Kp(k)δp,

δp = −W−122 (t)W21(t)δxt.
(31)

Detailed calculation and the expressions for K(k), Kp(k),
W22(t), and W21(t) are found in Ghaemi et al. (2010).
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Fig. 1. Open-loop control by fmincon. Top: Phase plot of
the state. Bottom: Control input history.

When δxt is large and causes activity status changes in
constraints, we handle such changes using the procedure
in Ghaemi et al. (2007, 2009).

Finally, the IPA-SQP algorithm represents the modifica-
tion of the predictor update (31) with a corrector update.

4. SIMULATIONS OF DOUBLE INTEGRATOR
SYSTEM

To evaluate the performance of the IPA-SQP algorithm,
we consider a double integrator system with control input
constraints. The minimum-time MPC problem for trans-
ferring a nonzero initial state to the origin for the double
integrator system has the form,

min J̄d=ρx(t+N)Tx(t+N)+p+p∆τε

t+N−1∑
k=t

u(k)Tu(k), (32)

subject to

x(k + 1) = x(k) + p∆τ(Ax(k) +Bu(k)),

x(t) = xt,

|u(k)| ≤ 1,

(33)

where

x =

[
x1
x2

]
, A =

[
0 1
0 0

]
, and B =

[
0
1

]
.

We choose the number of control nodes as N = 50,
ρ = 106, and ε = 0.1. The initial state is x0 = (2, 2)T.
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Fig. 2. Phase plots of the states.

4.1 Open-loop Control

Before implementing the IPA-SQP approach, we obtain
the nominal optimal solution of (32)-(33) at the initial
time using MATLAB nonlinear programming solver fmin-
con. Fig. 1 shows the phase plot of the open-loop state
and control input sequences. The minimum-time of the
maneuver is p0 = 6.083 sec.

4.2 Closed-loop Control

Let (x0, u0, p0) denote the solution from Section 4.1 ap-
proximated as a piecewise constant function in time with
nodes at time instants t00 , t01, · · · , t0N . Then, the time
interval between t00 and t01 is p0/N = 6.083/50 = 0.122
sec.

Considering the initial state perturbation δx00 = x0(t01) −
x0(t00) where x0 denotes the measured state, the optimal
control sequence and minimum-time are obtained for the
next control cycle using the IPA-SQP approach,

u1 = u0 + δu0,

p1 = p0 + δp0.

The nodes of u1 at the next control cycle are t10, t
1
1, · · · , t1N .

The first element of the computed optimal control se-
quence u1 is applied to the system between the time
instant t10 and t11.

By repeating this computing procedure with the fixed
number of control nodes, the optimal trajectory is ob-
tained as shown in Fig. 2. In this simulation, the threshold
time to terminate the algorithm for recomputing is 0.5
sec; this avoids infinitesimally spaced control nodes. Thus,
if the minimum-time computed at a certain control cycle
reaches the threshold time, the optimal control sequence
obtained in the control cycle is applied in the open-loop
without further recalculation.

In Fig. 2, the phase plot of the state of the open-loop
control by fmincon and that of the closed-loop control by
the IPA-SQP are compared. There are slight differences
between two trajectories.

The time of the IPA-SQP trajectory is computed as
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t∗f = (tsN − ts0) +

s−1∑
j=0

(tj1 − t
j
0), (34)

where s is the first control cycle whose minimum-time is
less than the threshold time. The maneuver time is 5.814
sec. It is less than the time for the open-loop minimum-
time trajectory due to the control trajectory refinements
effects. Specifically, IPA-SQP exploits the same number of
nodes in each control cycle, thus the effective time interval
between control changes decreases with time.

In Fig. 3, the trajectories by the minimum-time MPC
based on IPA-SQP is presented as the solid line and the
results of the minimum-time MPC based on MATLAB
fmincon solver are illustrated by the dot line. Fig. 3 shows
that the solutions by the IPA-SQP and fmincon in closed-
loop control are quite similar in performance.

The total computation time of the IPA-SQP, however,
is 26.4 sec while the computation time of fmincon is
472.8 sec. Thus, the IPA-SQP improved computational
efficiency. The total computation time is measured by
CPU time usage. The simulations are performed by the
controller codes implemented in MATLAB on a computer
with Intel R© CPU @ 2.10 GHz.

5. MINIMUM-TIME MPC FOR HYPERSONIC
VEHICLE FLIGHT

In this section, the parametric IPA-SQP is applied to
a two-dimensional flight model (Jorris (2007)) for a hy-

0 20 40 60 80 100 120
0

2

4

6

x 1

 

 
IPA−SQP
fmincon

0 20 40 60 80 100 120
−2

0

2

x 2

0 20 40 60 80 100 120
−1

0

1

u

0 20 40 60 80 100 120
0

5

10

tim
e−

to
−

ta
rg

et
 (

s)

control cycle

Fig. 3. Closed-loop control of the minimum-time MPC.
From top to bottom: Trajectories of x1, x2, control
input, and minimum-time.

personic glider. The equations of motion of the two-
dimensional hypersonic glider model are given in Jorris
(2007); Baldwin and Kolmanovsky (2013),

ẋ = V cos(β), ẏ = V sin(β), β̇ =
tan(αmax)

V
u, V̇ = a,

(35)
where x and y denote the glider position in x and y
direction, β is the glider heading angle, V is the velocity
of the vehicle, a is the acceleration, αmax is the maximum
bank angle, and u, which is constrained as −1 ≤ u ≤ 1, is
the normalized bank angle control signal.

Note that the variables in this flight model are scaled:

x =
xu
r0
, y =

yu
r0
, β = βu,

V =
Vu√
g0r0

, a =
au
g0
, t =

tu√
r0/g0

,
(36)

where r0 is the radius of the Earth, g0 is the gravitational
acceleration, xu, yu , βu, Vu, au, and tu are the x-
coordinate (km), the y-coordinate (km), heading angle
(rad), velocity (km/s), acceleration (km/s2) and time (s)
in physical units.

We consider a minimum-time problem to maneuver the
glider to the origin subject to the control constraint. The
values a = 0 and αmax = 10 deg were used. Fig. 4
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Fig. 4. Trajectories of the hypersonic vehicle model. Top:
Phase plot of the state, Bottom: Control input history
by IPA-SQP.
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Fig. 5. Trajectories from various initial positions with the
same heading angle.

illustrates the simulation results for the initial position of
(2,−2), the velocity of 0.3 and the initial heading angle
β = 30 deg. The number of the control nodes is chosen
as N = 20. The minimum-time t∗ is 11.656, translating to
9398 sec in unscaled time.

Fig. 5 illustrates the trajectories on the x−y plane starting
from various initial positions with the same heading angle
of 30 deg, and approaching the same terminal position
(0, 0) in minimum time.

6. CONCLUSION

In the paper, we considered an application of an IPA-SQP
algorithm to a minimum-time nonlinear MPC problem.
Minimum-time MPC is of interest due to its ability to
perform way point following, improve robustness to model
uncertainties and disturbances, satisfy constraints, and
provide automatic control refinements near the target.
On the other hand, the IPA-SQP algorithm provides a
mechanism for fast control updates. In the paper, we
have shown that the minimum-time MPC problem can
be appropriately transformed to make the IPA-SQP al-
gorithm applicable. The double integrator example was
considered where we showed computational advantages of
performing control updates using IPA-SQP over MATLAB
nonlinear programming solver fmincon. Another example
of a nonlinear system corresponding to a two dimensional
model of a hypersonic glider has also been treated.
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