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Abstract: In recent years, advanced control techniques such as Model Predictive Control based
on optimization and making use of a model providing the predictions of the future behavior of the
controlled system have been massively developed. These model-based controllers rely heavily on
the accuracy of the available model (predictor of the controlled system behavior) which is crucial
for their proper functioning. However, as the current operating conditions can be shifted away
from those under which the model has been identified, the model sometimes happens to lose its
prediction properties and needs to be re-identified. Unlike the theoretical assumptions, the data
from the real operation suffer from undesired phenomena accompanying the closed-loop data.
In the current paper, we focus on developing an algorithm which would serve as an alternative
to the (often costly or even unrealizable) open loop excitation experiment. The requirements
such an algorithm should meet are: low computational complexity, low level of original MPC
performance degradation and ability to provide sufficiently informative data when necessary.
Unlike to the currently available approaches which solve this problem for the classical MPC
formulation (tracking error penalization), in this paper we propose an algorithm which works
well also for the zone MPC formulation (penalization of output zone violation), however, it is
versatile enough and can be extended considering wider variety of the optimization formulations.

Keywords: Predictive control; closed loop identification; system identification.

1. INTRODUCTION

Modern control methods such as Model Predictive Con-
troller (MPC) [1] have become very popular among the
academic community during the last years and they are
able to provide undisputable potential to be actively used
in various branches of industry as well. Great development
in the area of numerical optimizations has enabled these
advanced methods to be applied also to highly complex
systems with sampling periods in orders of milliseconds
using low-performance processors with minimal compu-
tational power and price [2,3]. Even though, the idea of
MPC is more popular rather among the academicians than
among the process engineers. One of the reasons can be the
fact that besides numerous benefits and vast potential, the
MPC brings also several drawbacks. The most crucial of
them is the fact that for its proper functioning, it needs
a mathematical model of the controlled system. While
model creation is mentioned only marginally in majority of
the academical works dealing with the MPC (they usually
assume that the model is either perfectly known or found
in the literature), the task is more complicated and time-
consuming in case of real application [4].
One of the very typical and common problems when con-
sidering an MPC controlling a real system is such situation
when model the controller (MPC) uses becomes unusable.
Such model can degrade the controller performance badly
and it is usually necessary to re-identify the model.
It is often hardly possible to execute a statistically rigorous
identification experiment either because of the operating or
economical reasons and therefore, it is necessary to identify
only from the data which are available—closed-loop data.
These data use to suffer from several undesired phenomena
such as insufficient excitation, correlation between certain
inputs or input-disturbance correlation [5] causing that
even the well-designed identification methods can fail.
Thus, it is of key importance to pay attention also to this

fact and take it directly into account when designing the
identification procedure [5–8]. Even though there is a wide
spectrum of the methods dealing with the so-called closed
loop identification, their performance is guaranteed only if
the controller introducing the feed-back into the system is
sufficiently simple and linear. As the MPC brings a piece-
wise affine feedback into the system, even the use of the
mentioned methods of the closed-loop identification might
not bring the desired results [9].
All the above mentioned examples show the importance
of taking the fact that the derived model might need
to be re-identified into account directly when designing
any advanced controller including the MPC. Thus, such
methods should be searched which enable to both satisfy
the pre-defined controller performance and provide suffi-
ciently “rich” data containing enough information for the
potential re-identification procedure. The significance of
effort to solve this problem is demonstrated by the intensity
of the discussion in the available literature.
Here, let us mention that the majority of the presented
approaches considers the “classical” formulation of the
MPC in which the deviation from the required reference
trajectory is penalized [1] as well as the norm of the
control effort. However, in many industrial applications,
the reference tracking (in sense of set-point) is not partic-
ularly reasonable. A typical example is the control either of
various chemical processes (temperature control in the de-
propanizer column [10]) or in the above-mentioned building
climate control area (e.g. [11–13])—when controlling the
zone temperature, it is not necessary to track certain exact
temperature profile and keeping the temperature within a
pre-defined range is sufficient.
For this special class of the predictive controllers, the
currently available algorithms of simultaneous excitation
and predictive control developed for the classical MPC
penalizing the reference deviation can not be used. Up
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to date, there is only a tiny number of works trying to
formulate and solve this task for the zone MPC [10].
The aim of this paper is to provide such algorithm which
(apart from the fulfillment of the control requirements)
would be able to ensure sufficient excitation of the system
for the needs of the system re-identification. As the task of
sufficient excitation is strongly practically motivated, the
algorithm developed to solve it should be versatile and sim-
ply extendable for various classes of predictive controllers.
The time and computational resources consumption should
be kept at minimum and the algorithm should be able
to use the potential of the parallel calculations. Last but
not least, it should be implementationally non-demanding
so that it could be added to already operating control
system easily without any massive re-implementation of
the existing controller code.
This paper is structured as follows: Sec. 2 introduces
the formulation of the problem. In Sec. 3, overview of
the possible ways of solving this problem is presented
and several approaches are discussed. The newly proposed
two stage algorithm is described and explained in Sec.
4. The performance of the proposed algorithm is tested
considering a simple case study presented in Sec. 5. Sec. 6
concludes the paper.

2. PROBLEM FORMULATION

In this Section, the necessary background is provided.

2.1 Model under investigation

In this paper, a simple linear time-invariant (LTI) model is
considered. Such model can be described by the well-known
classical ARX structure [14] as

yk = ZT
k θ + εk, (1)

where yk and uk are the system output and input sequences
and εk is zero-mean white noise. The vector of parameters
θ is considered in the following form:

θ =
[
bnd . . . bnb − a1 . . .− ana

]T (2)

while Zk =
[
uk−nd

. . . uk−nb
yk−1 . . . yk−na

]T is the regressor.
Parameters of structure na, nb, nk specifies numbers of
lagged inputs and outputs, respectively a relative delay of
the outputs to the inputs.

2.2 Model predictive control

Besides the energy supplied into the system, the most
common MPC formulation penalizes also deviation from a
pre-defined reference—the tracking error. As it has been
already emphasized, such formulation might not be de-
sirable in some cases. In many industrial branches, it is
more convenient to penalize violation of a pre-defined range
of values instead of direct tracking error penalization. As
a typical example, predictive controller trying to both
minimize the energy consumed for the heating/cooling of
a building and keep the room temperature(s) within the
thermal comfort zone can be chosen. In such situation, the
strategy of tracking the reference temperature can be in-
convenient due to possible aggressive control performance
and it is more suitable to hold the zone temperature within
the admissible range. The control requirements can be
formulated into the following cost function:

min : JZMPC ,k =

P∑
i=1

W1‖uk+i‖p+

P∑
i=1

W2‖avk+i‖p

s.t. : linear dynamics (1)

umin
k+i ≤ uk+i ≤ umax

k+i , i = 1, . . . P

ŷk+i|k ≤ y
min
k+i − avk+i. (3)

Here, ymin is the minimal allowed value of output and umax

and umin are input constraints. Weighting matrices are
denoted as W1,W2 and P specifies the prediction horizon.
Symbol av represents the auxiliary variables used in order

to relax constrains on ymin and p denotes the norm of
the weighting of the particular term in the cost function.
Afterwards, (3) can be rewritten into the quadratic pro-
gramming problem:

minETHE + jTE (4)
s.t.

linear dynamics (1), and −I2PI2P[
B IP

]
E ≤


Umin

0
Umax

AVmax

Ax− Ymin

 (5)

where E=
[
U AV

]T is the vector of the optimized variables.
Although such controller possesses many favorable proper-
ties, its potential and utilization crucially depend on the
availability of a high accuracy mathematical model with
good prediction behavior. In the real-life operation, it of-
tentimes happens that a model that used to work properly
and reliably looses its accuracy and ability to provide good
predictions and then, it is inevitable to obtain a new one.
However, the data which are at disposal come from the
closed-loop operation. This illustrates the need for design-
ing such controllers that are able to generate data which
are sufficiently rich and contain enough information that
can enable the occasional re-identification. Still, the overall
control performance must not be significantly degraded.
The first straightforward question before formulating the
problem itself is how the data “informativeness” should be
evaluated. One way is to quantify the information content
of the data set based on the so-called information matrix
[15] and the persistent excitation condition.

2.3 Persistent excitation condition

Let us consider ARX model structure (1). Then, the matrix
∆Ik+M

k
defined as

∆Ik+M
k

=

k+M∑
t=k+1

ZtZ
T
t . (6)

represents the increment of the information matrix from
the time k to the time k + M . Knowing this matrix, the
persistent excitation condition can be formulated as:

∆Ik+M
k

� γI � 0, (7)

where γ is a scalar specifying the level of the required exci-
tation and I is a unit matrix of corresponding dimension.

3. MPC WITH GUARANTEED PERSISTENT
EXCITATION CONDITION

As already mentioned, the goal of this paper is to develop
such algorithm for the zone MPC which will be able to
not only satisfy the control requirements formulated into
the cost function but also to provide sufficiently excited
data making the re-identification easier. As the proposed
algorithm is partially based on the algorithm of the authors
of this paper which has been shown to work properly with
the classical formulation of the MPC, a brief overview of
the approaches is provided.
The first and perhaps the most straightforward way of
tackling the issue of simultaneous MPC and identification
is to incorporate the persistent excitation condition (7) into
the optimization task directly as an additional constraint.
This approach, however, suffers from several drawbacks,
e.g. (7) comprises the output predictions which are prob-
lematic to include into the control problem formulation.
Replacing (7) by

k+m∑
t=k+1

ψtψ
T
t � γI � 0 (8)

with ψt =
[
ut−1 · · · ut−nb

]T solves the problem. This ap-
proximation, unfortunately, does not ensure the PE in
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every direction and leads to a biased estimate of param-
eters a1, . . . , ana in θ (see [16]). Note that (8) introduces a
quadratic matrix inequality which can be transformed into
a linear matrix inequality [17] and then, a semi-definite
programming task can be solved. The next alternative
solution to this problem has been offered in [18] where
the receding horizon principle was utilized which brought
a significant simplification of the originally non-convex
problem. The bottleneck common for all the mentioned
approaches is the choice of the excitation level γ as it is
not clear how to choose the value of γ so that the data
are excited enough and the optimization problem remains
feasible. The procedure of choosing γ is not intuitive what-
soever and the alternative option will be focused on.
This alternative is the approach which has been lately
published in [16,19]. This works provided a solution based
on the maximization of the information matrix. The ob-
jective was to not deteriorate the original control behavior
defined by the MPC cost function by more than a chosen
value (being the tuning parameter of the algorithm). Such
algorithm works in two stages – in the first one, the original
MPC task is solved and then, the maximization of the
information matrix is performed in the second step.

U∗ = arg max
U

γ

s.t.:
k+M∑
t=k+1

ZtZ
T
t � γI,

JMPC ,k(U) ≤ J∗MPC ,k + ∆J,

umin
k+i ≤ uk+i ≤ umax

k+i , i = 1, . . . , P (9)

Here, ∆J specifies the maximum allowed increment of the
original MPC cost function J∗MPC ,k. The first advantage of
such a formulation is that the complete information matrix
is used for the optimization instead of its approximation
(8). Then, the usually used excitation level γ is replaced
by the maximal allowed perturbation ∆J which specifies
the balance between the excitation and the control perfor-
mance degradation in more intuitive way. Making use of W1
and W2, this increase can be simply transformed into the
control cost increase and/or the reference deviation which
is advantageous especially in practical applications.
One potential complication comes from the fact that the
optimization task is non-convex and very difficult to solve
in general. The authors of the currently developed ap-
proaches use the elliptical approximation which can de-
crease the computational complexity of the task, however,
it works reliably only for simple low-order systems.
Significant complexity reduction was achieved and pre-
sented by the authors of this paper in [20] where sim-
ilarly to the approaches presented in [18], the fact that
the majority of the industrial MPCs works with receding
horizon was exploited. In every time step k (in which the
optimal control sequence for P−step ahead is computed)
of the optimization task (3), only the first element uk, of
the computed input sequence U is used. Therefore, it is not
necessary to re-calculate the whole U in the second step of
algorithm (3), just the first input sample uk is optimized
which results in the reduction of an M-dimensional opti-
mization task to a one-dimensional one.
This approach was further developed and the results were
presented in [21] where the extension for the class of the
zone MPC was introduced. While considering the classical
MPC formulation and utilizing the receding horizon prin-
ciple, the complex task was reduced into a search through
the set of all the admissible inputs uk bounded from above
and below by values that could be calculated analytically
thanks to the simplicity of the cost function of the classical
MPC, the situation became more involved in the case of the
zone MPC. The bounds for the admissible set of uk couldn’t
be found analytically and certain approximations had to be
applied which increased the computational complexity of

the task. Moreover, further inaccuracies were introduced
into the whole process.
In the following text, a fresh new algorithm for the zone
MPC with guaranteed persistent excitation is provided.
The two-stage procedure is solved in the original unsimpli-
fied form without any approximations which can aggravate
the overall performance of the algorithm.

4. PROPOSED NUMERICAL ALGORITHM

In this section, the new algorithm for the zone MPC with
guaranteed persistent excitation is proposed.

4.1 First step

In the first step of the algorithm, the optimization task
formulated by (3) and supplied by the corresponding box-
constraints on inputs and lower bound for the predicted
output is solved. Performing this, the optimal input se-
quence U∗ZMPC = [uk+i], i = 1, 2, . . . , P, and the correspond-
ing cost function value JZMPC ,k(U∗ZMPC ) are obtained. The
sequence U∗ZMPC is used for the initialization of the sec-
ond stage of the algorithm while the cost function value
JZMPC ,k(U∗ZMPC ) is used as the constraint.

4.2 Second step

The performance criterion for this stage is defined as:

J (U) = max (min eig(∆Ik+M
k

)) (10)

where ∆Ik+M
k

corresponds to (6). The choice of the op-
timization criterion being the minimal eigenvalue of the
information matrix comes from the fact that we are trying
to excite also the least informative directions from which
the least information arrives (this usually corresponds to
the most difficultly identifiable model parameters).
Then, the constraints can be summarized as:

umin
k+i ≤ uk+i ≤ umax

k+i ,

JZMPC ,k(U) ≤ J∗ZMPC ,k + ∆J, i = 1, 2, . . . , P. (11)

The first M samples of U∗ZMPC calculated in the previous
step are used as the initial guess U0 of the profile which is
optimized iteratively following the direction of the increase
of the cost function (10), U l+1 = U l + βGl, where Gl is the
search direction for the l-th iteration of the gradient search
and β is the length of the step.
Here, let us note that not the whole sequence from the pre-
vious step is optimized. The reason is very pragmatical—
as the predictive controller (being the first part of this
two-stage algorithm) is re-calculated at each sampling
instant and “new” optimal profile is obtained depending
on the current measurements/disturbance predictions, not
too much should be cared about the data excitation for
the times close to the end of the prediction horizon. On
the other hand, more than just one input sample shall by
optimized in the sense of data excitation as with particular
input sample, only a single direction corresponding to
particular estimated parameter can be excited. The more
parameters are to be identified, the more input samples
should be taken into account.
The numerical gradient of the criterion (10) is calculated
using the following procedure: one by one, all samples of U l

are gradually perturbed with chosen ∆u. Performing this,
a set of M perturbed input vectors is obtained,
U = {Ui = [u1, u2, . . . , ui + ∆u, ui+1, . . . , uM , ], i = 1, 2, . . . ,M}.

Then, evaluating the cost criterion for the second stage
defined by (10) for each of the perturbed input profiles
and comparing the values with the current criterion value
J c, the vector of numerical gradients G can be obtained,

G =

[
∆J1
∆u

,
∆J2
∆u

, . . . ,
∆Ji
∆u

, . . . ,
∆JM

∆u

]
.

Here, ∆Ji = J (Ui)− J c.
The box-constraints for the values of the particular input
samples are satisfied performing a simple projection on
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the admissible input interval 〈umin, umax〉. The iterative
search is terminated if the improvement of the criterion
(10) is less than a chosen threshold or if the degradation of
the original MPC performance is worse than the maximal
allowed perturbation ∆J. If the second situation occurs, the
last input vector which does not exceed the allowed ∆J is
returned by the gradient algorithm. Finally, the first input
sample is applied to the system and the whole two-stage
procedure is repeated with the new measurements.
Here, let us mention that the calculations performed in the
second stage are highly parallelizable and the evaluation
of the cost function criterion and the MPC cost function
violation can be done simultaneously for all input samples.
As a result, the overall effectiveness of this approach
increases as the latest programming techniques enabling
the parallel calculations can be exploited.

5. CASE STUDY

In this case study, the proposed sufficient excitation al-
gorithm for the zone MPC is tested. As the bench-mark,
a simple system with the ARX structure is considered
and particular settings of the algorithm are inspected.
The simplicity of the bench-mark is intentional to clearly
demonstrate good theoretical properties of this algorithm.

5.1 Description

Let us consider the following simple system with single
input and single output with the ARX structure (1) with
θ =

[
0.002 0.001 0.002 0.966 −0.5 0.49

]T and with the noise
variance σ2ε = 0.08. The system is controlled by the zone
MPC (4) with constraints (5) and umax = 20, umin = 0,
avmax = 2, P = 70 while ymin is generated according to the
following rules

ymin
k =

{
13 103q+1 ≤ k < 103(q+1), q is even
10 103q+1 ≤ k < 103(q+1), q is odd.

(12)

The weighting terms 6000/0.01 and 100/500000 have been
used for penalization of the violation of the required
reference ymin. The value before the slash represents a
quadratic weighting while the value after it represents
a linear weighting. Such settings of the MPC controller
have been chosen to obtain satisfactory MPC performance.
With this tuning, a simulation with the length of N =
10000 samples. Similarly, the simulations have been run
also for our new algorithm with several tuning parameter
settings: M ∈ {6, 7, . . . , 10} a ∆J ∈ {60×103, 80×103, 100×103}.
Here, a question why such settings were used could arise.
As the increment of the information matrix (whose least
eigenvalue is optimized in the second step of our algorithm)
is a sum of M matrices ZZT, its rank is M and therefore,
it has M nonzero eigenvalues. If the optimization were
performed for M < na+nb (which in our case is 3+3 = 6), the
least eigenvalue of the increment of the information matrix
would be 0 and its maximization would lack any sense. In
case that the trace or the determinant of the increase of
the information matrix was optimized, then also M < 6
would be reasonable. Note that the same model (without
any adjustments or re-identification) identified from the
excited data has been used over the whole simulation.

5.2 Results

Two viewpoints are considered when evaluating the results
from the above mentioned procedures, namely i) possibility
of system re-identification (parameter adjustment), and
ii) the quality requirements and restrictions imposed by
the constraints of the MPC problem formulation.
As the goal is to re-identify the model parameters for the
MPC from the closed-loop data, first comparison will be
focused on the amount of information contained in the data
quantified by the minimal eigenvalue of information matrix
increase during the whole simulation period λmin(∆IN1 ). In
order to demonstrate that the higher information content

leads to the better identifiability of the parameters of
the model (which is our primary goal), 100 models were
identified (each out of 700 samples) for each setting of
our algorithm and also for the original MPC. Then, the
following statistics can be introduced:

qE = (E(Θ̂)− θT0 )S(E(Θ̂)− θT0 )T, (13)

with S = 1
n−1 (Θ̂ − E(Θ̂))T(Θ̂ − E(Θ̂)), being a sample co-

variance matrix. Here, Θ̂ =
[
θ̂1 . . . θ̂n

]T
. θi specify the

parameters identified from the i-th set of data and n is
the number of the identified models. Freely spoken, the
parameter qe specifies the inaccuracy of the parameter
estimates and the lower it is, the closer are the identified
parameters to the real ones.
Besides the ability to re-identify the model, it is of high
interest how well does the designed controller satisfy the
original MPC requirements. To investigate the control
performance, two factors are compared. First of all, the
ability to satisfy the required output range was investi-
gated. This was quantified by the average low reference
violation e+y = ‖max((Ymin − Y ), 0)‖. Last but not least, it
was necessary to evaluate the energy consumption of the
compared algorithms. As the objective was to develop an
algorithm able to not only satisfy the control requirements
but also provide sufficiently informative data, the “price
increase” related to these informative data needs to be
known. This increase in the case of our algorithm with
various settings compared to the original zone MPC is
defined as IE =

∑N
1 u2M/

∑N
1 u2ZMPC (%) where uM specifies

input generated by our algorithm for the specific M and
uZMPC refers to input generated by the original MPC.
The summary of the results is provided in Tab 1-3. The
first thing which is obvious from the provided tables is that
for any setting of our algorithm, the generated data are
much more informative which corresponds to λmin(∆IN1 )

being much higher than for the original zone MPC. Let
us remind that the smallest eigenvalue of the increase of
the information matrix is quite nonintuitive to determine
which value is sufficiently large and which is not. Still, it
provides a good relative comparison of the approaches.
The fact that the data generated by our algorithm bring
much better possibility to obtain a high-quality model by
the re-identification than those generated by the classical
zone MPC is indisputable. The values of the parameter
qe are several hundred times lower for each setting of our
algorithm which implies higher accuracy of the parameter
estimates. The improvement in the ability to estimate
model parameters is illustrated by Fig. 2 showing the
step responses of the identified models Particular subplots
containing the step responses for various M correspond to
different values of ∆J. It is obvious that the green responses
(the responses of models identified from the data provided
by the classical zone MPC) are far away from the real
response (blue) which is not the case of our algorithm for
which the step responses of the models very accurately
reproduce the real one.
Regarding the output zone satisfaction, the results for
particular settings of our algorithm are comparable to
the classical zone MPC results and the deviations in the
average output tracking error e+y are negligible. This can
be explained such that as the zone satisfaction is required
instead of exact zone tracking, the fact that the output
flutters a little bit might not mean that the required zone
is violated.
A very important is the comparison of the consumed
energy. It can be seen that in case of our algorithm, the
increase of about 2.5 − 9% compared to the original zone
MPC occurs depending on the setting of our algorithm.
Here, it should be realized that the objective was to
provide an alternative for the economically, operationally
and time demanding open-loop identification experiment
– it is not required (and not even desired) that this
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algorithm operates non-stop. It shall be employed only in
the situation when the current model used by MPC is not
suitable any more due to its inaccuracy. Therefore, the
energy consumption increase in the order of percents is
only temporary and lasts only over the time necessary for
the re-identification of the model. In order to illustrate
the energy consumption increase, graphical comparison
of the energy consumption is presented in Fig. 1. Data
used for this comparison (104 samples) were split into
10 equal sectors and for each sector, the average energy
consumption increase per one sample was evaluated for all
settings of our algorithm and for the classical zone MPC.
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Fig. 1. Energy consumption comparison

Further insight can be obtained inspecting the dependence
of the obtained results on the values of the tuning pa-
rameters of the algorithm. When inspecting the depen-
dence on ∆J, it is quite expectable that for higher ∆J,
the controller consumes more energy and on the other
hand also brings more informative data which causes more
accurate estimates. This is quite natural because allowing
higher perturbation ∆J of the original cost function, the
performance evaluated by the MPC cost function will be
degraded, however, more space for the data excitation will
be achieved. Still, it is important to mention that even
for the least chosen ∆J = 60000, significant changes in the
accuracy of the estimated parameters can be observed.
This is very illustratively presented by the Fig. 2 where the
changes of the estimate accuracy are quite low for different
settings of the algorithm, however, they are huge compared
to the estimate accuracy in case of the classical MPC. One
could wonder what is the best and most proper choice of
∆J. Here, the answer is that the choice of ∆J is highly indi-
vidual and it strongly depends on the application and also
on how much one can afford to aggravate the performance
of the original controller.
Being interested in the choice of the parameter M , there
is no clear relation between the value of M and the
performance of the algorithm. However, it appears that
the best performance can be achieved for the M lying
somewhere in the middle of the interval which was chosen
in this paper. As already mentioned, it does not make
sense to choose M < na +nb (due to the regularity of the
problem). Also, in general it is not very advantageous to
choose a too high value of M because the excitation is then
optimized over longer horizon and for too long horizons,
undesired uncertainties can be introduced resulting from
the multi-step predictions of the model being less accurate.
Moreover, as the industrial MPCs work with the receding
horizon, it is not necessary to pick up such high values.
The ultimate goal of this work was to keep the complexity
of the algorithm reasonably low. The average duration of
one run of the complete algorithm (zone MPC calculation
+ excitation of the data) over all the considered settings
was 1.1 s while in the case of the zone MPC only (without
excitation) it was 0.3 s.

As our algorithm was intended to be a more versatile
alternative for the algorithm described in [21], let us show a
brief comparison of the newly proposed algorithm and the
one presented in [21]. To avoid too lengthy comparisons,
the algorithm presented in [21] was tested for just M = 7
and under the conditions described in Sec. 5.1. For the
algorithm from [21], ∆J = 30000, 40000, 50000 were chosen.
Let us note that in case of the algorithm presented in
[21], the choice of ∆J has different meaning—in the case
of the current algorithm, ∆J represents the perturbation
caused by the M input samples while in the case of the
other algorithm, all the perturbation is caused by just
single input sample. In Tab 4, the values of the evaluative
factors IE(%), e+y , qe, λmin(∆IN1 ) for the “older” algorithm
are presented. It can be seen that the performance of that
algorithm is very similar to the performance of the new
one considering the presented statistics. At the expense
of the 5 − 9% energy consumption increase, the algorithm
presented in [21] provides much better estimates of the
parameters of the model than the classical zone MPC.
Inspecting Tab. 1-3, it could even appear that with certain
settings, the algorithm presented in [21] is able to iden-
tify the parameters even more accurately than the new
one. However, here it should be realized that the higher
minimal eigenvalue of the information matrix increment
does not necessarily mean that the resulting model is much
better than the other. The smallest eigenvalue specifies the
direction from which smallest amount of information has
been obtained. However, it is not related to the significance
of the corresponding parameter. It is clear that although
improving the estimate of particular parameter of the
model, the resulting prediction performance might change
negligibly—this happens when the parameter whose esti-
mate has been improved is not significant enough. Return-
ing back to the comparison with the elder algorithm, taken
relatively to the classical zone MPC, the differences in per-
formance are almost negligible and thus it can be concluded
that the current algorithm and the one presented in [21] are
equivalent. However, the new algorithm has one superior
property being the versatility and the fact that it can be
very simply extended for much more general class of the
optimal controllers.

678910MPC

678910MPC

678910MPC

Fig. 2. Step responses (∆J = 60× 103 - top, ∆J = 80× 103 -
middle, ∆J = 100× 103 - bottom).
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Table 1. Results comparison ∆J = 60000

IE(%) e+y qe λmin(∆IN1 )

M = 6 2.40 0.01 8.5×10−8 5.58
M = 7 4.67 0.01 4.69×10−8 6.77
M = 8 4.47 0.01 4.26×10−8 7.23
M = 9 3.47 0.01 5.85×10−8 7.11
M = 10 4.53 0.01 4.33×10−8 7.27
MPC 0.00 0.01 7.33×10−4 2.75

Table 2. Results comparison ∆J = 80000

IE(%) e+y qe λmin(∆IN1 )

M = 6 2.50 0.01 7.65×10−8 5.82
M = 7 4.91 0.01 2.31×10−8 7.66
M = 8 5.99 0.01 1.39×10−8 8.67
M = 9 4.94 0.01 1.40×10−8 8.67
M = 10 3.68 0.02 3.38×10−8 7.53
MPC 0.00 0.01 7.33×10−4 2.75

Table 3. Results comparison ∆J = 100000

IE(%) e+y qe λmin(∆IN1 )

M = 6 5.50 0.01 0.91×10−8 7.92
M = 7 7.58 0.01 0.18×10−8 10.81
M = 8 8.37 0.01 0.49×10−8 8.72
M = 9 6.87 0.02 0.84×10−8 8.55
M = 10 4.53 0.02 0.33×10−8 10.61
MPC 0.00 0.01 7.33×10−4 2.75

Table 4. Results of another currently available algo-
rithm, M = 7

IE(%) e+y qe λmin(∆IN1 )

∆J = 30000 5.20 0.0 8.67×10−8 4.51
∆J = 40000 5.27 0.0 5.52×10−8 5.45
∆J = 50000 9.67 0.0 4.69×10−8 8.56
MPC 0.00 0.01 7.33×10−4 2.75

6. CONCLUSION

In this paper, a new algorithm ensuring sufficient excita-
tion for the class of zone MPC was presented. The shown
results clearly demonstrate that this newly proposed algo-
rithm possesses not only good theoretical properties but it
is also able to provide data with rich information content
(which helps the potential re-identification of the model)
at only a negligible increase of the energy consumption and
hardly detectable aggravation of the control performance
in the sense of zone satisfaction. The combination of its
attractive performance (in the sense of ability of providing
sufficiently excited data), low computational complexity
and high versatility makes it a good candidate for the
real-life application. The potential of the algorithm can
be used with advantage in such processes where the open-
loop excitation experiment is inadmissible either from the
operational or the economical reasons.
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[15] T. Söderström and P. Stoica, System identification.
Prentice-Hall, Inc., 1988.

[16] J. Rathousky and V. Havlena, “Multiple-step ac-
tive control with dual properties,” in IFAC World
Congress, vol. 18, pp. 1522–1527, 2011.

[17] M. Shouche, H. Genceli, P. Vuthandam, and M. Niko-
laou, “Simultaneous constrained model predictive con-
trol and identificatoin of darx processes,” Automatica,
vol. 34, pp. 1521–1530, 1998.

[18] G. Marafioti, F. Stoican, R. Bitmead, and M. Hovd,
“Persistently exciting model predictive control for
siso systems,” in Nonlinear Model Predictive Control,
vol. 4, pp. 448–453, 2012.
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