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Abstract: In this paper, we propose distributed optimization methods to solve systems of linear
equations. We provide convergence analysis for both continuous and discrete time computation
models based on linear systems theory. It is shown that the proposed computation approaches
work for very general linear equations, scalable with data sets and can be implemented in
distributed or parallel fashion. Furthermore, we show that the discrete time algorithm admits
constant update step size in the presence of additive uncertainties. This robustness feature
makes the approach computationally efficient and supplementary to the existing approaches to
deal with uncertainties such as stochastic (sub-)gradient methods and sample averaging.
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1. INTRODUCTION

The fast spread of networking applications has boosted
the research interest towards developing computation al-
gorithms that exhibit scalability in face of big data sets
and can be implemented over individual nodes that are
connected through communication links. In this paper, we
will try to develop such algorithms for a fundamental prob-
lem that finds applications in many modern engineering
and scientific disciplines, namely, solving systems of linear
equations of the form:

Ax = b, (1)
where A ∈ R

n×n and b is a vector in R
n 2 . We assume

that the system (1) is consistent, i.e., it has at least one
solution.

Solving a set of linear equations has a long history and
the famous approach in early days is by Gaussian elimi-
nation. While this direct approach may be preferred for
problems of small dimension, it may not be appropriate
for problems with big size. In the latter case, consider-
ing computation and storage cost, it is desirable to use
iterative methods that generate a sequence of points with
one only depending on its predecessor, that converges to
the solution asymptotically. Our focus in this paper is to
develop (distributed) iterative computation algorithms for
solving linear equations with large dimension and possibly
sparse structure.

� This research has been supported under NSF grant CNS-1239319.
1 We would like to thank Prof. P.G. Voulgaris and Prof. S. Salapaka
for introducing us to the problem and the stimulating discussions on
alternative approaches.
2 Our approach also works for more general rectangular matrices A.
Here we assume A to be a square matrix since it is easy to elaborate
our approach and represents an important class of problems.

It is difficult to provide a comprehensive account of the
vast literature on iterative methods. Herein we discuss
some of the well known methods. We refer the reader
to Bertsekas and Tsitsiklis (1989) for the discussion of
classical iterative approaches, like the Jacobi and Gauss-
Seidel, Hestenes et al. (1952) for Conjugate Gradient (CG)
method and Shental et al. (2008); Moallemi and Van Roy
(2009) for message passing algorithms. Many methods,
such as CG and the message passing algorithms, require
A to be symmetric and positive definite, and may fail to
converge if A is singular. The Jacobi algorithm works for
diagonal dominant matrix and the Gauss-Seidel method
requires A either to be positive definite and symmetric or
diagonal dominant.

A large class of iterative algorithms focus on first order
discrete time-invariant dynamics in the form of

xk+1 = xk − γG(Axk − b), (2)
where γ is a positive scalar and G is an n× n matrix. For
example, the Jacobi algorithm can be obtained from the
above algorithm when G is diagonal with gii = 1

aii
. To

ensure the above iteration converges when A is singular,
some assumptions need to be imposed on matrix G and
A, see, e.g., Dax (1990) and references therein. The
choice of G based on those assumptions usually involves
matrix inverse calculation which introduces additional
computation and makes the distributed implementation
of the algorithm even more difficult.

There are algorithms to solve the general A case, mostly
based on variations of the CG, see, e.g., Hestenes et al.
(1952) and Choi (2006) and reference therein. Those
algorithms require different steps like preconditioning and
(or) matrix transformations, and their applicability in
networked distributed settings is questionable and not
much investigated.
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In this paper, differently from the above methods, our
proposed algorithms are second order, which lead to im-
portant benefits, and are inspired by the early work on
dynamic systems for solving saddle point problems Arrow
et al (1958) and the more recent work Wang and Elia
(2011) where it was shown that there is a natural feedback
dynamic system for solving convex optimization problems
with equality constraints.

Formulating the problem of solving linear equations as an
unconstrained quadratic programming problem has been
considered in the literature, see, e.g., Bertsekas and Tsit-
siklis (1989) Section 3.2.1. This formulation usually leads
to a first order system whose convergence strongly depends
on the property of the matrix A, e.g., diagonal dominant,
positive definite, etc. In contrast, we propose to solving
the linear equations by solving an optimization problem
with equality constraint where the equality constraint is
exactly the linear equation.

This optimization problem formulation first seems un-
economical since it propose to solve a more complicated
problem. However, there are several desirable features that
distinguish this approach with existing methods, such as
Jacobi, Gauss-Seidel, Richardson iterative methods, mes-
sages passing, etc. First of all, the approach can treat very
general linear equations, the only requirement is that the
linear equations has at least one solution. Thus, it can be
implemented even when A is singular, non-symmetric, and
not diagonal dominant. This feature makes the algorithm
well suitable in situations when the matrix A is of big
dimension and its properties (like singularity) is not able
to be detected a prior. Secondly, as we show in the paper,
the proposed algorithm is robust to additive uncertainties
in that the state of the algorithm will not diverge with
additive uncertainty even we use constant step size. This
feature may enable us to compute the solution more effi-
ciently than the first order stochastic gradient algorithm
Robbins and S. Monro (1951), in which vanishing step
size is usually used. Thirdly, the proposed algorithm can
be implemented in a distributed way in that each node
deals with one component of the solution and thus scalable
to the problem size. Although the third feature may be
shared by available algorithms, the combination of the
three makes this approach unique and promising for real
implementation.

The rest of the paper is organized as follows. In Section
2, we propose the continuous time system to solve (1)
and analyze its convergence property by standard linear
systems theory. In Section 3, we investigate the discrete
time algorithm and provide convergence analysis in the ab-
sence and presence of additive noise. We discuss the issues
related to distributed implementation of the algorithm in
Section 4 and provide some numerical examples in Section
5. Finally, we conclude the paper in Section 6.

2. A CONTINUOUS-TIME OPTIMIZATION SYSTEM

To solve equations (1), we propose to solve instead the
following convex optimization problem:

p∗ = min
x∈Rn

‖x‖2
2

s.t. Ax = b.
(3)

Problem (3) is called the least norm problem. It seeks to
find the one with least Euclidean norm among all vectors
that satisfy (1). This problem has found many applications
in engineering, for example, the optimal control problems
in systems and control field. Clearly, solving this problem
will solve (1). We want to point out that it is possible
to choose other cost functions in (3). Here we choose
the Euclidean norm since the cost function is completely
decomposable with respect to its components xi and
thus facilitate distributed implementation and least norm
problem itself is an important problem.

At first, our formulation may seem to be uneconomical
and not very useful; as a conventional approach to solve
problem (3) (and thus (1)) would be by performing one
Newton step. However, this step requires solving a bigger
set of KKT equations, than (1). However, as we show
subsequently, this formulation would allow us to generate
algorithms that have all the desirable features that are
discussion in Section 1.

The classical formulation to solve linear equations using
convex optimization techniques is to minimize the function
f(x) = 1

2xT Ax − x′b, see, e.g., Bertsekas and Tsitsiklis
(1989) Section 3.2.1. However, the success of the gradient
decent algorithm for the mentioned unconstrained opti-
mization problem would require A to be positive definite
(to ensure that the cost function is convex). By formulat-
ing the problem as an equality constrained optimization
problem would not have this limitation and the only re-
quirement is that the linear equation is consistent .

Following Wang and Elia (2011), we construct the La-
grangian of Problem (3) as

L(x, ν) = x′x + ν′(Ax − b).
The associated dual problem of (3) is given by:

max
ν∈Rn

min
x∈Rn

L(x, ν). (4)

We propose the following continuous time system for
solving (3) and hence (1).

ẋ = −2x − A′ν,
ν̇ = Ax − b.

(5)

Let x∗ be the solution to Problem (3) and ν∗ is the solution
to the dual problem (4). Since we assume the linear
equations (5) is consistent, x∗ always exists. The existence
of ν∗ can be followed from Boyd and Vandenberghe (2004)
pp. 141 and Chap. 5. Now, we define x̃(t) = x(t) − x∗,
ν̃(t) = ν(t) − ν∗ and let z(t) = (x̃(t), ν̃(t)), the evolution
of z then can be derived from (5) as ż = Az where

A =
(−2I −A′

A 0

)

The block diagram of the dynamical system (5) is shown
in figure 2. Since it is an LTI system, we can understand
its convergence and disturbance rejection properties from
linear systems theory.

The asymptotic convergence property of (5) can be sum-
marized as follows.
Theorem 1. Consider system (5), for any initial val-
ues x(0) and ν(0), we have limt→∞ x(t) = x∗ and
limt→∞ ν(t) = ν∗. Furthermore, ν∗ = ν1 + ν2 with ν1 ∈
R(A) and ν2 is the component of ν(0) that lies in the null
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space of AT . Finally, the asymptotic convergence rate is
exponentially fast and lower bounded by 2, i.e.,

||z(t)|| ≥ ||z(0)|| exp(−2t).

The proof extends the one given in Wang and Elia (2011)
to the case of A not full column rank and is based on linear
system arguments.

Proof. Since (5) is an LTI system, we proceed to use
linear system theory with some basics of linear algebra
for the convergence analysis. Let the derivative of x and ν
to be zero, we have that

−2x − A′ν = 0, (6)
Ax − b = 0.

Note that there might be many ν∗ satisfying the above
equation, we can just pick an arbitrary one and form ν̃.

Using Schur formula, we have

det(λI −A) = det((λ + 2)I) det
(

λI +
1

λ + 2
AA′

)

= det(λ2 +2λI+AA′). Let AA′ = UΣ2U ′, with U unitary,
then det(λI − A) = det(λ2 + 2λI + Σ2) =

∏n
i=1(λ

2 +
2λ + σ2

i ). When A is non-singular, the eigenvalues of AA′
are all positive real numbers and A is Hurwitz. Then, the
KKT conditions only have unique solution. This implies
the convergence of x(t) and ν(t) to the optimal primal
and dual solutions..

We next consider the case when A is singular. In that case,
the eigenvalues of AA′ are all positive or zero. Thus, all
the eigenvalues of A are on the strict left half plane or the
origin, and the algebraic multiplicity of the zero eigenvalue
of A is equal to that of AA′. To understand convergence of
the system, we further investigate the structure property
of null space of A.

We next show that any right and left eigenvector er and el

associated with the zero eigenvalue of A has the structure
[01×n, e′r2]

′ and [01×n, e′l2] where er2 is in the null space of
A′ and el2 is such that e′l2A = 0, and 01×n denotes a row
vector of all zeros of dimension n.

Let er = [er1, er2] be an arbitrary right eigenvector
associated with the zero eigenvalue of A, then from Aer =
0, we have

−2er1 = A′er2, Aer1 = 0.

Therefore, e′r1er1 = − 1
2e′r2Aer1 = 0, which implies er1 =

0. Furthermore A′er2 = 0, which implies that er2 is in the
null space of A′ and the dimension of the null space of A
and A′ are the same. This conclusion follows similarly for
the structure of the left eigenvector of A.

Now the algebraic multiplicity of the zero eigenvalue of
A is equal to that of AA′, which is also equal to the
geometric multiplicity of AA′ since AA′ is diagonalizable.
Since AA′ and A′ share the same null space, and the
geometric multiplicity of the zero eigenvalue of A is equal
to the null space of A′ from previous argument, the zero
eigenvalues of A have the same algebraic and geometric
multiplicity. Thus, the mode decomposition from linear
systems theory yields that

lim
t→∞ z(t) = lim

t→∞ e−Atz(0) =
κ∑

i=1

er,ie
′
l,iz(0),

Fig. 1. The block diagram of the LTI system (5) for solving
system of linear equations (1).

where κ is the dimension of the null space of A. From the
structure of er,i and el,i, x(t) converges to the solution of
Problem (3) and ν(t) converges to some constant value
depending only on the initial value of ν(t).

For the convergence rate analysis, we only consider the
case when A is positive definite (i.e., A is non-singular).
The more general case follows by projecting the dynamics
of z(t) to the non-null space of A. Let V (t) = 1

2 ||z(t)||22,
then

V̇ (t) = z(t)TAz(t) = z(t)T

(A + AT

2

)
z(t)

=−2||x̃(t)||2 ≥ −2||z(t)||2
The convergence rate result thus follows. �

The above proof shows that the system will converge to the
optimal solution whenever A is singular or not. When A is
singular, the solutions to the dual problem is not unique
and there are many ν∗ that satisfy the KKT condition.
In that case, the convergence value of ν(t) will depend
on its initial value ν(0). Moreover, we provide an lower
bound of the convergence rate that only depends on the
cost function (through the scalar 2 as we define the cost
function as ||x||2) and not the matrix A.

3. DISCRETE ALGORITHM AND ROBUSTNESS TO
ADDITIVE UNCERTAINTIES

In this section, we will focus on discrete algorithm and
its robustness to additive uncertainties. The analysis of
the continuous time system provides many insights on the
properties of the system that can be carry over for analysis
of its discrete time counterpart.

We can obtain a simple discrete algorithm from Euler
discretization of (5) as follows:

x(k + 1) = (1 − 2γ)x(k) − γA′ν(k),
ν(k + 1) = ν(k) − γ(Ax(k) − b), (7)

where γ > 0 is some positive constant. Define x̃(k) =
x(k) − x∗, ν̃(k) = ν(k) − ν∗ and let z(k) = (x̃(k)), ν̃(k)),
(7) can be written compactly as z(k + 1) = Wz(k), where

W =
(

I − 2γ −γA′

γA I

)

The convergence result of (7) can be summarized as
follows.
Theorem 2. Let the nonzero eigenvalues of AA′ be ordered
as σ2

min, . . . , σ2
max. Consider discrete algorithm (7), for any
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initial values x(0) and ν(0), if 0 < γ < min{1, 2
σ2

max
},

we have limk→∞ x(k) = x∗ and limk→∞ ν(k) = ν∗.
Furthermore, the asymptotic convergence rate is given by

sup
z(0) �=0

lim
k→∞

( ||z(k)||2
||z(0)||2

) 1
k

=

max
{√

1 − 2γ + γ2σ2
max, 1 − γ

(
1 −

√
1 − min{1, σ2

min}
)}

Proof. We analyze the system by investigate the char-
acteristic function of W . We only analyze the case when
A is non-singular. When A is singular, the proof can be
obtained with similar arguments in the proof of Theorem
1. When A is non-singular, the eigenvalues of AA′ are all
positive, and We have

det(λI − W ) = det((λI − I)(λI − I + 2γI) + γ2AA′)

= Πn
i=1

[
(λ − 1)(λ − 1 + 2γ) + γ2σ2

i

]
Let hi(λ) = λ2 − 2(1 − γ)λ + γ2σ2

i + 1 − 2γ. If the roots
of hi(λ) are complex conjugates, then their magnitude is
equal to γ2σ2

i + 1 − 2γ. Since 0 < γ < 2/σ2
i , γ2σ2

i + 1 −
2γ < 1. When the roots of hi(λ) are real, they are given by
1−γ±γ

√
(1−σ2

i ). In this case, we have 0 < σ2
i < 1. Since

0 < γ < 1, |1 − γ ± γ
√

1 − σ2
i | < 1. Thus, we have proved

that if 0 < γ < min{1, 2
σ2

max
}, all the roots of W have

magnitude less than 1 and the algorithm will converge.

To proceed the asymptotic convergence rate analysis,
we note that if σ2

i > 1, then the roots of hi(λ) are
complex conjugates, and the magnitude of the roots is√

1 − 2γ + γ2σ2
i . If σi < 1, the maximal magnitude of the

two real roots is 1− γ
(
1−√

1 − min{1, σ2
min}

)
. Thus, the

convergence rate result follows from the well know fact
that for any real matrix B, ρ(B) = limk→∞ ||Ak|| 1

k , see,
e.g., Corollary 5.6.14 of Horn and Johnson (1985). �

Theorem 2 states that the step size γ should be upper
bounded by the minimum of 1 and the inverse of the largest
eigenvalue of AA′. This result is in consistent with the
classical Richardson iterative method Richardson (1910)
in which the step size should be inversely scaled with the
spectral radius of matrix A to ensure convergence. Note
that our algorithm does not require A to be positive defi-
nite as in Richardson method, at the expense of additional
computation of the dual variable. However, the justifi-
cation of using the dual variable update does not only
attributed to its ability to tackle more general problems,
but also to the robustness feature that are brought by its
feedback control nature, which we will further clarify in
the next subsection.

3.1 Analysis of Discrete Time Algorithm under Additive
Uncertainties

In the applications which requires solving linear system
equations, the measurement b may not be exactly known
as it is often measured and thus corrupted by additive
noise. Communication noise may also be present in geo-
graphically distributed implementation of the algorithm.
Motivated from those considerations, we next analyze the

algorithm under additive uncertainties. We consider the
following algorithm:

x(k + 1) = (1 − 2γ)x(k) − γA′ν + w(k),
ν(k + 1) = ν(k) − γ(Ax(k) − b) + v(k), (8)

where we assume each component wi(k) and vi(k) for all
k = 0, 1, . . . are i.i.d distributed random variables with zero
mean and bounded variance. Here, for each time index k,
all the components wi(k) and vi(k) may be correlated to
each other, but we assume all of them are independent
of the initial condition x(0) and ν(0). The stochastic
convergence property of (8) can be summarized as follows.
Theorem 3. Consider discrete algorithm (8), for any initial
values x(0) and ν(0), if 0 < γ < min{1, 2

σ2
max

}, we have
limk→∞ Ex(k) = x∗, limk→∞ Eν(k) = ν∗. Furthermore,
limk→∞ E(x̃(k)x̃′(k)) is bounded and converges to a fixed
value, limk→∞ E(ν̃(k)ν̃′(k)) is bounded and converges to a
fixed value when A is non-singular and diverges to infinity
when A is singular.
Remark 4. A similar result can be derived for the contin-
uous time system (5) with additive noise. The continuous
time setting can be used to explain how simple dynamical
systems can solve (approximately) linear systems of equa-
tions collectively in the presence of noisy interconnections.
The above resilience to additive noise is consistent with our
previous results in Wang and Elia (2010, 2011, 2013).

Theorem 3 shows a remarkable robustness feature of the
algorithm to additive uncertainties. The mean of x(k) will
converge to the optimal solution and the covariance of x̃
will be bounded and converging whenever A is singular or
not, although the covariance of ν̃ will diverge when A is
singular 3 . This property will allow one to approximately
compute the solution of the linear equations by just time
averaging of x(k). To see why this practical method works,
we need the following result. For simplicity of exposition,
we assume that A is not singular.

Compared to the first order algorithm (2), system (7) has
two states in which ν(k) can be interpreted as the state
of a dynamic feedback controller. In this way, (2) can
be viewed as a feedback control system. Since feedback
control can reduce the effect of uncertainties on system
performance, it is understandable that the noise effect can
now be mitigated. From linear systems theory, when A
is singular, the eigenvectors associated with the marginal
stable modes are in the null space of the transpose of
matrix C = [In, 0n×n] 4 . Therefore, the marginal stable
mode is unobservable from x̃ and any external bounded
excitation can not destabilize it.
Lemma 5. Let Xn = x(0)+x(1)+...+x(n−1)

n , if 0 < γ <

min
{
1, 2

σ2
max

}
, we have

lim
n→∞E||Xn − x∗||2 = 0.

Remark 6. Since x(k) are not i.i.d., and the mean of
each x(k) is not equal to that of Xn, we do not have
a version of weak law of large numbers. However, the
above result provides a practical way of computing the

3 There has been some remedies to prevent the divergence of ν(k)
by ceasing the update of νi(k), see, e.g., Wang and Elia (2013).
4 Assuming x̃ is the output, then Cz(k) defines the output equation.
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optimal solution by using Xn since we have proved that the
variance between Xn and x∗ converges to zero. In practice,
the sample average of x(k) can be taken beginning at
some k > 0 for which the algorithm almost “converge”.
In this way, the initial generated x(k)s that are far from
the convergence values are removed and the number of
sampling points for the same approximation accuracy
would be reduced.
Remark 7. We note that our approach is fundamentally
different from the widely used stochastic gradient algo-
rithms in which one need to use diminishing step size
to attenuate the noise, see, e.g., Robbins and S. Monro
(1951) and the sample average approximation techniques
Shapiro (2003). In contrast, the algorithm we proposed
converge exponentially fast, and the convergence value can
be approximated with less iterations.

The similar properties of primal-dual like approaches to
additive noise has been illustrated in our early work Wang
and Elia (2010), where we try to solve the unconstrained
distributed convex optimization problem. Since any convex
cost function can be decomposed into the summation
of two or more convex functions, that paper essentially
demonstrated that we can use ideas from consensus and
convex optimization to solve any unconstrained quadratic
programming problems with additive uncertainties. Here,
although we do not use the idea from dynamic consensus,
the proposed second order system still exhibits the same
property.

4. DISTRIBUTED SOLUTION TO SYSTEMS OF
LINEAR EQUATIONS

In this section, we show how the optimization system (5)
can solve systems of linear equations in a distributed or
parallel fashion. The main idea also works similarly for
discrete the time algorithm. We omit the presence of noise
for simplicity of explanation. Note however that noise can
be present in the communication links between the nodes.
The resilience to noise of the distributed implementation
follows directly from the results of the previous section.

The operations of system (5) can be described by a
graphical model. Considering a bipartite graph, where on
one side the nodes are associated with the primal variables
xj , j = 1, . . . , n and on the other side, the nodes are
associated with the dual variables νi i = 1, . . . , n.

Each node νi has a simple integrator dynamics
ν̇i = −bi + vi

where vi is the input. Each node xj has a stable dynamics
ẋi = −2xi − ui

where ui is the input. If aij �= 0 there is a link of weight aij

from xj to νi, and a link of weight aij from node νi to node
xj . Thus the link between νi and xj is undirected. The
input to each node is the sum of messages on its incoming
links, namely vi =

∑n
j=1 aijxj and uj =

∑n
i=1 aijνi.

For example, consider

A =

⎡
⎢⎣

1 2 0 0
0 2 0 1
−1 0 0 1
0 0 −1 1

⎤
⎥⎦ , b =

⎡
⎢⎣

5
2
−3
−1

⎤
⎥⎦ . (9)

1

x
25

2
1

2
22

1

1

1

1
2

2

3

1

Fig. 2. Bipartite graph representation of system (5)

Figure 4 shows the corresponding bipartite graph describ-
ing the communication network intrinsic in the structure
of A. Note that when A is sparse, only few links are
present between the ν and the x nodes corresponding to
the nonzero coefficients of A.

Alternatively, nodes xi and νi can be collapsed into a
second order node (xi, νi). For the example above, the
corresponding networked system is given by

ξ̇ = Pξ + Nξ − B

where ξi = [xi, νi], and omitting the block of zeros,

P =

-2 -1
1 0

-2 -2
2 0

-2 0
0 0

-2 -1
1 0

N =

0 0 0 1
2 0 0 0

0 -2 0 0
0 0 1 0

0 0 0 1
-1 0 1 0

0 -1 0 -1
0 0 -1 0

, B =

0
5

0
2

0
-3

0
-1

The derivation we have proposed in this section is general
and suggests that there is an ad-hoc network architecture,
which is implicit in the structure of A and allows for a dis-
tributed solution of systems of equations. 5 On the other
hand, network topologies that work for large sets of A’s are
of interest. For example, the network topology consistent
with a certain zero sparsity pattern of A, can solve any
feasible problem where A has that sparsity pattern. A
relevant special class consists of matrices with symmetric
sparsity structures. In this case νi and xi have the same set
of in-neighbors. Thus the same topology is used for updat-
ing both primal and dual variables. Furthermore, when A
is symmetric, νi and xi have the same set of in-neighbors
with the same set of weights. This extra structure in A
further simplifies the required network infrastructure to
perform the distributed computation of solutions.

We want to remark that each node only computes one
component of the solution vector. This is fine in most
situations where xi corresponds to physical variables the
agents needs to assume (e.g. position) as a solution of the

5 This approach also applies to other convex optimization problems
with separable cost functions.
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Fig. 3. Convergence of the states x(t) of the continuous
time algorithm (5) to the solution of Ax = b with
minimum 2 norm. A is singular and non-symmetric.
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Fig. 4. Trajectory of the states x(k) in the presence of noise
for algorithm (8). Note that x(k) does not diverge in
the presence of additive noise, although we use fixed
step size γ = 0.1.

problem at hand. If one is interested in the whole solution
vector, a global collector of the xi’s is necessary. This
would be the case of distributed solvers running on chips
or multi processor architectures.

5. EXAMPLE

In this section, we use an example to illustrate the ef-
fectiveness of our algorithms. We consider the linear equa-
tions with data given by (9). Recall that here A is not sym-
metric and singular. We first consider continuous time op-
timization system (5). Figure 3 shows the convergence to a
feasible solution, x∗ = [1.9231 1.5385 −0.0769 −1.0769]′,
with the 2−norm value ||x∗||2 = 2.689.

Figure 4 shows the convergence of the discrete-time sys-
tem (8) in the presence of noise. In this case, the max-
imum eigenvalue of A′A is σ2

max = 9.0732, thus we
choose γ = 0.1. Each difference equation is subject it
IID Gaussian noise with zero mean and variance 0.01.
As the noise continues to excite the system, the primal
and dual variable are subject to variations as described
by Theorem 3. This noise can be averaged out by each
agent using a moving averaging. The average state x̄ =
[1.9198 1.5414 −0.0733 −1.0766]′, is obtained by averag-
ing the last 500 samples of the response.

6. CONCLUSIONS

In this paper, we have proposed a novel convex optimiza-
tion problem formulation to solve linear equations. This
new formulation has led to the application of primal dual
like approaches to solve systems of linear equations. This
seemingly uneconomical approach works for very general
matrix A, robust to additive uncertainties, scalable to
problem data and is easy to be implemented in distributed

way. Since in real applications, it is difficult to evaluate if
A is singular or not when A has a large dimension, we
hope our approach can alleviate this difficulty and still
allow distributed implementation. Moreover, the robust-
ness feature of the algorithm offers new approach to tackle
stochastic optimization problems besides the application
to linear equations.
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