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Abstract: While stochastic sampling methods remain widely used to simulate solutions of
partial differential equations with random parameters, due to ease of implementation on a
parallel computing architecture, they can nevertheless carry a considerable computational cost,
especially if reliable statistics are sought at high levels of spatial fidelity. Multilevel sampling
methods improve upon the efficiency of traditional sampling schemes without compromising on
accuracy and parallelizability, by dynamically incorporating the model’s spatial discretization
into the sampling procedure. Moreover, the diagnostic estimates that are computed to monitor
the solution’s convergence behaviour during the course of the algorithm, can be used to inform
adaptive spatial refinement strategies. In this paper we leverage these properties to develop an
adaptive, multilevel algorithm for identifying the statistical distribution of a spatially varying
parameter from the statistical description of a related model output, based on experimental
measurements.
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1. INTRODUCTION

As numerical simulation plays an increasingly central role
in modern decision making, it becomes critical to assess the
reliability of numerical models by quantifying the effect of
uncertainty in the underlying model parameters on model
outputs.

Suppose q is a random, spatially varying parameter whose
statistical distribution is known. To be specific, q(x, y)
is a parameter that depends on both a spatial variable
x ∈ D ⊂ Rd, where D denotes an underlying spatial
domain, and on a random vector y ∈ Γ ⊂ RN , whose
statistical variation is determined by its density function
ρ : Γ→ [0,∞). Consequently, the model response u of the
system also takes the form of a random field that depends
on the same underlying random vector, i.e. u = u(x, y).

As a model problem, we consider the second order elliptic
equation with Dirichlet boundary conditions and deter-
ministic forcing term f , i.e.

−∇ · (q(x, y)∇u(x, y)) = f(x) in D × Γ

u(x, y) = 0 in ∂D × Γ.
(1)

This equation is can be viewed as a collection of determin-
istic elliptic equations parameterized by the random vector
y an may be used to model the temperature distribution
in a material with random conductivity, or subsurface flow
through a medium with random diffusion coefficient. Un-
der the assumption that f ∈ L2(D) and q ∈ L∞(Γ, C1(D̄))
so that 0 < qmin < q(x, y) a.s. on Γ×D for constant qmin,
the solution u of (1) can be shown to exist and be unique,
see Babǔska (2007).

A statistical description of the model output u, or some
related physical quantity, such as a local spatial average
or a boundary flux, usually takes the form of a set
of statistical quantities of interest Q, such as measures
of central tendency, spread, and correlation, as well as
exceedence probabilities and confidence intervals. A large
class of such statistical quantities of interest Q can be
written in the form of a stochastic integral,

Q = E[v] :=

∫
Γ

v(x, y)ρ(y) dy, (2)

where v = G(u) for some mapping G. The probability that
the local spatial average ū(y) =

∫
D1
u(x, y) dx of u over

the region D1 ⊂ D exceeds some upper threshold umax

could for instance be written as the integral

P(ū ≥ umax) =

∫
Γ

χ{ū≥umax}(y)ρ(y) dy,

where χA represents the indicator function over a set
A ⊂ Γ.

Stochastic sampling methods can be thought of as nu-
merical quadrature approximations Iη[v] of Q, computed

as a weighted sum of of the form Iη[v] :=
∑η
i=1 wiv

(i),

where {v(i)}ηi=1 are sample paths corresponding to differ-
ent values of the random input vector y. These may be
generated randomly from the underlying density function
ρ, such as in Monte Carlo sampling, or may be based on a
low discrepancy sequence in the stochastic domain Γ, such
as in quasi Monte Carlo methods (see Kuo (2012a)), or
chosen according to a fixed set of predetermined abscissas
defined on Γ, such as in stochastic collocation (Babǔska
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(2007)). In all cases, sample paths v(i) can be computed
independently, allowing for straightforward parallelization.

In practice, the model parameter q is rarely known and
must be estimated from measurements of related observ-
able quantities, most often measurements û of the model
response u. The task of inferring information about q
from û constitutes an inverse problem, which is typically
ill-posed. Additionally, in the presence of limited, noisy
measurements, q can only be known in a probabilistic
sense, i.e. as a random field. Suppose, we have a statistical
description of the measurements û, as a random field, i.e.
û(x, y), where x ∈ D is a spatial variable and y ∈ Γ a ran-
dom vector with joint density function ρ : Γ→ [0,∞). The
corresponding statistical inverse problem then amounts to
obtaining a statistical description of q from that of û.

In Borggaard (2012), we consider a least squares type
formulation of the statistical inverse problem related to
(1), in which we seek to identify the random parameter q
so as to minimize of the discrepancy between the statistical
distribution of the corresponding model output and that
of û, measured in the appropriate stochastic Sobolev
norm. Furthermore, we develop an augmented Lagrangian
optimization algorithm (see Ito (1990)) to simultaneously
approximate the spatial-, as well as stochastic components
of q.

In this paper we consider an alternative, sampling-based
algorithm, in which sample paths q(i) of q are generated
from sample paths û(i) of û, by solving a deterministic
inverse problem. It can readily be shown that parameters
with such paths minimize the cost functional in the afore-
mentioned least squares formulation, while being more
amenable to parallel implementation. These paths can
then be statistically aggregated to yield descriptive sta-
tistical quantities of interest Q. In this case, the integrand
in (2) is of the form v(x, y) = G(q). We are interested in
approximating integrals of this form, using sampling.

As an illustration of how naturally this method arises in an
experimental or industrial setting, consider the problem of
determining the statistical distribution of the conductivity
coefficient q in a collection of plates that are manufactured
from an inhomogeneous material. An intuitively appealing
procedure to obtain a statistical estimate of q is to subject
a random sample of plates to a heat source under similar
conditions and record the temperature distribution for
each plate. Upon estimating the conductivity coefficient
deterministically for each plate in the sample, we can
statistically aggregate the results. It therefore seems like
a natural idea to treat the inverse problem itself as a
sampling problem.

Certainly, accurate estimates of statistics Q relating to q
may require a large sample, depending on the statistical
complexity of the measurements. Moreover, since deter-
ministic parameter identification methods usually take
the form of an optimization routine that computes q(i)

iteratively from an initial guess q
(i)
0 , each sample path of

q may be costly to compute, requiring multiple forward-
and adjoint solves.

In the following sections, we show how these shortcomings
can be mitigated through the use of multilevel sampling
methods. Not only do these improve the allocation of com-

putational resources through coordination of the sample
sizes with spatial refinement levels, but also provide good

initial guesses q
(i)
0 for the deterministic parameter identi-

fication algorithms, based on coarse approximations, pro-
vided the underlying stochastic quadrature grid is nested.
Lastly, in situations where statistical fluctuations are lo-
calized, the statistical variation of the corrections between
successive spatial refinement levels can be used to inform
adaptive mesh refinement strategies.

The remainder of this paper is structured as follows. Sec-
tion 2, In section 3 we outline how multilevel methods
can be modified to reduce the overall computational cost
of sampling based parameter estimation, without compro-
mising on the accuracy. In Section 4, we then demonstrate
the workings of the algorithm by means of a numerical
example.

2. STOCHASTIC SAMPLING METHODS

The type of sampling scheme used is usually determined by
factors such as the stochastic dimension N , the complexity
of the underlying parameter space, and the regularity of v
as a function of y.

Monte Carlo methods, well-known for their robustness
with respect to stochastic dimension and regularity, nev-
ertheless have the notoriously slow convergence rate of
O(η−

1
2 ). Quasi Monte Carlo sampling schemes exhibit

the stronger convergence rate of O(η−1 log(η)N ) (see Kuo
(2012a)), which deteriorates, however, as the stochas-
tic dimension grows. For integrands that depend rel-
atively smoothly on the underlying random vector y,
interpolation-based quadrature methods, such as sparse
grid stochastic collocation, have shown to yield con-
siderably higher convergence rates than the aforemen-
tioned schemes (see Nobile (2008)). For problem (1), such
smoothness can be determined a priori, based on that of
the input parameter q. These smoothness requirements
can, however also be partially circumvented in moderate
stochastic dimensions N , by using interpolants with local
support, instead of polynomials.

Throughout this paper, we make use of sparse grid stochas-
tic collocation, based on Clenshaw-Curtis grids. These
grids have the additional benefit of being nested, so that
high order stochastic interpolants can be constructed hi-
erarchically from lower order ones.

For distributed parameter systems such as (1), the compu-
tation of the statistical quantity of interest Q requires not
only the approximation of the integral in (2), but often also
the spatial estimation vh(y) of sample paths v. Here, we
make use of the standard finite element space of piecewise
polynomials based on a regular triangulation Th of D with
maximum mesh spacing parameter h = maxτ∈Th diam(τ).

The two predominant sources of error in the estimation
of Q are therefore the spatial error, that results from

the numerical approximation v
(i)
h of each sample path v(i)

and depends on the mesh spacing parameter h, and the
sampling error, that results from the quadrature approx-
imation of the integral (2) and depends on the sample
size η. In fact, denoting the resulting estimate of Q by
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Q̂η,h := Iη[vh], we can decompose the total approximation
error into two parts, i.e.

‖Q− Q̂η,h‖ =‖E[v]− E[vh] + E[vh]− Iη[uh]‖
≤‖E[v − vh]‖+ ‖E[vh]− Iη[vh]‖, (3)

where ‖ · ‖ is the norm with which the discrepancy in the
statistical quantity of interest is measured.

2.1 Improving the Efficiency of Sampling Methods through
Multilevel Sampling

A convenient measure of the efficiency of a sampling
method is given by its ε-cost Cε, the computational cost

needed to obtain an overall error of order ε. Let C(v(i)
h )

be the computational cost of generating each sample path

v
(i)
h . Under the assumption that it is more or less the

same for all paths, depending only on the underlying mesh

spacing parameter, i.e. C(v(i)
h ) = Ch for all i = 1, ..., η,

we can determine the total computational cost through

C(Q̂η,h) = ηCh. This expression, together with the overall
error estimate (3), imply that an accurate approximation

Q̂η,h of Q requires a large number of samples, each of
which should be generated on a fine mesh, leading to a
considerable computational overhead, depending on the
extent to which Ch increases as h→ 0+.

Multilevel sampling schemes aim to reduce the ε-cost
through the use of a hierarchy of spatial refinement levels,

by generating the bulk of the sample paths v
(i)
h cheaply on

coarser meshes while sampling more sparingly at higher
refinement levels. Originally developed as a variance reduc-
tion algorithm for Monte Carlo sampling (Cliffe (2011)),
it has since been shown for both quasi Monte Carlo- (Kuo
(2012b)) and stochastic collocation methods (van Wyk
(2013)), that it is possible to coordinate the sample size
with the spatial refinement so as to considerably reduce
the ε-cost, while maintaining the same level of accuracy.

3. MULTILEVEL SAMPLING METHODS FOR
PARAMETER IDENTIFICATION

Let v(x, y) = G(q) be a random field whose stochastic
integral yields a desired statistical quantity of interest Q
related to the distribution of q. We are then interested in
approximating an integral of the form (2).

Let {h`}L`=0 be a sequence of spatial discretization param-
eters giving an increasing level of accuracy, where hL is
chosen such that

‖E[v − vhL
]‖W ≤

ε

2
.

We can now write sample paths of this fine-scale approxi-
mation vhL

of v as the sum

vhL
= vh0

+

L∑
`=1

(vh`
− vh`−1

) =:

L∑
`=0

4v`, where

4v` :=

{
vh0

if ` = 0
vh`
− vh`−1

if ` > 0

The expected value, E[vhL
] can then be expanded to

E[vhL
] =

L∑
`=0

E[4v`],

a sum which in turn may be estimated by a sum of
numerical integrals of the form

Q̂{η`},{h`} :=

L∑
`=0

Iη` [4v`]

where the sample sizes η` may be chosen separately for
each spatial refinement level `. If it is possible to choose
η0, ..., ηL so that the bulk of the sample paths are com-
puted cheaply at the lower refinement levels whereas those
at higher refinement levels are sampled sparingly, while
maintaining an overall error within tolerance,

As before, the total error splits into a spatial error and a
multilevel sampling error. Indeed,

‖Q− Q̂{η`},{h`}‖

=

∥∥∥∥∥E[v]− E[vhL
] +

L∑
`=0

(E[4v`]− Iη` [4v`])

∥∥∥∥∥
≤‖E[v − vhL

]‖+

L∑
`=0

‖E[4v`]− Iη` [4v`]‖ . (4)

Moreover, under the assumptions made earlier concerning
the computational cost, the overall computational cost

C(Q̂{η`},{h`}) of generating a multilevel estimate takes the
form of the sum

C(Q̂{η`},{h`}) =

L∑
`=0

η`Ch`
. (5)

3.1 The Optimal Allocation Sub-problem

In light of (4) and (5), the optimal choice of sample sizes
η0, ..., ηL can now be formulated as the discrete constrained
optimization problem

min
η0,η1,...,ηL

L∑
`=0

η`Ch`

subject to
L∑
`=0

‖E[4v`]− Iη` [4v`]‖ ≤
ε

2

(6)

For Monte Carlo sampling, the multilevel sampling error
can readily be seen to satisfy

‖Q− Q̂{η`},{h`}‖
2 =

L∑
`=0

η−1
` var(4v`),

where var(·) denotes the variance. Consequently, explicit
formulae can be derived for the sample sizes {η`}L`=0.

For stochastic collocation methods such explicit upper
bounds are, however, more difficult to obtain. Even for
the stochastic forward problem for which the model output
depends smoothly on y and the error can be shown to have
the form

‖E[vh]− Iη[vh]‖ ≤ cη−µ2 log(η)µ1ϕ(vh), (7)

where the constants c, µ1, µ2 > 0 and ϕ(·) is a non-negative
functional loosely related to the ‘size’ of the integrand, the
precise convergence rates must be estimated.

If stochastic collocation is used and the smoothness of
v cannot be verified a priori, as in the case of inverse
sampling, or if the sampling strategy has no useful a
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priori error bound, such as adaptive sampling methods, no
explicit formulae exist and the convergence rate, as well as
the solution to the optimal allocation sub-problem, must
be approximated numerically. In our numerical examples,
we calculate the relative sampling error of estimates com-
puted on successive stochastic grids, and approximate the
corresponding log-log plot of sample size versus relative
sampling error by a piecewise linear interpolant. We then
estimate the minimizer of problem (6) by means of an
active set method.

For sampling schemes based on interpolatory numerical
quadrature, there are additional constraints as to the
precise values of the sample sizes that are admissible. In
this case additional binning of the sample sizes may be
necessary, which potentially decreases the efficiency of the
algorithm. This can be partially mitigated by sorting the
levels according to the computational work required for
each unit of error and refining until the sample error is
below tolerance.

3.2 The Multilevel Algorithm

A practical implementation of the multilevel sampling
method is outlined in Algorithm 3.2. Given an initial
coarse mesh T0 and error tolerance ε > 0, we compute

a single-level estimate Q̂η,h of Q and use it to estimate
the relative sampling error. We then proceed to refine the
mesh until the spatial error, estimated here by comparing
approximations on successive meshes, is within tolerance.
After each mesh refinement, we re-compute the optimal
sample sizes η0, ..., ηL as minimizers of (6) and adjust the

multilevel estimate Q̂{η`},{h`} when necessary. Note that
for Monte Carlo sampling, each new sample path of the

correction term 4v(i)
` must be independent. We therefore

need to generate two new sample paths, one at the present-
and one at the previous spatial refinement level. For sparse
grid stochastic collocation methods based on nested grids
on the other hand, sample paths can be re-used.

Input: ε, h0.

Output: Multilevel estimate Q̂{η`},{h`} of Q
while espace

L > ε
2 do

L← L+ 1;
Refine grid at new discretization level hL;
Determine optimal sample sizes {η0, ..., ηL};
Generate samples

{
4v(i)

`

}η`
i=1

for ` = 0, ..., L;

Update the multilevel estimate Q̂{η`},{h`}
end while

Algorithm 1. The basic multilevel sampling algorithm

Note that both the spatial- and sampling errors are not
available and must be estimated, using successive relative
differences for instance.

3.3 Spatial Adaptivity

In cases where the statistical quantity of interest Q is spa-
tially varying, the statistical distribution of the correction
terms 4v` can be used to assess the spatial distribution
of the sampling error. Refinement should thus occur in
regions where the variation in 4v`, i.e. the discrepancy

between successive estimates, is large. In our numerical
example, we compute spatial averages of the variance of
the correction terms over each element and compare these
values to the overall spatial average. In an effort to equili-
brate the variance over the entire region, we then subdivide
elements in which the variance exceeds a predetermined
fraction of the overall average, all the while ensuring that
there are no hanging nodes or skinny triangles.

4. NUMERICAL EXAMPLE

In this section, we demonstrate the use of multilevel
sampling in a parameter identification problem in which
the parameter’s stochastic variability is restricted to a
fixed region of the domain. Consider the second order
elliptic equation (1) defined on the region D = [0, 1]2, with
discontinuous conductivity coefficient q

q(x, r) =

{
2, if |x| ≤ r
1, if |x| > r,

where the radius r varies randomly with 5(r − 0.75) ∼
Beta(2, 5) and |x| denotes the euclidean norm. The sta-
tistical distribution of the transition boundary is given
in Figure 1. We generate samples of û by solving the
stochastic forward problem on a coarse mesh an adding
random noise whose magnitude is about 5% of the norm
‖E[û]‖. We are interested in estimating the expected value
of q. Other statistical quantities can also be estimated.

Fig. 1. Distribution of the transition boundary

Throughout the multilevel sampling procedure, we refine
adaptively by equilibrating the variance of the correction
terms over the entire spatial domain, as discussed in
Subsection 3.3. The resulting meshes are shown in Figure
2. As expected, the mesh is fine over the subregion in which
the discontinuity of diffusion coefficient q can lie.

Figure 3 shows the improvement in the estimates of the
expected value E[q] of q for successive levels of spatial
refinement. The top row represents the estimates them-
selves, while the bottom row depicts the correction terms,
or improvement of the current estimate over the previous
one. Not only do the magnitudes of successive correction
terms decrease, but they also become more concentrated
in certain parts of the domain.

Figure 4 shows the estimated spatial- as well as sampling
errors. For this problem, the spatial error seems much
harder to resolve than the sampling error. Indeed, a sample
size of only 17 is sufficient to achieve an approximate
sampling error within tolerance, while 5 levels of spa-
tial refinement are necessary for the spatial error. As a
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L = 1 L = 2 L = 3

L = 4 L = 5

Fig. 2. Mesh at successive levels of spatial refinement

Fig. 3. Estimates of the mean of q, for increasing levels
spatial refinement (top row) and correction terms
(bottom row).

consequence, most computational effort is expended on
the finest refinement levels, where the cost per solve is
considerable, as shown in Figure 5. Nevertheless, the total
computational effort spent by the multilevel algorithm
amounts to 968.7573 while the single level sample with the
same accuracy has a total computational cost of 2046.4.
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Fig. 5. The cpu time required to generate a single sample
path at each refinement level (left) and the total
computational time spent on each refinement level
(right).

5. CONCLUSION

In this paper, we have shown how multilevel sampling can
be used to estimate the statistical variation of uncertain,
spatially distributed parameters, based on a statistical de-
scription of the related model output. Since such statistical
inverse problems are generally ill-posed, the regularity of
q as a function of y is not easily determined and adaptive
sampling methods may be necessary.
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