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Abstract: This paper addresses overnight blood glucose stabilization in people with type 1
diabetes using a Model Predictive Controller (MPC). We use a control strategy based on
an adaptive ARMAX model in which we use a Recursive Extended Least Squares (RELS)
method to estimate parameters of the stochastic part. We compare this model structure with
an autoregressive integrated moving average with exogenous input (ARIMAX) structure, and
with an autoregressive moving average with exogenous input (ARMAX) model, i.e. without
an integrator. Additionally, safety layers improve the controller robustness and reduce the risk
of hypoglycemia. We test our control strategies on a virtual clinic of 100 randomly generated
patients with a representative inter-subject variability. This virtual clinic is based on the Hovorka
model. We consider the case where only half of the meal bolus is administered at mealtime, and
the case where the insulin sensitivity varies during the night. The simulation results demonstrate
that the adaptive control strategy can reduce the risks of hypoglycemia and hyperglycemia
during the night.

1. INTRODUCTION

Type 1 diabetes is a metabolic disease characterized by
a destruction of the insulin-producing β-cells in the pan-
creas. Therefore, patients with type 1 diabetes need ex-
ogenous insulin administration in order to avoid serious
damage or health issues. However, the dosage of insulin
must be done carefully. An insulin overdose may lead
to low blood glucose (hypoglycemia). Hypoglycemia has
immediate effects, such as seizures, coma or even death.
In contrast, prolonged periods of too high blood glucose
(hyperglycemia) has long-term clinical complications, such
as blindness, nerve diseases or kidney diseases.

The conventional insulin therapy for people with type 1
diabetes consists of the injection of slow acting insulin
once a day and rapid acting insulin several times per day,
usually before mealtimes. The slow acting insulin is used
to counteract the continuous glucose production from the
liver. The rapid acting insulin compensates the intake of
carbohydrates (CHO) during the meals. The decision on
the amount of short and fast acting insulin is based on
several blood glucose measurements per day.

An increasing number of patients with type 1 diabetes
use an intensive and technologically advance therapy ap-
proach based on continuous glucose monitors (CGMs) and
continuous subcutaneous insulin infusion (CSII) pumps
instead of the conventional therapy described above. This
approach can reduce the risk of complications significantly.
CGMs provide more frequent subcutaneous (sc) glucose
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Fig. 1. Closed-loop glucose control. Glucose is measured
subcutaneously using a continuous glucose monitor
(CGM). Insulin is dosed by an insulin pump.

measurements. In addition, insulin pumps can be adjusted
to daily variations in insulin needs.

Closed-loop control of blood glucose, also known as the
artificial pancreas (AP) has the potential to ease the life
and reduce the burden and complications for people with
type 1 diabetes. An AP consists of a CGM, a control
algorithm and a CSII pump. Fig. 1 illustrates the principle
of an AP. Model Predictive Control (MPC) is one of the
most commonly used methods for the AP (Cobelli et al.,
2009). The main advantages of MPC are the ability to
handle constraints both on input and output variables in
a systematic way. Prototypes of AP using MPC have been
successfully tested in clinical studies (Hovorka et al., 2010;
Schmidt et al., 2013).

In this paper, we describe an AP using a CGM for glucose
feedback, an insulin pump and a control algorithm based
on MPC. The considered control strategy requires a priori
available patient information for computing a subject-
specific set of parameters. We discuss three different model
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Table 1. Parameters for the CGM model ex-
tracted from Breton and Kovatchev (2008).

Parameter Value

τsub 15 min
λ 15.96
ξ -5.471
δ 1.6898
γ -0.5444

structures for the stochastic part. The first one is an
autoregressive integrated moving average with exogenous
input (ARIMAX) structure. The second one is an autore-
gressive moving average with exogenous input (ARMAX)
model, i.e. without integrator. The third one is an adaptive
ARMAX model in which we use a Recursive Extended
Least Square (RELS) method to estimate parameters of
the stochastic part (i.e. the MA part). The controller is
tested on a cohort of 100 virtual patients.

2. PHYSIOLOGICAL MODELS FOR PEOPLE WITH
TYPE 1 DIABETES

In this paper, we use the Hovorka model to simulate people
with type 1 diabetes. Using the parameters and distribu-
tions provided in Hovorka et al. (2002) and Wilinska et al.
(2010), we generate a cohort of 100 virtual patients.

In addition, we use a CGM for glucose feedback in our con-
troller setup. For the numerical simulations, we generate
noisy CGM data based on the model and the parameters
determined by Breton and Kovatchev (2008). This model
consists of two parts. The first part describes the glucose
transport from blood to interstitial tissues, which is

dGsub

dt
=

1

τsub
(G(t)−Gsub(t)) (1)

Gsub(t) is the subcutaneous glucose and G(t) is the blood
glucose. The time constant τsub is associated to glucose
transport from blood to subcutaneous tissues.

The second part models non-Gaussian sensor noise. It is
given by

ek = 0.7(ek−1 + vk), k > 0 (2)

vk ∼ Niid(0, 1) (3)

ηk = ξ + λ sinh

(
ek − γ
δ

)
(4)

with the initial condition e0 ∼ Niid(0, 1).

The glucose value returned by the CGM is

GCGM (tk) = Gsub(tk) + ηk (5)

The numerical values used in this paper for τsub, λ, ξ, δ
and γ are shown in Table 1.

3. MODELING OF GLUCOSE-INSULIN DYNAMICS

In this section, we derive a prediction model for subcu-
taneous glucose, y(t). The model has a deterministic part
describing the effect of sc. injected insulin, u(t), and a
stochastic part describing the effect of other unknown
factors. This model identification technique turns out to
give a good compromise between data requirements, per-
formance and robustness of the resulting controller.
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Fig. 2. Impulse responses for a second order model and
the nonlinear Hovorka model. The bolus size is 0.1U
and the parameters for the second order model are:
τ=4 hours and ISF = 0.4 mmol/L/0.1 U = 4.0
mmol/L/U.

3.1 Choice of the deterministic model

The physiological models listed in Section 2 contain a large
number of parameters, and Pillonetto et al. (2003) estab-
lished that even the minimal model developed by Bergman
et al. (1981) may be difficult to identify. To overcome this
issue, we use a low-order linear model to describe the
glucose-insulin dynamics. Similar approaches have been
investigated previously. Kirchsteiger et al. (2011) used
a third order transfer function with an integrator, van
Heusden et al. (2012) used a third order discrete transfer
function model and Percival et al. (2010) applied a first
order transfer function with a time delay. In this paper we
use a continuous-time second order transfer function

G(s) =
Y (s)

U(s)
=

Ku

(τs+ 1)2
(6)

to model the effect of sc injected insulin on sc glucose. The
gain, Ku, and the time constant, τ , are computed from
known subject-specific parameters; the insulin action time
and the insulin sensitivity factor (ISF).

The insulin action time and the insulin sensitivity factor
are related to the response of blood glucose to an insulin
bolus. If we assume that blood glucose is approximately
identical to sc glucose, this is the impulse response of (6).
The insulin action time is the time for blood glucose to
reach its minimum. The ISF corresponds to the maximum
decrease in blood glucose per unit of insulin bolus. These
parameters are empirically estimated by the patient and
his/her physician. They may vary from day to day for a
given patient but gives an estimate of the effect of insulin
on blood glucose and sc glucose.

Fig 2 depicts the impulse response for a virtual patient
with type 1 diabetes and its second order approximation
(6). This patient is simulated using the model developed
by Hovorka et al. (2004). The figure demonstrates that a
second order model provides an acceptable approximation
of a virtual patient with type 1 diabetes.

In the temporal domain, the impulse response of (6) is
described by

y(t) = Ku
t

τ2
exp(−t/τ) (7)
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The insulin action time corresponds to the time to reach
the minimum blood glucose. Consequently, this insulin
action time is equal to τ . We determine Ku using (7) and
the fact that the insulin sensitivity factor is equal to the
minimal blood glucose (sc glucose), y(τ) = −ISF , such
that

Ku = −τ exp(1)ISF (8)
We discretize the transfer function (6) in the form

y(t) =
B(q−1)

A(q−1)
u(t) (9)

The sampling time is 5 minutes.

4. STOCHASTIC MODEL

We take into account the process and measurement noise
by adding a term describing the effect of unknown factors
to the discrete-time model (9). We assume the model
describing the glucose-insulin dynamics to be in the form

A(q−1)y(t) = B(q−1)u(t) +
C(q−1)

D(q−1)
ε(t) (10)

The model (10) has a deterministic part describing the
effects of insulin injections u(t) and a stochastic part. We
assume either D(q−1) = 1 − q−1, which turns the model
(10) into an ARIMAX model or D(q−1) = 1, which turns
the model (10) into an ARMAX model.

In this section we propose and discuss three different
choices for the stochastic model in (10). The two first
choices estimate the C(q−1) based on the data from a
previous clinical study, while the last method estimate
it recursively using a Recursive Extended Least Squares
(RELS) algorithm.

4.1 ARIMAX modeling

The stochastic part, C(q−1), of the ARIMAX model

A(q−1)y(t) = B(q−1)u(t) +
C(q−1)

1− q−1
ε(t) (11)

is assumed to be a third order polynomial of the form

C(q−1) = 1 + c1q
−1 + c2q

−2 + c3q
−3

= (1− αq−1)(1− β1q−1)(1− β2q−1)
(12)

α = 0.99 is a fixed parameter. α has been determined
based on performance studies of the resulting MPC. The
choice of α is discussed in Huusom et al. (2012). β1 and
β2 are determined from clinical data for one real patient
(Duun-Henriksen et al., 2012; Boiroux et al., 2012). They
are β1,2 = 0.81± 0.16i.

The main drawback of this specification is the model-plant
mismatch. However, this model-plant mismatch enables to
have offset free control in the resulting predictive control
system.

4.2 ARMAX modeling

The stochastic part, C(q−1), of the ARMAX model

A(q−1)y(t) = B(q−1)u(t) + C(q−1)ε(t) (13)

is now assumed to be a second order polynomial of the
form

C(q−1) = 1 + c1q
−1 + c2q

−2

= (1− β1q−1)(1− β2q−1)
(14)

We use the same procedure as in Section 4.1 for computing
β1 and β2, i.e. β1,2 = 0.81± 0.16i. This yields

C(q−1) = 1− 1.62q−1 + 0.68q−2 (15)

Unlike the ARIMAX model structure described in Sec-
tion 4.1, this model structure does not ensure offset-free
control. On the other hand, it does not introduce a sup-
plementary model-plant mismatch.

4.3 Adaptive control

Here, we consider again the ARMAX model structure (13).
A similar approach has been proposed by Eren-Oruklu
et al. (2009).

The parameters c1 and c2 are estimated at each iteration
using the RELS method

εk = yk − φ′kθ̂k|k−1 (16a)

Kk =
Pk−1φk

µ+ φ′kPk−1φk
(16b)

θ̂k+1|k = θ̂k|k−1 +Kk

(
yk − φ′kθ̂k|k−1

)
(16c)

Pk =
1

µ

(
Pk−1 −

Pk−1φkφ
′
kPk−1

µ+ φ′kPk−1φk

)
(16d)

φk is a vector of past observations

φk = [yk−1 yk−2 uk−1 uk−2 εk−1 εk−2] (17)

θk is a vector of model parameters

θk = [−a1 −a2 b1 b2 c1 c2]
′

(18)

Pk is the model parameters covariance matrix. Since we
want to estimate c1 and c2 only, we initialize it with

P0 = diag(0, 0, 0, 0, 100, 100) (19)

Finally, µ is the forgetting factor. This parameter has an
influence on the weight of previous observations. When
µ = 1, all the past observations are equally weighted.
Smaller values of µ give more importance to recent ob-
servations. In this paper, we chose µ = 0.95, i.e. the
corresponding memory length is approximately 1/(1 −
0.95) = 20 time samples, or 100 minutes. This model
structure allows for a personalized and localized stochastic
model description.

4.4 Realization and predictions

The ARIMAX model (11) and the ARMAX model (13)
may be represented as a discrete-time state space model
in innovation form

xk+1 = Axk +Buk +Kεk (20a)

yk = Cxk + εk (20b)

The observer canonical realization for the ARMAX model
(13) is

A =

[
−a1 1
−a2 0

]
; B =

[
b1
b2

]
; K =

[
c1 − a1
c2 − a2

]
C = [1 0]

and the observer canonical realization for the ARIMAX
model (11) is

A =

[
1− a1 1 0
a1 − a2 0 1
a2 0 0

]
B =

[
b1

b2 − b1
−b2

]
K =

[
c1 + 1− a1
c2 + a1 − a2
c3 + a2

]
C = [1 0 0]
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The innovation of (20) is

εk = yk − Cx̂k|k−1 (21)

and the corresponding predictions are (Jørgensen et al.,
2011)

x̂k+1|k = Ax̂k|k−1 +Bûk|k +Kεk (22a)

x̂k+1+j|k = Ax̂k+j|k +Bûk+j|k, j = 1, . . . , N − 1 (22b)

ŷk+j|k = Cx̂k+j|k, j = 1, . . . , N (22c)

The innovation (21) and the predictions (22) constitute
the feedback and the predictions in the model predictive
controller.

5. MODEL PREDICTIVE CONTROL

Control algorithms for glucose regulation in people with
type 1 diabetes must be able to handle intra- and inter-
patient variability. In addition, the controller must ad-
minister insulin in a safe way to minimize the risk of
hypoglycemia. Due to the nonlinearity in the glucose-
insulin interaction, the risk of hypoglycemic episodes as
consequence of too much insulin is particularly prominent.

In this section we describe an MPC formulation with soft
output constraints and hard input constraints. This for-
mulation is based on the individualized prediction model
for glucose computed in Section 4.2. Along with other
features, we introduce a modified time-varying reference
signal to robustify the controller and mitigate the effect of
glucose-insulin nonlinearities and model-plant mismatch
in the controller action.

The MPC algorithm computes the insulin dose by solution
of an open-loop optimal control problem. Only the control
action corresponding to the first sample interval is imple-
mented and the process is repeated at the next sample
interval. This is called a moving horizon implementation.
The innovation (21) provides feedback from the CGM, yk,
and the open-loop optimal control problem solved in each
sample interval is the convex quadratic program

min
{ûk+j|k,v̂k+j+1|k}N−1

j=0

φ (23a)

s.t. (22) (23b)

umin ≤ ûk+j|k ≤ umax (23c)

ŷk+j+1|k ≥ ymin − v̂k+j+1|k (23d)

v̂k+j+1|k ≥ 0 (23e)

with the objective function φ defined as

φ =
1

2

N−1∑
j=0

‖ŷk+j+1|k − r̂k+j+1|k‖22

+ λ‖∆ûk+j|k‖22 + κ‖v̂k+j+1|k‖22

(24)

N is the control and prediction horizon. We choose a
prediction horizon equivalent to 10 hours, such that the
insulin profile of the finite horizon optimal control prob-
lem (23) is similar to the insulin profile of the infinite
horizon optimal control problem, (23) with N → ∞.
‖ŷk+j+1|k − r̂k+j+1|k‖22 penalizes glucose deviation from
the time-varying glucose setpoint and aims to drive the
glucose concentration to 6 mmol/L. λ‖∆uk+j|k‖22 is a
regularization term that prevents the insulin infusion rate
from varying too aggressively. For the simulations, we set
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Fig. 3. The penalty function ρ = ‖y − r‖22 + κ‖min{y −
ymin, 0}‖22.

λ = 100/u2ss. The soft output constraint (23d) penalizes
glucose values below 4 mmol/L. Since hypoglycemia is
highly undesirable, we choose the weight on the soft output
constraint to be rather high, i.e. κ = 100. The penalty
function profile is illustrated in Fig. 3.

To prevent model-plant mismatch, we modify the maximal
allowable insulin injection, umax, and let it depend on the
current glucose concentration. If the glucose concentration
is low (below the target of 6 mmol/L), we prevent the
controller from taking future hyperglycemia into account
by restricting the maximal insulin injection. If the glucose
concentration is high (4 mmol/L above the target) we
increase the maximal allowable insulin injection rate. In
the range 0 - 4 mmol/L above target we allow the con-
troller to double the basal insulin injection rate. These
considerations lead to

umax =


1.5uss 4 ≤ yk ≤ ∞
uss 0 ≤ yk ≤ 4

0.5uss −∞ ≤ yk ≤ 0

(25)

in which uss is the basal insulin injection rate. Due to
pump restrictions, the minimum insulin injection rate,
umin, is a low value but not exactly zero.

Garcia-Gabin et al. (2008) and Eren-Oruklu et al. (2009)
use a time-varying glucose reference signal to robustify the
controller and reduce the risk of hypoglycemic events. In
this paper, we use an asymmetric time-varying glucose
reference signal. The idea of the asymmetric reference
signal is to induce safe insulin injections in hyperglycemic
periods and fast recovery in hypoglycemic and below
target periods.

The asymmetric time-varying setpoint is given by

r̂k+j|k(t) =

{
yk exp

(
−tj/τ+r

)
yk ≥ 0

yk exp
(
−tj/τ−r

)
yk < 0

(26)

Since we want to avoid hypoglycemia, we make the con-
troller react more aggressively if the blood glucose level is
below 6 mmol/L, so we choose τ−r = 15 min and τ+r = 90
min.

6. COMPARISON BETWEEN ARIMAX, ARMAX
AND ADAPTIVE ARMAX MODEL STRUCTURES

In this section we compare three different versions of our
Model Predictive Controller on a cohort of 100 virtual
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Table 2. Evaluation of the controller for the dif-
ferent control strategies in the case where only
50% of the meal bolus is administered at meal-
time. The numbers show the total percentage
of time spent in different glucose ranges for the
100 virtual patients during the period 22:00 -

08:00.

Glucose (mmol/L) ARIMAX ARMAX Adaptive ARMAX

G > 10 17.8 23.9 20.8
G > 8 31.6 58.1 42.2
3.9 ≤ G ≤ 10 82.1 76.1 79.2
3.9 ≤ G ≤ 8 68.3 41.9 57.8
G < 3.9 0.1 0 0
G < 3.5 0 0 0

patients. These three versions are the ARIMAX formu-
lation presented in Section 4.1, the ARMAX formulation
presented in Section 4.2 and the adaptive ARMAX model
formulation presented in Section 4.3. We compare the
performance of the controllers for the case where the meal
is underbolused and the case where the insulin sensitivity
is increased by 30% during the night. The change in insulin
sensitivity is simulated by a step change in the insulin
sensitivity parameters of the Hovorka model.

The MPC is individualized using the insulin basal rate
(uss), the insulin sensitivity factor (ISF), and the insulin
action time for each individual patient. In the virtual clinic
these numbers are computed from an impulse response
starting at a steady state. The meal boluses are determined
using a bolus calculator similar to the one presented in
Boiroux et al. (2011). The glucose level is provided to the
controller every 5 minutes by a noise-corrupted CGM. The
pump insulin infusion rate is changed every 5 minutes.

The clinical protocol for the 100 in silico patients is:

• The patient arrives at the clinic at 17:00. The Kalman
filter (22) is activated.
• The patient gets a 75 g CHO dinner and an insulin

bolus at 18:00.
• The closed loop starts at 22:00. In addition to the

Kalman filter, the MPC is activated.
• The patient gets a 60 g CHO breakfast and an insulin

bolus at 08:00. The controller is switched off.

6.1 Underbolused meal

Fig. 4 shows the Control Variability Grid Analysis
(CVGA) plot for the three different strategies in the case
where only 50% of the meal bolus is administered at
mealtime. The control strategy based on an ARIMAX
model shows several cases of mild hypoglycemia due to
an insulin overdose. The two control strategies based on
an ARMAX model are able to avoid this undershoot.

Table 2 shows the time spent in the euglycemic range,
hypoglycemia and hyperglycemia for the three different
strategies in the case where only 50% of the meal bolus is
administered at mealtime. The results show that the con-
trol strategy based on an ARIMAX model structure reduce
the time spent in hyperglycemia. The adaptive ARMAX
model structure shows the best compromise between the
time spent in euglycemia and safety concerning the risk of
insulin overdose.
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Fig. 4. Control Variability Grid Analysis (CVGA) plot for
the three different stochastic model structures. 50%
of the meal bolus is administered at mealtime. Black:
ARIMAX. Red: ARMAX. White: Adaptive ARMAX.
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Fig. 5. Control Variability Grid Analysis (CVGA) plot for
the three different stochastic model structures in the
case where the insulin sensitivity is increased by 30%
during the night. Black: ARIMAX. Red: ARMAX.
White: Adaptive ARMAX.

6.2 Change in insulin sensitivity

Fig. 5 shows the CVGA plot for the three different strate-
gies for the case where the insulin sensitivity is increased
by 30% during the night. Table 3 shows the time spent
in the euglycemic range, hypoglycemia and hyperglycemia
for the three different strategies in the case where the in-
sulin sensitivity is increased by 30% during the night. The
control strategies based on an ARMAX model structure,
i.e. the controllers without the integrator, reduces the oc-
currences of hypoglycemia, and avoid severe hypoglycemia
(i.e. glucose values below 3.5 mmol/L).

7. CONCLUSION

This paper presents subject-specific control strategies de-
signed for overnight stabilization of blood glucose in people
with type 1 diabetes. This controller is tested on 100 vir-
tual patients with a representative parameter distribution,
where we simulate an underbolused meal or an insulin
sensitivity variation. The choice of the model structure for
the stochastic part is a tradeoff between offset-free control
and model-plant mismatch. In our case, the ARMAX and
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Table 3. Evaluation of the controller for the
different control strategies in the case where
the insulin sensitivity is increased by 30%
during the night. The numbers show the total
percentage of time spent in different glucose
ranges for the 100 virtual patients during the

period 22:00 - 08:00.

Glucose (mmol/L) ARIMAX ARMAX Adaptive ARMAX

G > 10 <0.1 <0.1 <0.1
G > 8 3.2 2.5 2.2
3.9 ≤ G ≤ 10 99.1 99.4 99.7
3.9 ≤ G ≤ 8 95.9 96.9 97.5
G < 3.9 0.9 0.6 0.3
G < 3.5 0.2 0 0

the adaptive ARMAX formulations presented in this paper
have the potential to improve the controller performance,
but the method would need a further investigation before
being tested on real patients.
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