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1. INTRODUCTION

Switched systems consist of a finite number of subsystems.
And there are logical rules that orchestrate switching
between these subsystems. Such systems are common
across a diverse range of application areas. For example,
switched systems modeling plays a major role in the field
of power systems where interactions between continuous
dynamics and discrete events are an intrinsic part of power
system dynamic behavior. An important problem among
researches on switched systems is stability and consensus.
And it has been widely studied in the past decades (see
Serres et al.(2011), Amato et al.(2001), Mitra et al.(2001),
Zhao et al.(2012), Xie et al.(2009), and references therein).
For example, Serres et al.(2011) investigates sufficient
conditions for the convergence to zero of the trajectories
of linear switched systems. sufficient conditions for the
convergence to zero of the trajectories of linear switched
systems are investigated in Serres et al.(2011). And a
collection of results that use weak dwell-time, dwell-time,
strong dwell-time, permanent and persistent activation
hypothesis are provided. Amato et al.(2001) addresses
the issue of structural stability results of switched linear
systems and provide sufficient and non-conservative results
for stability of such systems. Mitra et al.(2001) addresses
the issue of structural stability results of switched linear
systems and provide sufficient and non-conservative results
for stability of such systems. The stability and stabilization
problems for a class of switched linear systems with mode-
dependent average dwell time are investigated by Zhao
et al.(2012).

⋆ This work was supported by the National Natural Science Foun-
dation of China (No. 61174041).

However, a common assumption in most existing liter-
atures except Xie et al.(2009), Ji et al.(2007), and Xie
et al.(2008) is that the detection of the switching signal is
instantaneous. And as pointed out in Xie et al.(2009) and
Xie et al.(2008), in many real switched systems, the switch
signal is created by some unknown or non-deterministic
function (called a switch stimulus), for example, unknown
abrupt phenomena such as component and interconnection
failures. The changing of switching signal may not be
detected instantaneously, but only after a time period.
All the above results become ineffective in such a case.
But one fundamental assumption of Ji et al.(2007) and
Xie et al.(2008) is that the time delay in the switching
detection is available. The results in these papers may
become not feasible sometimes because of uncertain time
delay. And in this paper, we consider the problem of
design a feedback controller for the linear switched systems
consisting of controllable and uncontrollable subsystems
with stochastic switch signal and time delay in detection.

It is very important to note that the influence on system
stability produced by stochastic switch signals and uncon-
trollable subsystems is also included in our consideration
here. Both when the switch stimulus will produce another
switch signal and which subsystem the system will switch
to may be unknown. And it is noted that in our model
the system may not switch to another subsystem after
receiving a switch signal. This is very different from the
assumptions in the existing literature. The reason for
considering such situation is that in many real switched
systems it is indeed universal. For example, the switch
signals may be not strong enough to influence the system.
And in many cases such pseudo switch signals are also
included in statistical data such as statistic of time inter-
vals between consecutive signals from the switch stimulus.
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Since our controller design is based on statistical data,
it is necessary to consider such situation. In addition,
uncontrollable subsystem is also included in our model.
The reason for considering unstable subsystems is theo-
retical as well as the fact that uncontrollable subsystems
cannot be avoided in many applications. The fact that for
uncontrollable subsystems, there does not exist a feedback
gain such that the closed-loop system is Hurwitz stable
leads to the difficulty in controller design. And a common
assumption in most of the existing literature expect Zhai
et al.(2000) is that all the subsystems are controllable.
But unlike the problem in Zhai et al.(2000), it is difficult
to analyze the problem here via the well known and widely
used average dwell time approach since the switch signal
is stochastic and the activation time period ration of any
subsystems is uncertain.

When analyzing the stability of switched systems, the most
general way is to analyze the state norms or the Lyapunov
functions (see Serres et al.(2011), Mitra et al.(2001),
Zhai et al.(2000), Zhao et al.(2012), Xie et al.(2009),
and references therein). However, it is difficult to analyze
the state norms, nor the Lyapunov functions since the
stochastic switch signal and uncertain time delay lead
to the uncertain system state, meanwhile the existence
of uncontrollable subsystems leads to the difficulty in
utilizing the Lyapunov functions. Here, we analyze the
expectations of system state norms instead since we note
that when dealing with practical problems, empirical data
such as statistical data are always available. And in this
paper, we consider to develop our feedback controller
based on some statistical data. Here, we need to know the
expectation of the time delay, expectations of switching
durations and the probabilities that the system switches
to each subsystems and it does not switch. All these data
are available when dealing with many practical problems.
By utilizing these data, we consider to develop a feedback
controller that guarantees the grow rates of the state norm
expectation is less than 1 after a switching duration. Then
the expectation of state norm will convergent. And because
there exist time delays in detection, our controller is also a
nonsynchronized feedback controller. It is obvious that we
need to develop feedback gains via different methods for
controllable uncontrollable subsystems. For controllable
subsystems, by choosing appropriate gains, the closed-
loop systems can be Hurwitz stable and the state norms
decrease. For uncontrollable subsystems, we consider to
choose appropriate gains that guarantees the system states
inside required bounds over given time intervals. It is
noted that in Amato et al.(2006) a sufficient condition for
the design of a dynamic output feedback controller with
which the linear closed-loop system states do not exceed
a certain threshold of a given bound during a given time
interval is presented. Motivated primarily by worked in
Amato et al.(2006) and Amato et al.(2001), we consider to
ensure the grow rate of state norm expectations bounded
over time durations from the time that a switch signal
is detected to the time that another new switch signal is
produced. And it is also noted that time delay in detection
may lead to the mismatches between the controller and
the switched system it controls (called plant) and such
mismatches may lead to unstable subsystems. Since we do
not know which subsystem the system dwell during these
time intervals, here we analyze the possible norm grow rate

produced by time delay directly. Specially, by synthesizing
the results developed in Amato et al.(2006), the tradition
way to design feedback controllers and analysis of influence
from uncertain time delay, we develop a nonsynchronized
feedback controller which guarantees that the expectation
of state norm converges to 0. And we show its effectiveness
by analyzing the expectation of system state norm. In
addition, we also present an illustrative numerical example
to demonstrate the utility of the proposed controller.

The contents of the paper are as follows. In Section 2
we state the problem formulation and preliminaries. In
Section 3 we present our main results, including design
of a nonsynchronized feedback controller for the given
linear switched systems consisting of controllable and
uncontrollable subsystems with stochastic switch signal
and uncertain time delay in detection and showing its
effectiveness by analyzing the expectation of system state
norm. In Section 4, an illustrative numerical example
is presented to demonstrate the utility of the proposed
controller. Finally, in Section 5 we draw some conclusions.

The notation used in this paper is fairly standard. Specif-
ically, R denotes the set of real numbers, Rn denotes the
set of n × 1 real column vectors, I denotes the set of
integers, Z̄+ denotes the set of positive integers, N0 denotes
the set of nonnegative integers, (·)T denotes transpose.

Furthermore, we write dx for the differential of x, V
′
(x)

for the Fréchet derivative of V at x, ∥ · ∥ for a vector
norm, ∥ · ∥F for the Frobenius matrix norm, (·)† for Moore-
Penrose inverse, P(E) for the probability of the event E,
E(x) for the expectation of random variable x, ⌊a⌋ for the
largest integer no larger than a, λmax(·) (resp., λmin(·)) for
the maximum (resp., minimum) eigenvalue of a Hermitian
matrix.

2. PRELIMINARIES AND PROBLEM
FORMULATION

Consider the linear switched systems consisting of control-
lable and uncontrollable subsystems with stochastic switch
signal and uncertain time delay in detection given by

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t), x(0) = x0, t ≥ 0, (1)

γ(t) = σ(t− τ), (2)

σ(t) =

{
σ(t−), t ̸= tk, k = 0, 1, 2, . . . ,

β, t = tk, k = 0, 1, 2, . . . ,
(3)

where x(t) ∈ Rn, t ≥ t0 is the state vector, u(t) ∈
Rm, t ≥ t0 is the control input, σ(t) : [0,∞) → IN =
{1, 2, . . . , N}, N > 1 is a piecewise constant function of
time, called a switch signal. It is defined by (3) where 0 =
t0 < t1 < t2 < · · · are the switching moments. And β ∈ IN
is a random variable whose distribution is given in TABLE

1 where P(β = i) = pi, i ∈ IN ,
∑N

i=1 pi = 1 and pi > 0 are
known constants. What’s more, σ(t) = i means that the
ith subsystem (Ai, Bi), i = 1, 2, . . . , N is activated. Such
a signal is created by some unknown or non-deterministic
function called a switch stimulus (e.g. unexpected fault,
change of working points etc.). The switch stimulus send
a signal to the system at tk, k = 0, 1, 2, . . .. Then the
value of σ(t) may change at the same time and the system
may switch to another subsystem. And the value of σ(t)
will not change when t ̸= tk, k = 0, 1, 2, . . .. But it is
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very important to note that it is possible the value of
σ(t) may not change at tk, k = 0, 1, 2, . . .. Furthermore,
here we assume that the event that the switch stimulus
produces a switch signal and the event that one detects
a signal are independent events, that is, all the signals
and detections are independent with each other. Specially,
both how long later the switch stimulus will produce
another switch signal(denoted by the switching duration
hm defined as hm = tm+1 − tm, m = 0, 1, 2, . . .) and
what signal the switch stimulus will produce(denoted by β)
are independent random variables. What’s more, how long
later one can detect the signal after the stimulus produces
it (denoted by τ) is also an independent random variable.
Hence, it is obvious that the switch signal in our model is a
stochastic switch signal. And we assume that distributions
of hm are unknown but their expectations are known.
Specially, for all m = 1, 2, . . ., E(hm) = τi when σ(tm) =
i, i ∈ IN where τi > 0 are known constants. Moreover,
γ(t) is the detection function of σ(t). The time delay τ > 0
implies that one cannot detect whether the system get a
signal from the stimulus or not instantaneously, but after
a time period τ . And one can know which subsystem is
activated after getting the signal. It is very important to
note that τ is not a known constant here, but a random
variable. Here we assume its distribution is unknown, but
its expectation is given by E(τ) = τ0 where τ0 > 0 is a
known constant. It is obvious that one cannot know when
the system get the signal. In addition, Ai ∈ Rn×n, i ∈
INand Bi ∈ Rn×m, i ∈ IN are known matrices. Since
both controllable and uncontrollable subsystems exist in
(l), we assume without loss of generality that [Ai, Bi], i =
1, 2, . . . , r are uncontrollable subsystems where 0 < r < N
is a known constant, and the remaining subsystems are
controllable. Furthermore, for the given switched system
we assume that the required properties for the existence
and uniqueness of solutions are satisfied. In addition, we
assume that the system state x(t), t ≥ t0 is available for
feedback.

Throughout this paper, we will need the following assump-
tion.

Assumption 1 minm=0,1,2,... h̄m > τ̂ where h̄m, m =
0, 1, 2, . . . denotes the possible minimum duration of the
mth subsystem, and τ̂ denotes the possible maximum
value of τ . In other words, τ < hm holds for all m ≥ 0.

Remark 1 Assumption 1 This guarantees that once a sub-
system is activated, although we cannot detect which sub-
system is being activated instantaneously, we can detect
it before another subsystem is activated since its duration
time is greater than τ .

In this paper, we consider the problem of design a feedback
controller for the linear switched systems consisting of
controllable and uncontrollable subsystems with stochastic
switch signal and uncertain time delay in detection given

Table 1. The distribution of the random vari-
able β

P(β = 1) P(β = 2) · · · P(β = i) · · · P(β = N)

p1 p2 · · · pi · · · pN

by (1)-(3). Since the controller and the switched system
it controls (called plant) cannot switch synchronously be-
cause of the existence of time delay in detection, such a
controller is a nonsynchronized feedback controller. Since
both the switching durations and time delay are random
variables, it is not feasible to analyze the exact value of
system state norm, nor its estimation. In this paper, we
analyze the expectation of the system state norm instead.
This is very different from the most general way. But it
is also feasible and useful in many applications, especially
when dealing the systems with a lot of uncertainties and
disturbances since it is difficult or unfeasible to analyze the
state norm. Furthermore, if the expectation of the system
state norm converges to 0 or it is bounded in a required
bound, the system can be stable most of the time and
the unstability seldom happens. For many applications,
such property is enough for satisfying the performance
requirements. In particular, here we give a definition on
such stability property of the given switched system.

Definition 1 For the switched system given by (1)-(3), if
the expectation of the system state norm converges to 0,
that is, E(∥ x(t) ∥) → 0 as t → ∞, the system is said to
be expected stable.

Hence, our design goal is to design a nonsynchronized
feedback controller that guarantees expected stability of
the given system. Specially, for the system given by (1)-(3),
we consider to design a control input u(t) = Kγ(t)x(t), t ≥
0 where Kγ(t) ∈ Rm×n are gain matrices that will be
designed later and the control input guarantees that E(∥
x(t) ∥) → 0 as t → ∞.

It is noted that one of the difficulties in our controller
design is that the existence of uncontrollable subsystems
leads to the difficulty in developing the feedback gain
matrices by analyzing Lyapunov functions. This is because
that for uncontrollable subsystems, there does not exist
feedback gain matrices such that the closed-loop system
is Hurwitz stable, which leads to the difficulty in utilizing
both common quadratic Lyapunov functions and piecewise
Lyapunov functions. And it is well known that it is difficult
to develop feedback gain matrices such that the system
state converges for uncontrollable subsystems. Moreover,
we note that in Amato et al.(2006), a sufficient condition
for the design of a dynamic output feedback controller with
which the linear closed-loop system states do not exceed
a certain threshold of a given bound during a given time
interval is presented. Motivated primarily by the works in
Amato et al.(2006) and Amato et al.(2001), we consider
to develop feedback gain matrices such that the grow
rate of system state norm is bounded for uncontrollable
subsystems.

And the next theorem is needed for the statement of our
main results presented in the next section.

Theorem 1. Consider the linear system given by

ẋf (t) = Afxf (t) +Bfuf (t), xf (tf0) = xf0, t ≥ tf0, (4)

where xf (t) ∈ Rnf , t ≥ tf0 is the state vector, uf (t) ∈
Rmf , t ≥ tf0 is the control input, Af ∈ Rnf×nf and
Bf ∈ Rnf×mf are known matrices. For three given positive
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scalars cf1, cf2, Tf , with cf1 < cf2, and a given positive
define matrix Rf such that

xT
f0Rfxf0 ≤ cf1, (5)

if there exist a nonnegative scalar αf , a positive definite
matrix Qf ∈ Rnf×nf and a matrix Nf ∈ Rmf×nf such
that

Af Q̃f + Q̃fA
T
f +BfNf +NT

f BT
f − αf Q̃f < 0, (6)

cond(Qf ) <
cf2
cf1

e−αfTf , (7)

Q̃f = R
− 1

2

f QfR
− 1

2

f , (8)

where cond(Qf ) = λmax(Qf )/λmin(Qf ) denotes the con-
dition number of Qf , the linear system is FTS with respect
to (cf1, cf2, Tf , Rf ), that is, there exist

xT
f (t)Rfxf (t) < cf2, ∀t ∈ [tf0, tf0 + Tf ], (9)

with a state feedback controller given by

uf (t) = Kfxf (t), t ≥ tf0, (10)

where Kf = Nf Q̃
−1
f .

Proof . It is a direct consequence of Theorem 5 in Amato
et al.(2006), hence, is omitted.

Another difficulty in our controller design is that during
some time intervals the feedback gains and the subsys-
tems may be mismatched because of the existence of time
delay. For example, the feedback gain for ith subsystem
may be applied to the jth subsystem where i ̸= j. And
such mismatches may lead to the growth of system norm.
Further it is difficult to utilize the most general used
Lyapunov functions or the results in Theorem 1 because
one cannot know which subsystem is activated. Hence, we
consider to analyze the system state norm directly. And
by synthesizing the traditional feedback controller and the
analysis above, we develop our nonsynchronized feedback
controller.

3. MAIN RESULTS

In this section, we consider to design a nonsynchronized
feedback controller for the given switched system with
stochastic switch signal and uncertain time delay in de-
tection.

We first define a special constant ρ(D) for a given matrix
D ∈ Rn×n to denote the smallest constant γ such that the
inequality given by ∥ eDt ∥≤ eγt holds for all t > 0.

Definition 2 For a given matrix D ∈ Rn×n, there always
exists a special constant ρ(D) given by

ρ(D) = min
ξ∈SD

ξ, SD = {α| ∥ eDt ∥≤ eαt, t > 0}.

Since ρ(D) is easy to compute using algebraic matrix
theory, it is convenient for realistic applications.

Then we state the main results in this section.

Theorem 2. Consider the linear switch system given by
(1)-(3), and assume that Assumption 1 holds. In addi-
tion, assume there exist positive defined matrices Pi ∈

Rn×n, Qi ∈ Rn×n, i = 1, 2, . . . , r, matrices Mi ∈
Rm×n, i = 1, 2, . . . , r, Fi ∈ Rm×n, i = r + 1, r + 2, . . . , N
and positive constants αi > 0, 0 < ϕ < 1 such that
Ai +BiFi, i = r + 1, r + 2, . . . , N are Hurwitz stable and
the following inequalities hold:

AiQ̃i+ Q̃iA
T
i +BiMi+MT

i BT
i −αiQ̃i < 0, i = 1, 2, . . . , r,

(11)
r∑

i=1

piηie
τ0φi +

N∑
i=r+1

pie
(τi−τ0)λmax(Ai+BiFi)+τ0φi ≤ ϕ,

(12)

ηi >

√
eαi(τi−τ0)

λmax(Pi)λmax(Qi)

λmin(Pi)λmin(Qi)
, i = 1, 2, . . . , r, (13)

where

Q̃i = P
− 1

2
i QiP

− 1
2

i , i = 1, 2, . . . , r, (14)

φi = max
j=1,2,...,N

ρ(Aj +BjKi), i = 1, 2, . . . , N, (15)

Ki =

{
MiQ̃

−1
i , i = 1, 2, . . . , r,

Fi, i = r + 1, r + 2, . . . , N,
(16)

where τi, i = 0, 1, . . . , N, pi, i = 1, . . . , N, are defined
in above paragraphes. Then with the state feedback con-
troller given by u(t) = Kγ(t)x(t), t ≥ 0, the closed-loop
switched system given by (1)-(3) and (11)-(16) is expected
stable, that is, E(∥ x(t) ∥) → 0 as t → ∞.

Proof . Firstly we analyze the expectation of system state
norm.

Specially, note that all the switch signals and detections
are independent with each other and Definition 2, it
follows from

x(tm+1+τ) = x(tm+hm+τ) = eτ [Aσ(tm+1)+Bσ(tm+1)Kσ(tm)]

×e(hm−τ)[Aσ(tm)+Bσ(tm)Kσ(tm)]x(tm + τ), m = 0, 1, 2, . . . ,

that

E(∥ x(tm+1 + τ) ∥) = E(∥ eτ [Aσ(tm+1)+Bσ(tm+1)Kσ(tm)]

×e(hm−τ)[Aσ(tm)+Bσ(tm)Kσ(tm)] × x(tm + τ) ∥)

≤ (
N∑

i=r+1

pi ∥ eE(τ)[Aσ(tm+1)+Bσ(tm+1)Ki]eE(hm−τ)[Ai+BiKi] ∥)

×E(∥ x(tm + τ) ∥) +
r∑

i=1

pi ∥ eE(τ)[Aσ(tm+1)+Bσ(tm+1)Ki] ∥

×E(∥ x(tm+E(hm−τ)+τ) ∥)

≤ (
N∑

i=r+1

pie
τ0ρ(Aσ(tm+1)+Bσ(tm+1)Ki) ∥ e(τi−τ0)[Ai+BiKi] ∥)

×E(∥ x(tm + τ) ∥) +
r∑

i=1

pie
τ0ρ(Aσ(tm+1)+Bσ(tm+1)Ki)

×E(∥ x(tm+(τi− τ0)+ τ) ∥)

≤ (

N∑
i=r+1

pie
τ0φi ∥ e(τi−τ0)[Ai+BiKi] ∥)× E(∥ x(tm + τ) ∥)

+
r∑

i=1

pie
τ0φi × E(∥ x(tm + (τi − τ0) + τ) ∥)

≤
N∑

i=r+1

pie
(τi−τ0)λmax(Ai+BiFi)+τ0φi × E(∥ x(tm + τ) ∥)
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+

r∑
i=1

pie
τ0φi × E(∥ x(tm + (τi − τ0) + τ) ∥)

m = 0, 1, 2, . . . .
(17)

Then we analyze the conditions given by (11), (13) and
(14). Note that it follows from (14) that

λmax(Qi)

λmin(Qi)
<

λmax(Pi)

λmin(Pi)
e−αi(τi−τ0)η2i , i = 1, 2, . . . , r. (18)

And consider the linear system given by

ẏ(t) = (Ai +BiKi)y(t), y(0) = y0, t ≥ 0, i ∈ Ir, (19)

where y(t) ∈ R, t ≥ 0, is the system state, Ir =
{1, 2, . . . , r} and Ai, Bi, Ki are defined as above. Here
let ci = yT0 Piy0. Hence, (18) can be rewritten as

λmax(Qi)

λmin(Qi)
<

ci
λmax(Pi)
λmin(Pi)

e−αi(τi−τ0)η2i

ci
, i = 1, 2, . . . , r.

(20)

Then it follows from Theorem 1 and conditions given by
(11), (13)-(14), (16), (20) that

yT(τi − τ0)Piy(τi − τ0) < ci
λmax(Pi)

λmin(Pi)
η2i

yT(τi − τ0)Piy(τi − τ0)

yT0 Piy0
<

λmax(Pi)

λmin(Pi)
η2i , i ∈ Ir. (21)

Note that
λmin(Pi) ∥ y(τi − τ0) ∥2

λmax(Pi) ∥ y0 ∥2
<

yT(τi − τ0)Piy(τi − τ0)

yT0 Piy0
,

then it follows from (21) that

∥ y(τi − τ0) ∥
∥ y0 ∥

< ηi. (22)

Then it follows from the result given by (22) and the
inequities given by (12) and (17) that

E(∥ x(tm+1 + τ) ∥) ≤
N∑

i=r+1

pie
(τi−τ0)λmax(Ai+BiFi)+τ0φi

×E(∥ x(tm + τ) ∥) +
r∑

i=1

pie
τ0φi × E(ηi ∥ x(tm + τ) ∥)

= (

r∑
i=1

piηie
τ0φi +

N∑
i=r+1

pie
(τi−τ0)λmax(Ai+BiFi)+τ0φi)

×E(∥ x(tm + τ) ∥) ≤ ϕE(∥ x(tm + τ) ∥), m = 0, 1, 2, . . . ,
(23)

which implies that

E(∥ x(tm+1 + τ) ∥) ≤ ϕmE(∥ x(t1 + τ) ∥), m = 0, 1, 2, . . . .
(24)

Since 0 < ϕ < 1, it follows from (24) that E(∥ x(tm+ τ) ∥)
→ 0 as m → ∞, which implies that E(∥ x(t) ∥) → 0 as
t → ∞.

This completes the proof.

4. ILLUSTRATIVE NUMERICAL EXAMPLE

In this section we present a numerical example to demon-
strate the utility of the proposed nonsynchronized feed-
back controller. Specially, consider the linear switched

Fig. 1. States trajectories versus time with our nonsyn-
chronized feedback controller (1st-4th simulation)

systems consisting of controllable and uncontrollable sub-
systems with stochastic switch signal and uncertain time
delay in detection given by (1)-(3) with

n = m = 2 = N, , r = 1, p1 = 0.26, p2 = 0.74

x(t) =

[
x1(t)
x2(t)

]
, x0 =

[
x10

x20

]
=

[
10
−6

]
A1 =

[
0.1 0
0 0.1

]
, A2 =

[
0.1 0
0 0.2

]
B1 =

[
1 0
0 0

]
, B2 =

[
1 0
0 1

]
.

Obviously, since rank[B1, A1B1] = 1 and rank[B2, A2B2] =
2, [A1, B1] is a uncontrollable subsystem and [A2, B2] is a
controllable subsystem. In addition, let τ1 = τ2 = 2(s),
τ0 = 0.5(s). By solving (11)-(16), we obtain a feasible
solvation with control gains given by

K1 =

[
0.1 0
0 0.1

]
, K2 =

[
−0.3 0
0 −0.4

]
(25)

and other parameters and matrices given by

P1 = M1 = Q1 =

[
1 0
0 1

]
= Q̃1,

η1 = 1.26, ϕ = 0.95, α1 = 0.3,

λmax(Q1) = λmax(P1) = λmin(Q1) = λmin(P1) = 1.

Hence, it is straightforward that

A1 +B1K1 =

[
0.2 0
0 0.1

]
, A2 +B2K2 =

[
−0.2 0
0 −0.2

]
,

A1 +B1K2 =

[
−0.2 0
0 0.1

]
, A2 +B2K1 =

[
0.2 0
0 0.3

]
,

λmax(A1 +B1K1) = −0.2, φ1 = 0.3, φ2 = 0.1.

And these parameters satisfy our conditions.

Here we simulate influence of our controller on the given
switched system via the widely-used software MATLABTM.
In particular, let τ = rand(1, 1), hm = 1.8 + 0.2 ∗
rand(1, 1), m = 0, 1, 2, . . . , β = ⌊1.74+ rand(1, 1)⌋ where
rand(1, 1) is a pseudorandom value drawn from the stan-
dard uniform distribution on the open interval (0, 1). It is
obvious that hm > τ, m = 0, 1, 2, . . . and Assumption 1 is
satisfied.

The system states trajectories versus time with our non-
synchronized feedback controller are shown in Fig.1. Only
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Fig. 2. Arithmetic mean of system states trajectories ver-
sus time with our nonsynchronized feedback controller
(100 simulations)

4 simulation results are presented here due to the space
limitation. And the arithmetic mean of system states tra-
jectories versus time, which presents the average trajecto-
ries of state trajectories in 100 stimulations, are shown
in Figure.2. It is shown obviously that as a result of the
stochastic switch signals and uncertain time delay, the
system states trajectories versus time are very different
with each other. It is noted that the system may switch
to any different subsystems or do not switch and stay
in the same subsystems after getting the switch signals
and the same system also get switch signals at different
time in different simulation. In addition, the influence of
time delay in detection can also be seen in the figures. For
example, as shown in Fig.1, during t = 7(s) to t = 9(s),
the system switches to the controllable subsystem from the
uncontrollable subsystem in the 1st and 3rd simulation
and switches to the uncontrollable subsystem from the
controllable subsystem in the 2nd simulation, while it does
not switch in the 4th simulation after getting the switch
signals.

Furthermore, in Fig.1, it is shown clearly that all the
trajectories are convergent. And in Fig.2, the arithmetic
mean of system states trajectories versus time convergent
to 0. Specially, the arithmetic means of x1(t), t ≥ 0
and x2(t), t ≥ 0 are both very close to 0 at t = 24(s).
Hence, this example shows the effectiveness of our synchro-
nized feedback controller for the linear switched systems
consisting of controllable and uncontrollable subsystems
with stochastic switch signal and uncertain time delay in
detection.

5. CONCLUSION

In this paper, we develop a nonsynchronized feedback
controller for linear switched systems consisting of control-
lable and uncontrollable subsystems with stochastic switch
signal and uncertain time delay in detection and show its
effectiveness by analyzing the expectation of system state
norm. In addition, an illustrative numerical example is
also presented to demonstrate the utility of the proposed
controller.

As mentioned above, it is noted that design of our non-
synchronized feedback controller may be complex in cal-

culation sometimes. Hence, a low computation cost way
to design our feedback controller is included in our future
work. Furthermore, output feedback controller for such
switched systems is worth investigating.
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