
Diffusion Based Stopping Criterion for Distributed
Optimization

Taylan Ayken ∗ Jun-ichi Imura ∗,∗∗

∗Dept. of Mechanical and Environmental Informatics, Tokyo Institute of
Technology, Tokyo, Japan (e-mail: {tayken, imura} at cyb.mei.titech.ac.jp).

∗∗ JST CREST, Tokyo, Japan

Abstract: As the size of system models to be optimized gets larger, distributed optimization, where
each local optimization problem is solved by an individual computer in parallel to derive a global
optimal solution more quickly and robustly than centralized methods, is becoming one of the important
topics. However most distributed optimization techniques need a supervisor that checks the status of all
the optimization algorithms running in a distributed way and messages them to stop. In this paper, we
propose a diffusion based stopping criterion for distributed optimization algorithms. We then compare
both supervised and diffusion based criteria by numerical simulation to show that the diffusion based
criterion does not add any overhead.

Keywords: Large Scale Optimization Problems, Decentralized Control, Distributed Optimization,
Stopping Criterion, Dual Decomposition, Distributed MPC.

1. INTRODUCTION

There is a global trend towards controlling large-scale network
systems in a more sophisticated way as computational power
increases. One of the prospective methods to solve this kind of
control problem is Model Predictive Control (MPC), which is
well known as a kind of real-time optimal control. However
as the system size grows, it takes longer to optimize this
problem in a centralized manner. Also a centralized system is
not as robust as a distributed system. If the central computer
optimizing the system has a trouble, the whole system shuts
down. This can be solved by having redundant optimization
system setup. The other problem is if one of the sub-systems
has a problem, this changes the whole network graph. This
means for a centralized system to be robust against sub-system
failures, it should have multiple network configuration graphs
and should be able to switch to a suitable one according to the
configuration. This is infeasible for very large systems such as
nation wide power grids.

In order to solve this problem Distributed MPC is one of the
effective methods as we can divide the system into smaller sub-
systems and solve these smaller sub-systems in a distributed
way to find the optimum solution, see e.g., Nedic and Ozdaglar
(2009), Johansson et al. (2008), Nedic et al. (2010), Wei et al.
(2010), Giselsson and Rantzer (2010), Ma et al. (2011), Ono
and Williams (2010), Zhu and Martinez (2012) for different
methods. Then this solution can be used directly as a control
input or can be used as a reference input to lower level con-
trollers that already exist in these systems. Dual Decomposi-
tion method, Boyd et al. (2008) and Boyd et al. (2011) , is
one of the most efficient methods for distributing the general
cost function to local cost functions for which the optimization
problem can be relatively easily solved. Also this method is
robust to sub-system failures because the sub-systems, which
can be defined as a part of the network and the computer used
for running the optimization algorithm, are calculating only a
local optimal solution. Additionally in a distributed system, a

sub-system failure can be quickly recognized by neighboring
sub-systems as they will not receive any messages from it, thus
realizing whether the sub-system is off-line or not. However,
the conventional distributed algorithm requires a central super-
visor that checks if all variables of sub-systems converged to
the optimum or not and sends them a stopping message if they
all have converged. This means that there is a supervisor that
requires global information and it should be connected to all
sub-systems by communication lines, which contradicts to the
essence of distribution. Finally this supervisor means that there
is a single point of failure in our system which compromises
the robustness feature; meaning that if something happens to
this supervisor, the whole system stops functioning.

This paper proposes a new type of distributed stopping criterion
called here diffusion based stopping criterion for distributed
optimization, which enables us to determine in a distributed
way whether or not the optimization error derived by all opti-
mization algorithms running on sub-systems converges within
a certain threshold by using local information only.

The remainder of this paper is organized as follows. Section 2
gives a more detailed description of the system, describes the
problem and looks at the distribution method. Then in Sec-
tion 3, we propose a diffusion based stopping criterion. In Sec-
tion 4, we apply our algorithm to a dispatch control problem,
and show that our algorithm is effective from the viewpoints
of computation time and robustness. Section 5 concludes the
paper.

2. DISTRIBUTED OPTIMIZATION

2.1 Network formulation

A network system can be represented with the following equa-
tions:

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 10512

x(k+1) = Ax(k)+Bu(k) (1)

Cx(k)+Du(k)≤ E (2)

η(k) = Fx(k)+Gu(k)+Hd(k) = 0 (3)

A = diag(Ai, i = 1, . . . ,M), B = diag(Bi, i = 1, . . . ,M),
C = diag(Ci, i = 1, . . . ,M), D = diag(Di, i = 1, . . . ,M),
E = [ET

1 · · ·ET
M]T , F = [F1 · · ·FM],

G = [G1 · · ·GM], H = [H1 · · ·Hr],

x(k) = [xT
1 (k) · · ·xT

M(k)]T , xi(k) ∈ Rni ,
u(k) = [uT

1 (k) · · ·uT
M(k)]T , ui(k) ∈ Rmi ,

d(k) = [d1(k) · · ·dr(k)]T , di(k) ∈ R
where x(k) and u(k) are state and control input vectors, respec-
tively, d(k) is the exogenous signal input and k is the discrete
time.

We here consider M sub-systems that interact with each other
throughout equality constraints (3).
Remark 1. It is possible to consider A, B, C and D matrices
that are not block-diagonal. This problem can be solved by
dual decomposition, i.e. by using two variables for the shared
variable and adding an equality constraint to them by using
matrices F and G. Also, although the exogenous signal input,
d(k), is only included in (3), it can be included in (1) & (2). The
method proposed here can be easily extended to these cases
by adding additional variables and changing (1)-(3). Thus for
simplicity of notation, we focus on the above case.

Consider a cost function that we will use for optimization:

J0 =
N−1

∑
k=0

xT (k)Qx(k)+uT (k)Ru(k) (4)

where x(k) and u(k) are state and control vectors; Q = diag(Qi)
and R= diag(Ri) are positive (semi-)definite matrices for defin-
ing the cost and N denotes the prediction horizon length.
Problem 2. Given x(0), d(k), k = 0, . . . ,N − 1, Q and R; find
u(k) minimizing J0 while satisfying (1)-(3) for k = 0, . . . ,N−1.

Consider a network system in Fig. 1 where the nodes denoted
by the circles and the square express sub-systems and a user
(demand), respectively. Suppose that sub-system at node 1,
say, sub-system 1 is a source, which is a type of sub-system
that supplies the commodity flowing in the single commodity
network flow problem such as a water well or a generator, and
it has the following equations:

x1(k+1) = A1x1(k)+B1u1(k)

0≤ x11(k)+ x12(k)≤ 1000
where x1(k) = [x11(k) x12(k)]T is the state vector expressing the
supplied water or power to each line.

In a similar way, suppose that the sub-system at node 2, say,
sub-system 2 is a storage sub-system, which stores the com-
modity flowing in the single commodity network flow problem

Fig. 1. An example graph for explaining system matrices.

such as a water tower or a battery, and it has the following
equations:

x2(k+1) = x2(k)−u21(k)−u22(k),

−1000≤ u21(k)+u22(k)≤ 1000,

0≤ x2(k)≤ 8000

where x2(k) is the state variable and u2(k) = [u21(k) u22(k)]T is
the control vector.

Also, suppose that the user at node U1 consists of an exogenous
signal d1, which is the demand in the single commodity network
flow problem. It has to be satisfied by both the output of sub-
system 1 and sub-system 2, so we have the following equality
constraint:

x11(k)+u21(k) = 0

x12(k)+u22(k)+d1(k) = 0

In this way, this example can be expressed by (1)-(3).

2.2 Distributed optimization based on dual decomposition

The system described in Problem 2 can be solved by using
a centralized optimization approach. In fact, for a small scale
system, it may be better to use a centralized optimization algo-
rithm because it is usually easier to be implemented. However,
as the number M of sub-systems grows, the calculations will
take longer to execute.

One possible way to distribute the global cost function (4) into
local cost functions, while satisfying the equality constraint, is
to use the dual decomposition method, Boyd et al. (2008). We
start by decomposing the cost function and equality constraint.
Because of the properties of Q, R, F , G and H matrices, we can
write (4) and (3) as, respectively,

J0 =
N−1

∑
k=0

M

∑
i=1

xT
i (k)Qixi(k)+uT

i (k)Riui(k) (5)

η(k) =
M

∑
i=1

F̂iXi(k)+
r

∑
j=1

H jd j(k) = 0 (6)

where xi(k) and ui(k) are state and control vectors for the sub-
system i; Qi and Ri are cost matrices for the sub-system i; and
F̂i = [Fi Gi] and Xi(k) = [xT

i (k) uT
i (k)]

T .

So consider to separate the global cost function (5) into lo-
cal cost functions for individual sub-systems by using the La-
grangian of the global cost function (5):

L0 = J0 +
N−1

∑
k=0

λ
T (k)η(k) (7)

where the vector λ (k) denotes the dual variables (also called
“price”) at time k.

If we insert (5) and (6) into (7) and change the order of
summation, we get

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10513

L0 =
M

∑
i=1

[
N−1

∑
k=0

xT
i (k)Qixi(k)+uT

i (k)Riui(k)

+λ
T (k)F̂iXi(k)

]
+

N−1

∑
k=0

r

∑
j=1

λ
T (k)H jd j(k)

(8)

We can then define the part inside the parentheses as the local
cost function. So for node i, the local cost function is

Li,0 =
N−1

∑
k=0

xT
i (k)Qixi(k)+uT

i (k)Riui(k)+λ
T
i (k)Xi(k) (9)

where λi(k)T = λ T (k)F̂i. Thus (7) is equal to

L0 =
M

∑
i=1

Li,0 +
N−1

∑
k=0

λ
T (k)K(k) (10)

where K(k) =
r

∑
j=1

H jd j(k).

Because of the properties of A, B, C, D and E matrices, we can
write (1) and (2) as, respectively,

xi(k+1) = Aixi(k)+Biui(k) (11)

Cixi(k)+Diui(k)≤ Ei (12)

Suppose that λi(k) k = 0, . . . ,N − 1 is given. We can write
Problem 2 as:
Problem 3. Given xi(0), λi(k), k = 0, . . . ,N − 1, Qi and Ri;
find ui(k) minimizing Li,0 while satisfying (11) and (12) for
k = 0, . . . ,N−1.

This problem can be converted to quadratic programming prob-
lem and solved accordingly. If the solution u∗i (k) that minimizes
(9) for given λ ∗i (k) ∀i also satisfies (3), then it is a solution that
minimizes (7) which means it is a solution that minimizes (4),
i.e. the global cost, while satisfying (3).

We now have to find a way to update λi(k), k = 0, . . . ,N− 1,
for each sub-system. Define λ̄ = [λ T (0) · · ·λ T (N − 1)]T and
η̄ = [ηT (0) · · ·ηT (N− 1)]T . Then we define a gradient update
rule for the dual variables λ̄ as

λ̂ (τ +1) = λ̂ (τ)−ατ η̄

λ̄ = λ̂ (τend)
(13)

where ατ denotes the step size at iteration τ ∈{0,1, . . .} and one
of the important factors that determine the convergence speed of
the algorithm. We choose to use a fixed step size algorithm for
simplicity. Also τend denotes the final iteration when a certain
convergence criterion has been met.

We can use this to write the gradient update rule for λ̄i. We
know that λi(k) = F̂T

i λ (k) thus if we multiply both sides of
(13) with diag(F̂i)

T we get

λ̂i(τ +1) = λ̂i(τ)−ατ η̄i

λ̄i = λ̂i(τend)
(14)

where η̄i = [ηT
i (0) · · ·ηT

i (N−1)] and ηi(k) can be defined as

ηi(k) = F̂T
i F̂iXi(k)+ ∑

j∈Ni

F̂T
i F̂jX j(k)+

r

∑
j=1

F̂T
i H jd j(k) (15)

As a stopping criterion, we choose to satisfy the equality
constraint η̄i = 0 with a minimal relaxation parameter denoted
as ε , so our convergence criterion for sub-system i becomes:

‖η̄i‖∞ < ε (16)
where ‖ . . .‖∞ is the maximum norm.

This relaxation parameter can be used for adjusting between
the precision of solution and the convergence speed. When
this convergence criterion is satisfied at some sub-system, it
sends a message to a supervisor stating that the solution of
the optimization algorithm running on it converged into some
allowable solution boundary. The supervisor keeps track of all
sub-systems’ status and decides when to stop according to all
sub-systems’ status. This is the most widely used criterion in
distributed optimization.

3. DIFFUSION BASED STOPPING CRITERION

3.1 Communication graph and stopping criterion matrix

As we stated before, the above supervisor based stopping crite-
rion has several problems. It needs global information, causes
an increase in costs as it requires additional communication
lines and affects the robustness of the system as if something
happens, causes the whole system to stop functioning. So we
develop a diffusion based stopping criterion, which eliminates
these problems. We name this stopping criterion diffusion based
as the convergence message of a sub-system is not sent directly
to the whole network, but ”diffuses” through the the network
via the stopping criterion matrix.
Assumption 4. With this stopping criterion, sub-systems only
communicate with their immediate neighbors.

Each sub-system can learn the status of other sub-systems in
the system by receiving messages from only its immediate
neighbors. The information each sub-system receives can be
considered as local as it can know if the whole system has
converged or not but it cannot know if a particular sub-system
has converged or not, provided that the sub-system is not its
immediate neighbor.

For this criterion to work, we create a communication graph G∗
by using (3). If both sub-systems i and j have 1’s on the same
row of Fi, Fj, Gi or G j, they are neighbours in G∗. An example
of the communication graph G∗ can be seen in Fig. 2. We can
create this graph as the first row of both F1 and G4 contains 1
so they are neighbors. In a similar way, the second row of both
F2 and G5 contains 1 so they are neighbors, the third row of
both F3 and G5 contains 1 so they are neighbors, the fourth row
of both G4 and G5 contains 1 so they are neighbors, the fifth
row of both F1 and F2 contains 1 so they are neighbors and the
eighth row of F3, G4 and G5 contains 1 so they are neighbors.
The resulting neighbor sets are:

N1 = {2,4} ,
N2 = {1,5} ,
N3 = {4,5} ,
N4 = {1,3,5} ,
N5 = {2,3,4}

(17)

After this, each sub-system has to store a stopping criterion
matrix, denoted Si ∈ {0,1}�G∗×(|Ni|+1) for sub-system i, where

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10514

⇒

Fig. 2. An example graph G and its communication graph G∗

�G∗ is the diameter of the communication graph G∗, the max-
imum of the distance between any sub-systems (the distance
between two sub-systems is given by the minimum number of
edges between the sub-systems), Ni is the set of neighboring
sub-systems of sub-system i and |Ni| is the number of neigh-
bors of sub-system i. This matrix stores information about the
convergence status of optimization algorithms running on each
sub-system. If an element of Si is 1, that means the algorithm
of the corresponding sub-system has converged, i.e., (16) was
satisfied; if it is 0 it means the opposite is true. The elements of
the first row of Si express the converge status of the algorithms
running on sub-systems i and j ∈Ni, direct neighbors of sub-
system i.

More rigorously, let Si(a,b) denote the (a,b)th element of Si.
This implies that the element Si(1, j), j ≤ |Ni| keeps track
of the algorithm running on the direct neighbor sub-system
labeled as j and the element Si(1, |Ni|+ 1) keeps track of the
algorithm running on the sub-system i itself. The elements of
the next rows of Si keeps track of the status of the previous rows
of Si and S j ∀ j ∈Ni. The element Si(a+ 1, j), j ≤ |Ni| keeps
track of the status of the ath row of S j and the element Si(a+
1, |Ni|+ 1) keeps track of the status of the ath row of Si. This
way by checking the elements of this matrix, we can determine
the convergence status of all the algorithms, e.g., if some Si
has elements of all 1, then all S j have elements of all 1 (see
Theorem 6 for the details), that means the algorithms running
on all sub-systems of the grid has converged. The details of this
matrix Si will be given at the example later.

We can say that this matrix contains only local information
in the sense that, although it contains information about the
convergence status of all the algorithms, there is no way of
finding out the status of a particular sub-system if that sub-
system is not a direct neighbor.

3.2 Algorithm

To sum it up, we can merge the dual decomposition based dis-
tributed optimization and the proposed diffusion based stopping
criterion with the following algorithm.
Definition 5. Define the following messages from sub-system i
with the stopping criteria matrix Si:

(1) convergence event message: an arbitrary message stating
that convergence criterion in (16) is satisfied for sub-
system i.

(2) convergence event break message: an arbitrary message
stating that the convergence criterion in (16) is not satis-
fied for sub-system i.

(3) mth row event message: an arbitrary message stating that
every element of the mth row of Si is 1.

(4) mth row event break message: an arbitrary message stating
that every element of the mth row of Si is not 1.

Then we can write down the algorithm for distributed optimiza-
tion with the diffusion based stopping criterion for sub-system
i with the stopping criterion matrix Si as:
Algorithm 1. (Proposed distributed algorithm).

Let xi(k,τ) and ui(k,τ) represent the state and control input
vectors at time step k, iteration τ , respectively. We define
ūi(τ) = [uT

i (0,τ) · · ·uT
i (N−1,τ)]T , d̄i = [dT

i (0) · · ·dT
i (N−1)]T

and X̄i(τ) = [XT
i (0,τ) · · ·XT

i (N− 1,τ)]T . Suppose that xi(0,1)
is given.

(1) τ ← 1, λ̄i(0)← 0, Si← 0�G∗×(|Ni|+1)

(2) ūi(τ)← argminuiLi,0 given λ̄i(τ)
(3) Send X̄i(τ) to sub-system j ∀ j ∈Ni, receive X̄ j(τ) from

all sub-systems j ∈Ni
(4) η̄i(τ)← diag(F̂i)

T diag(F̂i)X̄i(τ)

+ ∑
j∈Ni

diag(F̂i)
T diag(F̂j)X̄ j(τ)+

r

∑
j=1

diag(F̂i)
T diag(H j)d̄ j

(5) λ̂i(τ)← λ̂i(τ−1)+ατ η̄i(τ)
(6) If ‖η̄i(τ)‖∞ < ε:

Si(1, j+1)← 1, send convergence event message to
all sub-systems j ∈Ni.
Else:

Si(1, j+1)← 0, send convergence event break mes-
sage to all sub-systems j ∈Ni, τ ← τ +1, and go to step
2.

(7) If sub-system i receives convergence event message from
sub-system j ∈Ni:

Si(1, j)← 1.
Else if sub-system i receives convergence event break
message from sub-system j ∈Ni:

Si(1, j)← 0, τ ← τ +1, and go to step 2.
(8) For m ∈ {1, . . . ,�G∗−1}:

(a) If every element of mth row of Si is 1:
Si(m + 1, j + 1) ← 1 and send mth row event

message to all sub-systems j ∈Ni.
Else:

Si(m + 1, j + 1) ← 0 and send mth row event
break message to all sub-systems j ∈Ni, τ ← τ +1,
and go to step 2.

(b) If sub-system i receives mth row event message from
a sub-system j ∈Ni:

Si(m+1, j)← 1.
Else if receives mth row event break message from a
sub-system j ∈Ni:

Si(m+1, j)← 0, τ ← τ +1, and go to step 2.
(9) If every element of the �G∗th row of Si is 1:

τend = τ and ui(0,τend) are outputted as a solution.
Else:

τ ← τ +1, and go to step 2.

With this algorithm, sub-system i sends a total of �G∗ + 1
messages at each iteration: Once for X̄i(τ), once for conver-
gence event message or convergence event break message and
then �G∗− 1 mth row event message or mth row event break
message.

Convergence of dual decomposition is guaranteed if a suitable
step size, ατ is selected, which means the gradient rule will not
oscillate and will converge to a result in finite time. However
this is not enough to guarantee convergence. But because of

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10515

S2 =

[
0 0 0
0 0 0

]
S5 =

[
0 0 0 0
0 0 0 0

] Step 1−−−→

[
1 0 0
0 0 0

]
[

0 0 0 0
0 0 0 0

] Step 2−−−→

[
1 0 1
0 0 0

]
[

1 0 0 0
0 0 0 0

] Step 3−−−→

[
1 1 1
0 0 1

]
[

1 0 0 1
1 0 0 0

] Step 4−−−→

[
1 1 1
0 0 1

]
[

1 1 0 1
1 0 0 0

] Step 5−−−→

[
1 1 1
1 1 1

]
[

1 1 1 1
1 1 1 1

]
Fig. 3. Example of behavior of stopping criterion matrices of sub-systems 2 and 5

the following theorem, we can guarantee that our algorithm
converges on a solution in finite time.
Theorem 6. In the above algorithm, an arbitrarily chosen Si has
elements of all 1s iff the algorithm of all sub-systems have
converged to a solution at iteration τ .

Proof. Suppose that there is some i such that Si has elements
of all 1s and there is sub-system j in which the solution of the
corresponding algorithm did not converge at iteration τ . This
means that all sub-systems in N j have a 0 in their first row.
This, in turn, makes the last element of their second row 0. This
also makes one of the elements of the second rows of neighbors
of N j 0. This effect cascades in the whole graph and makes at
least one of the elements of the last row of Si 0. This contradicts
with the assumption of all elements of Si are 1. The converse is
obvious. This completes the proof.

3.3 Example

As an example, consider the graph G∗ in Fig. 2, where the
resulting �G∗ is 2. That means we have S1 = 02×3 for sub-
system 1, S2 = 02×3 for sub-system 2, S3 = 02×3 for sub-system
3, S4 = 02×4 for sub-system 4 and S5 = 02×4 for sub-system 5
initially. Let’s follow stopping criterion matrices S2 and S5 of
sub-systems 2 and 5, respectively as shown in Fig. 3.

We suppose that the elements S2(1,1), S2(1,2) and S2(1,3) of
S2 express the status on convergence of the algorithm of sub-
system 1, sub-system 5 and sub-system 2, respectively. The
elements S2(2,1), S2(2,2) and S2(2,3) of S2 express the 1st row
status of stopping criterion matrices S1, S5 and S2, respectively
and they are set to 1 by 1st row event message or reset to 0 by
1st row event break message. Also we suppose that the elements
S5(1,1), S5(1,2), S5(1,3) and S5(1,4) of S5 express the status
on convergence of the algorithm of sub-system 2, sub-system
3, sub-system 4 and sub-system 5, respectively. The elements
S5(2,1), S5(2,2), S5(2,3) and S5(2,4) of S5 express the first
row status of stopping criterion matrices S2, S3, S4 and S5,
respectively.

Initially suppose that S2 and S5 have all zero. Then let us explain
how stopping criterion matrices S2 and S5 behave under the
following fictional story:

Step 1 (The algorithm running on sub-system 1 converges)
Sub-system 1 sends out convergence event message, which
causes S2(1,1) to become 1 but this has no effect on S5 as
sub-system 1 it is not in N5.

Step 2 (The algorithm running on sub-system 2 converges)
Sub-system 2 sends out convergence event message, which
causes S2(1,3) to become 1 and the S5(1,1) to become 1.

Step 3 (The algorithm running on sub-system 5 converges)
Sub-system 5 sends out convergence event message, which
causes S2(1,2) to become 1 and S5(1,4) to become 1. At this
time, S2(2,3) becomes 1 as all elements in the first row of
S2 are 1, it sends out 1st row event message, which causes
S5(2,1) to become 1.

Fig. 4. Physical system used for simulation

Step 4 (The algorithm running on sub-system 3 converges)
Sub-system 3 sends out convergence event message, which
does not change S2 as sub-system 3 is not in N2 but S5(1,2)
becomes 1.

Step 5 (The algorithm running on sub-system 4 converges)
Sub-system 4 sends out convergence event message, which
does not change S2 as sub-system 4 is not in N2 but S5(1,3)
becomes 1. At this time, S5(2,4) becomes 1 as all elements in
the first row of S5 are 1, it sends out 1st row event message,
which causes S2(2,2) to become 1. At the same iteration,
these sub-systems will receive 1st row event messages from
sub-systems 1, 2 and 4 as the algorithms running on all of
their neighbors have converged, thus causing the remaining
elements of their second row to become 1.

Step 7 Now every element in the last row of S2 and S5 are
1, the algorithms running on sub-systems 2 and 5 will stop
optimizing as the whole graph has converged. The same
events will happen to all the remaining sub-systems and they
will stop their optimization process at iteration τ .

4. NUMERICAL SIMULATIONS

4.1 Problem setting of numerical simulation

We apply the proposed algorithm to the network system in
Fig. 4.

We will run two algorithms: the distributed one with supervised
stopping criterion and the distributed one with diffusion based
stopping criterion.

Suppose that sub-systems 1− 4 are source nodes; sub-systems
5− 14 are storage node and users U1−U10 are demand. The
dynamics of (1)-(3) are given in a similar way to the case of the
example of Fig. 2. We consider Problem 2 for x(0) = 0, N = 10
and randomly created positive (semi-)definite Q and R matrices.
For the design parameters of the algorithm, we set ατ = 0.05
and ε = 3 as these values gave the best results for both precision
and calculation time. In this situation, we consider to derive
the optimal control input sequence under the model predictive
control strategy, i.e., the receding horizon strategy.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10516

0 5 10 15 20 25 30 35 40 45 50
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

4

k

C
o

s
t

F
u

n
c
ti
o

n

Supervisor

Diffusion

Fig. 5. Cost function comparison of two algorithms.

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

k

C
a

lc
u

la
ti
o

n
 t

im
e

 (
m

s
)

Supervisor

Diffusion

Fig. 6. Calculation time comparison of two algorithms.

4.2 Comparison on optimal cost value and calculation time

The resulting optimal cost value and calculation time at each
time step in this case are shown in Figs. 5 and 6, respectively.
As one can see in Fig. 5, there is no difference between super-
vised stopping criterion and diffusion based stopping criterion
because the optimization parts are the same.

As for calculation time in Fig. 6, the calculation time shown
for both algorithms is the time at which each stopping criterion
determines the optimization algorithm has converged. As one
can see, the use of diffusion based stopping criterion does
not add any significant overhead. The difference is probably
related to small numerical errors caused by computation time
measurement functions in MATLAB or possible computer load
change.

Table 1 shows the sum of maximum calculation times for the
whole simulation excluding the time step 0 which is the initial-
ization part where all dual variable vectors are zero initially. We
believe the difference between supervisor and diffusion criteria
is from numeric errors caused by computation time measure-
ment functions. In this table, 2 node refers to the system in
Fig. 1, 5 node refers to the system in Fig. 2 and 14 node refers
to the system in Fig. 4. As one can see, number of neighbors
of sub-systems is a factor for the optimization time but graph

Table 1. Total calculation times of different size
systems

2 node 5 node 14 node
Supervisor 241.79 ms. 880.05 ms. 672.33 ms.
Diffusion 234.76 ms. 883.26 ms. 704.78 ms.

complexity is also a factor. We believe that the reason 5 node
case takes longer to optimize is U1 and U4 are connected to
multiple sub-systems which cannot be reduced to a constraint
that can be represented by (2).

5. CONCLUSION

This paper has proposed a new type of stopping criterion, called
here diffusion based stopping criterion, for distributed opti-
mization, where we can determine in a distributed way whether
or not the optimization algorithm converges. This approach
increases the robustness of the distribution optimization and
decreases the communication cost as it does not require extra
communication lines between a supervisor and sub-systems.We
have showed that there is no time difference between supervised
and diffusion based stopping criteria by running simulations of
the dispatch control problem for both algorithms and compar-
ing the results.

REFERENCES

Boyd, S., Xiao, L., Mutapcic, A., and J., M. (2008). Notes
on decomposition methods. Available at http://
see.stanford.edu/materials/lsocoee364b/
08-decomposition_notes.pdf.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J.
(2011). Distributed optimization and statistical learning via
the alternating direction method of multipliers. Foundations
and Trends R© in Machine Learning, 3(1), 1–122.

Giselsson, P. and Rantzer, A. (2010). Distributed model predic-
tive control with suboptimality and stability guarantees. In
Proceedings of the 49th IEEE Conference on Decision and
Control, 7272–7277.

Johansson, B., Keviczky, T., Johansson, M., and Johansson, K.
(2008). Subgradient methods and consensus algorithms for
solving convex optimization problems. In Proceedings of the
47th IEEE Conference on Decision and Control, 4185–4190.

Ma, Y., Anderson, G., and Borrelli, F. (2011). A distributed pre-
dictive control approach to building temperature regulation.
In American Control Conference (ACC), 2089–2094.

Nedic, A. and Ozdaglar, A. (2009). Distributed subgradient
methods for multi-agent optimization. IEEE Transactions
on Automatic Control, 54(1), 48–61.

Nedic, A., Ozdaglar, A., and Parrilo, P. (2010). Constrained
consensus and optimization in multi-agent networks. IEEE
Transactions on Automatic Control, 55(4), 922–938.

Ono, M. and Williams, B. (2010). Decentralized chance-
constrained finite-horizon optimal control for multi-agent
systems. In Proceedings of the 49th IEEE Conference on
Decision and Control, 138–145.

Wei, E., Ozdaglar, A., and Jadbabaie, A. (2010). A distributed
newton method for network utility maximization. In Pro-
ceedings of the 49th IEEE Conference on Decision and Con-
trol, 1816–1821.

Zhu, M. and Martinez, S. (2012). On distributed convex
optimization under inequality and equality constraints. IEEE
Transactions on Automatic Control, 57(1), 151–164.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10517

