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Abstract: Sensors for real-time continuous glucose monitoring (CGM) and pumps for con-
tinuous subcutaneous insulin infusion (CSII) have opened new scenarios for Type 1 diabetes
treatment, including the development of an Artificial Pancreas, a minimally invasive device for
automated glycemic control via insulin infusion modulation. However, permanent or temporary
faults of these two components, such as compression artifacts and pump-catheter occlusions,
may expose diabetic patients to severe risks and strongly affect the efficacy of an automated
treatment. In Facchinetti et al. [2013], a fault detection method was proposed, simultaneously
exploiting CGM and CSII data streams and individualized models of glucose-insulin interaction.
The method was assessed during night-time, a simple yet practically relevant case study where
meals do not perturb glucose-insulin dynamics. In this contribution we extend the method
from nighttime to whole day, facing the challenge of the meals and taking advantage of meal
information commonly provided by the patient to the system. To this aim, the patient-specific
model identified includes now meal as a further input of the system. The efficacy of the method

is tested using the UVA /Padova Type 1 diabetic patient simulator.

1. INTRODUCTION

Type 1 Diabetes (T1D) is an autoimmune disease char-
acterized by the destruction of pancreatic beta-cells that
are responsible for insulin production, a crucial hormone
for glucose metabolism. As a result, insulin needs to be
administered exogenously to maintain glucose concentra-
tion in an optimal range so as to delay/minimize di-
abetes complications. In the last 30 years, we assisted
to an important technological development of minimally
invasive technologies for diabetes: pumps for continuous
subcutaneous insulin infusion (CSII, [Pickup, 2012]) and
sensors for real-time continuous glucose monitoring (CGM,
[Bode and Battelino, 2010]), that opened new scenarios
for Type 1 diabetes treatment, most notably enabling the
development of the so-called Artificial Pancreas (AP), a
closed-loop system for automated modulation of insulin
infusion on the basis of CGM readings (Cobelli et al.
2011)).

However, permanent or temporary faults of either CGM or
CSII, such as compression artifacts and pump-catheter oc-
clusions, may expose diabetic patients to severe risks and
strongly affect the efficacy of the automated treatment.
This calls for the development of automated real-time
fault detection tools producing effective and prompt alerts,
allowing the timely adoption of suitable countermeasures
and, thereby, mitigating the clinical impact of the faults.
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Some notable attempts in this direction include the works
of Bequette [2010], that proposed a fault detection method
relying on CGM and capillary glucose measurements (ob-
tained via finger pricks), and of Herrero et al. [2012], that
employed CGM and carbohydrates ingestion data. Re-
cently, Facchinetti et al. [2013], proposed a fault detection
method simultaneously exploiting CGM and CSII data
streams and individualized black-box models of glucose-
insulin interaction. Faults were detected by checking for
excessive discrepancy between predicted glycemic values
and those measured by CGM. In Facchinetti et al. [2013]
the method was assessed only during nighttime, a simple
yet practically relevant case study where meals do not
perturb glucose-insulin dynamics.

This contribution aims to extend the fault detection
method of Facchinetti et al. [2013] to the whole day. To this
aim, the method is modified to handle meals by taking ad-
vantage of meal information provided by the patient to the
system, as requested by standard (manual) therapy and in
many automated control implementations. In particular,
suitable alarm strategies for different types of faults are
proposed. The efficacy of the new fault-detection method is
tested on simulated data, obtained using the UVA /Padova
Type 1 diabetic patient simulator, [Kovatchev et al., 2008,
Dalla Man et al., in press]. The faultless traces produced
by the simulator where then corrupted with faults and the
algorithm capability of detecting them without producing
false alarms is assessed via specificity /sensitivity analysis.
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2. FAULTS AFFECTING THE GLUCOSE
SENSOR-INSULIN PUMP SYSTEM

In this section we will describe permanent and temporary
faults commonly affecting CGMs and insulin pumps. Their
impact on manual and automated therapy will be dis-
cussed to highlight the high clinical relevance of a prompt
detection of these phenomena. In the work, we will only
consider the faults that are not already automatically
detected by the devices themselves. We will not consider
on other highly-impacting types of CGM errors, such as
inaccurate calibrations (inducing biases or stretching of
the recorded dynamics) and slow accuracy drifts, as their
compensation requires completely different approaches.
On the contrary, we will consider gross errors affecting
meal information provided by the patients to the system,
in all respects a (rather critical) fault from a system
perspective.

2.1 CGM sensor faults

In a CGM sensor, glucose measurement is performed via a
glucose-oxidase reaction on a needle usually inserted in the
abdominal tissue. Failures of the CGM sensor are mainly
related to biomechanic issues of the sensor-tissue interface
Helton et al. [2011]. In particular, motion of the patient
and pressure on the sensor site can produce transient
effects that can alter the glucose measurement. Spikes, i.e.
isolated readings with abnormally large error, are usually
due to motion of the patient and can be critical because
can easily generate false crossing of the hypoglycemic
threshold (70 mg/dl), unnecessarily triggering alarms.

Pressure application on the sensor (e.g., by rolling on the
sensor while sleeping), alters the glucose-diffusion process
in the insertion region and hence the sensitivity of the sen-
sor, resulting in a systematic underestimation of glucose
concentration for several minutes. These compression arti-
facts, called pressure-induced loss of sensitivity, are critical
because they could trigger false hypoglycemic alerts and
induce the AP controller to improperly suspend insulin
infusion.

2.2 Insulin pump faults

Failures of the insulin infusion device can be due to
mechanical defects [Guilhem et al., 2009] or to kinking,
occlusion, and simple pulling out of the pump catheter
from the insertion site [Schmid et al., 2010, van Bon
et al., 2012]. Furthermore, in AP systems where the insulin
pump is controlled wireless by a device running the control
algorithm, persistent or recurrent communication faults
may cause interruption or reduction of insulin delivery.
Of note, the effect of an insulin pump fault becomes ob-
servable on glucose concentration profile only after tens of
minutes (usually more than 40-50) since delays in insulin
absorption and insulin action are present [Cobelli et al.,
2009, Hovorka, 2006, Cobelli et al., 2011]. Apparently, such
faults can be critical both for the safety of the patient
and for the correct functioning of AP systems, since the
reduced or missed delivery of insulin could lead to hyper-
glycemia and increases the risk of ketoacidosis [Guilhem
et al., 2009]. Moreover, prolonged hyperglycemia following
low/missed insulin can easily cause overcorrection and

hypoglycemia, due to the emptying of insulin storage in
the body and the consequent exacerbation of insulin action
delay.

Although the majority of infusion related faults causes a
reduction of infused insulin, there are also a few, yet very
important, cases in which insulin injected is larger than
the one the system is aware of, for instance if the infusion
acknowledgment sent by the pump fails to reach the
controller due to communication errors or if a misbehaving
patient manually injects externally additional insulin.

2.3 Meal and meal-bolus faults

Controlling meal effects on blood glucose is a challenging
disturbance rejection problem that patients have to face
daily. At the time being, patients using CSII pumps deliver
themselves a large insulin dose before each meal, usually
called insulin bolus. The amplitude of this insulin pulse
is proportional to the amount of carbohydrates estimated
to be present in the upcoming meal, [Rosenbloom et al.,
2008]. The carbohydrates-to-insulin ratio (CR) is patient-
specific and provided to them by their diabetologist. Meal
control is a major challenge also in automated insulin-
infusion schemes, once again due to the large delay related
to subcutaneous insulin injection route. As a consequence,
a number of AP systems ask the patient to estimate car-
bohydrates content of the upcoming meal and to provide
manually such an estimate to the controller (this proce-
dure is usually called meal announcement [Cobelli et al.,
2011]). In response to the announcement, the AP system
delivers a pre-meal bolus. Patient compliance to meal
bolus/announcement is critical to prevent post-prandial
hyperglycemia [Burdick et al., 2004, Olinder et al., 2009],
nonetheless it is difficult to enforce, especially for snacks
and in adolescents [Olinder et al., 2011].

Meal faults, i.e. lack of consistency between estimated
and actual meals, can be due to announcement omis-
sion or erroneous/multiple announcements, non-finished
meal, vomiting or gross carbohydrates-estimation errors,
strongly impacting on the effectiveness of the therapy.

Meal-triggered insulin boluses (from now on simply meal
boluses), are affected by the above presented meal faults
but might also be subject to the previously mentioned
pump faults. Most frequently the consequence is an over-
estimation of the injected insulin, exposing the patient to
risk of hyperglycemia, but sometimes faults might seldom
result in an underestimation of the injected insulin with
the consequent risk of hypoglicemia.

3. THE FAULT DETECTION METHOD

The block scheme of Fig.1 illustrates the architecture of
the fault detection method, which conceptually consists of
two separated modules. The first module is executed off-
line and provides a Kalman-filter predictor identifying a
patient-specific, linear, black-box model which describes
the relationship between glucose concentration measured
by CGM and the two considered inputs: insulin injected
by the pump and carbohydrates assumed by the patient
(meal). The second module works on-line and is in charge
to generate faults alerts. To do so, the Kalman predictor,
fed by measured CGM, CSII and meal data, provides
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Fig. 1. A block scheme describing the architecture of the fault detection method. The Offline ModeléPredictor module
(top) performs the identification of glucose-insulin model and computes the the Kalman predictor. The Online
Prediction & Alert module (bottom) performs the retrospective predictions of glucose concentrations (Block 3)
and the comparison between predictions and measured CGM values to establish the presence of faults (Block 4).

at any time ¢ the retrospective predictions of glucose
concentration g(t|t — 1), g(t|t — 2),...,§(t|t — P) together
with their confidence interval. The alert generation mod-
ule checks the consistency of these predictions with the
corresponding actual measurements given by the CGM
sensor and possibly generates a fault alert. A detailed
description of fault detection method is reported in the
following subsections 3.1 and 3.2.

3.1 Offline Model & Predictor Module

Both the identification of the glucose-insulin model (Block
1 of Fig.1) and the derivation of the Kalman predictor
(Block 2 of Fig.1) are performed off-line from previously
collected CGM, CSII and meal data of the patient. Block
1 produces a discrete state-space model in the innovation
form:
xz(t+1) = Az(t) + Bu(t) + Ke(t) (1)
y(t) = Cx(t) + Du(t) + e(t) (2)
where z(t) is the n x 1 state vector at discrete time ¢, the
u(t) is the 2 x 1 vector of inputs, u(t) = [i(t), m(¢)]7,
where the scalar i(¢) is the insulin infusion rate (U/h)
at time ¢ (measured in U/h) and the scalar m(t) is the
carbohydrate ingestion, meal from now on, an impulsive
signal equal to zero everywhere except at meal time, where
it is equal to the estimated meal size. e(t) is the scalar
innovation process (white noise of variance o2 estimated
from the data), y(t) is the glucose level measured by the
CGM sensor at time t (measured in mg/dl), A is the
n X n state matrix, B is the n x 2 input vector, K is
the n x 1 state-disturbance vector, C' is the 1 x n output
matrix (in this case is a vector), and D is the 2 x 1 feed-
forward matrix. The identification of unknown matrices
A, B,C,D, and K of the model is performed resorting
to a numerical algorithm for subspace state identification
suitable for closed-loop systems such as the glucose-insulin
one, see Katayama et al. [2005] and therein for further
details.

The Kalman predictor can be obtained by simply comput-
ing, at each time instant ¢, the estimation of the future
state vector Z(t + 1t):

Z(t+1t)=Az(t|t—1)+Bu(t)+ K (y(t)—g(t[t—1)) (3)

and using this value to estimate the 1-step ahead glucose
prediction (¢t — 1):

G(t[t=1)=C(t|t— 1)+ Du(t) (4)

More details on the implementation can be found in
Franklin et al. [1990].

3.2 Online Prediction & Alert Module

The Kalman predictor is applied in real time using the
streams of CGM, CSII and meal data. In particular, for
each t, the predictor is fed with the amounts of insulin
injected till time ¢, meal consumed up to ¢, and with
CGM data till time ¢ — P, where P is the prediction
horizion in steps (i.e, prediction PH minutes ahead, PH
= P.Ts, Ts = 5 [min] sampling time of the system). Block
8 output is the “retrospective” prediction of all glucose
concentrations from ¢ — P + 1 to ¢, computed as:

§(t—P4k|t—P)=CA* & (t— P+1|t— P}
k—1 4 (5)
+CY A7 Bu(t—P+i)+ Du(t— P+k)

i=1

with & = 1,...,P. Block 8 allows also producing an
estimate of the confidence interval for each of the predicted
values §(t — P + k|t — P):

(9t —P+k|t—P)—moy,,y(t—P+k|t—P)+moy,) (6)

where m = 3 and o5, = \/C%;,CT + 02 is the standard

deviation of the k — step ahead prediction value with ¥z,
the covariance matrix of the estimated state vector &(t —
P + k|t — P). This means that, with the chosen parame-
ters, assuming exact model and Gaussian innovation, the
estimated confidence interval should contain about 99.5%
of the CGM values, thus outliers and unexpected values
will likely overcome it.
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At each time instant ¢, Block 4 compares the k =1,..., P
CGM values y(t — P + k) with their retrospective predic-
tions §(t — P + k|t — P) and confidence intervals. Three
alarm strategies are used:

e Alarm 1 of Block 4 is an alarm for CGM fault (spikes
or pressure-induced loss of sensitivity), obtained with
P = 1. If the measurement falls outside the confidence
interval of the 1-step ahead retrospective prediction,
the sample is declared faulty. Furthermore, the mea-
surement is not used in the measurement update step.

e Alarm 2 checks if the above condition holds for 3
consecutive steps and, in this case, a second alarm is
prompted. This alarm allows to detect reliably meal
and meal bolus faults.

e Alarm 3 returns a fault alert when Vk = 3,...,12
CGM values y(t — P + k) falls outside the corre-
sponding retrospective prediction §(t — P + k|t — P)
and confidence intervals. This alarm is used for basal
infusion fault detection.

4. DATABASE

The following analysis is based on computer simulation
(in-silico data), obtained by using the UVA /Padova Type
1 diabetic patient simulator, Kovatchev et al. [2008],
Dalla Man et al. [in press]. This simulator was approved
by the US Food and Drug Administration as a substitute
of animal testing prior to closed-loop clinical trials on
humans. The simulator was used to generate fault-free
data from a population of N = 100 virtual subjects. For
each subject, 6 days of closed-loop control with three meals
per day, were simulated starting from 00:00. Breakfast,
lunch and dinner took place at 07:30, 13:00, and 19:30,
respectively with carbohydrates consumption of 50g, 60g
and 80g respectively. A zero-mean colored Gaussian noise
was added to the glucose profile to simulate measurement
noise of CGM data, as proposed in Toffanin et al. [2013].
Continuous data were sampled with sampling time T = 5
min, a typical sampling time of CGM sensors and AP
implementations.

The first 3 days of data were used for model training.
The night of day 4 was used to perform Kalman filter
initialization and was excluded from the analysis. The
remaining 2.5 days (9 meals and 2 nights) were used to
test the proposed algorithm, adding one fault episode for
each patient at a random time instant. For each type of
faults, several faults amplitudes and faults durations were
considered, as described below

Scenario A (spikes)
An anomalously large error of amplitude A was added to
the CGM reading at the random time ¢ y: CGMpyaity (t7) =
CGM(tys)+ A, to simulate a CGM spike. The considered
amplitudes were A=[—7.5,—10,—15,—20,—25] [mg/dl].
Scenario B (pressure-induced loss of sensitivity)
A sequence of consecutive large errors of amplitude A
were added to the CGM readings from the random time
ty for a fixed duration D:

CGMiauity (tr, ty + D) = CGM(ts,ty + D) + A,
to simulate a pressure-induced loss of sensitivity. The
considered amplitudes were A=[—7.5,—10,—15,—20,—25]
[mg/dl] and the durations are D = [10, 20, 30, 60] [min].

Scenario C (meal faults)
An error of relative amplitude F was added to one meal
randomly selected among the 9 available:

mfaulty(tf) = m(tf)(l + E/lOO%)

to simulate a meal estimation error. The considered rel-
ative amplitude are F = [—-100%, —75%, —50%, —25%,
0%, 25%, 50%, 75%, 100%)], spanning from a miss an-
nouncement (E=—100%) to the case in which only half of
the announced meal were actually consumed (EF=100%).

Scenario D (meal-bolus faults)
An error of relative amplitude F was added to one meal
bolus randomly selected among the 9 available:

ifaulty(tf) = Z(tf)(]. + E/].OO%)

The considered relative amplitude were E = [—100%,
—75%, —50%, —25%, 0%, 25%,50%, 75%, 100%)], span-
ning from a bolus deliver but not recorded (i.e. missed
meal bolus ackledgment, E = —100%) to the case in
which only half of the recorded insulin was actually
injected (ex. partial occlusion, E = 100%).

Scenario E (basal faults)
An error of relative amplitude £ was added to modify
the basal delivery from the random time ¢y for a fixed
duration D:

ifavity (b, by + D) = i(ty, ty + D)(1 + E/100%).

Various relative amplitudes were considered, spanning
from basal delivered but not recorded (missed injection
acknowledgment, E=—100%) to the case in which only
half of the recorded insulin was actually injected (ex.
partial occlusion, E = 100%).

Furthermore, in all scenarios we analyzed also the baseline
case in which no fault was present, i.e. A =0 or F = 0.

5. CRITERIA FOR METHOD ASSESSMENT

The performance of the fault detection method was as-
sessed by a sensitivity and specificity analysis. For sake
of clarity, let us focus first on Scenario A (spikes). For
each time instant in which a CGM value is available,
the fault-detection alarm I could be either on or off. In
case of alarm on, it was classified as true/false positive
(TP/FP) depending on whether it did/did not happen in
correspondence of a spike; in case of alarm off, it was
classified as false/true negative (FN/TN) according to
weather it did/did not occur in correspondence of a not-
faulty sample. Moreover, we computed sensitivity,

TP
TP+FN’
representing the fraction of faults correctly detected and
specificity,

Sensitivity =

TN

TN+FP’
accounting for the fraction of non-faulty samples correctly
classified. Finally we computed accuracy, defined as

TN+TP
TN+FP+FN+TP’

Specificity =

Accuracy =

Let us consider, then, bolus faults. For this type of fault,
the sample-wise comparison of the alarm-signal with the
fault /not-fault—signal proposed above is not meaningful.
In fact, since the presence of delays in insulin absorp-
tion/action, the effect of the fault on glucose concentration
will be observable only a few samples later and no alarm
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A= 0 -7.5 -10 -15 -20 -25

True Negative TN 28111.00 | 28100.00 | 28091.00 28121.00 28100.00 28200.00

False Negative FN 0.00 38.00 16.00 13.00 15.00 14.00

False Positive FP 620.00 644.00 647.00 616.00 634.00 609.00

True Positive TP 0.00 62.00 84.00 87.00 85.00 86.00

Sensitivity [%)] 100-TP/(TP+FN) NaN 62.00 84.00 87.00 85.00 86.00

Specificity [%] 100-TN/(FP+TN) [%] 97.79 97.76 97.75 97.86 97.79 97.89

Accuracy [%] | 100 s trNgE s | 9779 97.64 97.70 97.82 97.75 97.84

Table 1. Results of Scenario A: spikes.
D=0 D =10 min D =20 min
A= 0 -7.5 -10 -15 -20 -25 -7.5 -10 -15 -20 -25
TN 56783 18560 18559 18541 18559 18555 10925 10947 10923 10989 10967
FN 0.00 36.00 14.00 10.00 11.00 9.00 34.00 13.00 3.00 7.00 7.00
FP 917.00 | 543.00 535.00 528.00 535.00 533.00 | 456.00 449.00 446.00 430.00 426.00
TP 0.00 63.00 85.00 90.00 89.00 91.00 66.00 87.00 97.00 93.00 93.00
Sensitivity [%] NaN 63.64 85.86 90.00 89.00 91.00 66.00 87.00 97.00 93.00 93.00
Specificity [%)] 98.41 97.16 97.20 97.23 97.20 97.21 95.99 96.06 96.08 96.23 96.26
Accuracy [%)] 98.41 96.98 97.14 97.19 97.16 97.18 95.73 95.98 96.09 96.21 96.23
D = 30 min D = 60 min
A= -7.5 -10 -15 -20 -25 -7.5 -10 -15 -20 -25

TN 7676 7693 7724 7748 7739 3968 3946 3923 3914 3902

FN 29.00 19.00 7.00 4.00 7.00 32.00 17.00 8.00 15.00 6.00

FP 409.00 406.00 399.00 375.00 391.00 | 354.00 370.00 410.00 418.00 414.00

TP 71.00 81.00 93.00 96.00 93.00 68.00 83.00 92.00 85.00 94.00

Sensitivity [%] 71.00 81.00 93.00 96.00 93.00 68.00 83.00 92.00 85.00 94.00

Specificity [%)] 94.94 94.99 95.09 95.38 95.19 91.81 91.43 90.54 90.35 90.41

Accuracy [%)] 94.65 94.82 95.06 95.39 95.16 91.27 91.24 90.57 90.23 90.49

Table 2. Results of Scenario B: pressure-induced loss of sensitivity.

can be prompted at fault time. As a consequence, a false
negative will be unavoidable. Moreover, if a few samples
later the fault is detected, this will count as a false positive
in sample-wise analysis. To circumvent this difficulty, we
consider time intervals of duration 4h, synchronized with
meal bolus. If fault-detection alarm 2 detects a fault in
this time block, then it counts as TP, otherwise as FN.
If the meal/bolus-fault alarms is generated in any other
4h-time block, it will count as a FP. The same 4h-block
analysis is used for meal faults. For the pressure-induced
loss of sensitivity losses, a block analysis is performed on
fault-detection alarm 1, with block duration equal to the
duration of the loss under study.

6. RESULTS

Results of Scenario A are reported in Table 1. FP are
limited (specificity above 97.5%) for all simulated ampli-
tudes. Sensitivity is around 85%, except for amplitude
A = 7.5 mg/dl, that makes the spike easily confound-
able with CGM noise. Spike detection can be considered
satisfactory, exhibiting only a slight deterioration with
respect to night-only results found in Facchinetti et al.
[2013]. Similar considerations emerge from Table 2, that
reports results of Scenario B assessing pressure-induced
sensitivity losses). Results of Scenario C are reported in
Table 3 which demonstrates that the method is effective
in detecting meal faults, reaching sensitivity around 90%
when |E| > 50%. Also insulin bolus faults (Scenario D,
Table 4) are detected effectively, with sensitivity above
90% when |E| > 75%. Specificity for meal/meal-boluses
fault alarm is acceptable. Scenario E is certainly the most

challenging set-up, due to the difficulties to identify models
reliably predicting many steps ahead glycemic variation,
as needed to account for the effect of basal failures on
CGM traces. In view of this, alarm & exhibited a limited
number of FP (specificity around 90% in all tests), but
its sensitivity reaches 50% only for long-duration faults
(D > 4 hours) with large amplitues (E = £100%).

7. CONCLUSION

In this contribution we extend the fault detection method
of Facchinetti et al. [2013] for whole day use, exploit-
ing meal information. In particular, three suitable alarm
strategies for different types of faults are proposed. In-
silico assessment shows that the method is effective in
detecting CGM and meal faults. Moreover it exhibits good
sensitivity also to meal-bolus faults.

Future investigations will focus on identifying more reli-
able models, allowing to accurately predict 1-3h ahead,
which is required to detect with improved sensibility basal
faults. Moreover, the proposed method will have to be
validated on the challenging set-up of real data.
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