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Abstract: In this paper we consider the synthesis of optimal feedback controllers for a
stochastically-excited passive electromechanical network, subject to the constraint that in
stationarity, the feedback law must be realizable with a regenerative actuation system.
Regenerative systems are similar to passive systems but their dynamic constraints are more
relaxed, in the sense that they only need to conserve energy in the stationary average sense,
rather than at every time instant. In this paper, we examine the design of optimal LQG
controllers for passive networks controlled with regenerative actuation. We show that this
problem may be posed as a multi-objective LMI problem. We also characterize how close a
regeneratively-constrained optimal LQG feedback law is to a passive transfer function. The
concepts are demonstrated on a simple example related to vibration suppression.
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1. INTRODUCTION

In many control applications, the power and energy re-
quired for a given control design plays an important role
in the assessment of its favorability. In applications where
the energy available for control is stored locally (e.g.,
in a battery, supercapacitor, pressure accumulator, etc.)
such issues become central to the viability of a control
law. Such applications include many vibration suppres-
sion technologies, in which local energy storage is used to
achieve energy-autonomy. This may be desirable from the
point of view of reliability, such as for earthquake response
control systems in civil structures, for which reliance on the
external power grid introduces a significant vulnerability
during seismic events. Energy-autonomy may also be de-
sirable merely as a means of efficient system design, such
as in automotive suspension control applications.

The price paid for energy-autonomy is that the domain of
feasible control laws is constrained to include only those
that do not exhaust their storage. To put this concept in
more precise terms, consider the generic system diagram in
Figure 1, illustrating a passive electromechanical network
N excited exogenously through some vector a(t) ∈ Rna

of dynamic inputs, and resulting in a vector z(t) ∈ Rnz

of performance quantities. We assume the system to be
controlled through np ports, characterized by a vector
v(t) ∈ Rnp of potential variables, and a colocated vector
u(t) ∈ Rnp of flow variables. (For example, if v(t) is a
voltage vector then u(t) is the vector of currents flowing
into these voltages.) Vector y(t) ∈ Rny is comprised of
the measurements available for feedback. We are then
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concerned with the design of a causal feedback law K :
y → u that minimizes z under some measure.

The most straight-forward technique for designing an
energy-autonomous feedback control law is to restrict the
design domain to passive feedback laws, i.e.,

Kp =

{
K : y → u

∣∣∣∣ ∫ T

0

uT (t)v(t)dt 6 0,

∀T > 0, y, v ∈ L2

}
(1)

This is the domain of feedback laws which never inject
cumulative energy into the network. The linear subdomain
K`

p ⊂ Kp is comprised of all negative-real 1 colocated
feedback laws; i.e.,

K`
p =

{
K : v → u

∣∣∣K̂(s) + K̂H(s) 6 0, ∀Re(s) > 0
}

(2)

It is a classical result (see, e.g., Darlington, 1999), that any
such feedback law can be realized via a network of passive
components. For example, in an electrical implementation,
the feedback law could be implemented with ideal re-
sistors, capacitors, inductors, transformers, and gyrators.
At least on a theoretical level, a feedback law K ∈ K`

p
can therefore be implemented through classical network
design, thus forgoing altogether the need for active control
and an energy storage subsystem.

In the area of vibration control, such passive linear feed-
back implementations have been investigated in many
contexts. Many mechanical techniques, such as tuned
mass dampers, are ubiquitous in mechanical engineering
1 Note that, due to our sign convention for v and u, K : v → u consti-
tutes positive feedback, and positive uT v denotes injection of power
into the network. Thus K`

p is the domain of negative-real transfer
functions. This is in contrast to the more usual convention of negative
feedback between u and v which leads to the characterization of K`

p

as the domain of all positive-real transfer functions.
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Fig. 1. np-ports passive network N with exogenous input
a, peformance output z, and feedback output y

[Den Hartog, 1985] as well as civil structures [Housner
et al., 1997]. Recently, formal passive synthesis techniques
from classical electrical network theory have been revisited
and linked with these mechanical designs, through the
use of inerters [Smith, 2002]. Passive electrical feedback is
common in vibration suppression applications to aerospace
systems, in which piezoelectric or electromagnetic trans-
ducers are shunted with tuned resonant RLC networks
[Moheimani, 2003, Behrens et al., 2005].

Although they require no energy, linear passive feedback
implementations are disadvantageous for a few reasons.
Most immediately, the design domain K`

p may be too
restrictive to achieve acceptable closed-loop performance.
Additionally, passive designs do not afford the features of
adaptivity. Moreover, all the existing synthesis techniques
whereby the electrical network is derived from a desired
K ∈ K`

p result in rather elaborate networks, even for
moderately-sized problems [Anderson and Vongpanitlerd,
1973]. For all these reasons, energy-autonomous active
feedback control may be preferable over passive systems.

Beginning with the work of Jolly and Margolis [1997],
a number of investigations have been conducted in the
area of vibration suppression, using a type of energy-
autonomous device called a regenerative actuator. Similar
concepts have been developed for automotive suspensions
by Okada et al. [1997] and Li et al. [2013], for aerospace
applications by Onoda et al. [2003], for civil structure
applications by Nerves and Krishnan [1996], Scruggs and
Iwan [2005] and Gonzalez-Buelga et al. [2014], and in
application-independent contexts (Nakano et al., 2003).
Figure 2 shows an diagram of an electromagnetic regen-
erative actuation system, in which (u, v) constitute the
current and voltage vectors, and are proportional to the
linear forces and velocities of the devices through coupling
factors; i.e., fi = κiii, vi = κiẋi. The regenerative actua-
tion system interfaces the mechanical system in which the
transducers are embedded, with a supercapacitor or fly-
wheel. The system operates entirely off the stored energy
Es(t) in the supercapacitor, replenishing its supply with
energy it extracts from the mechanical system. It must be
controlled to ensure that Es(t) > 0.

The key concept that distinguishes the regenerative system
in Figure 2 from a passive system, is the fact that in its
undisturbed state, Es > 0. Furthermore, in its typical
operation, we assume that the rate at which Es(t) changes
is slow, compared to the time constants of the problem
at hand. To put this more precisely, we assume that if τ
is a characteristic time constant for a given application,
that |Ės(t)| � Es(t)/τ . Under this assumption, for deter-
ministic problems the set of feedback laws realizable by a
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Fig. 2. Electromechanical example of a regenerative actu-
ation system

regenerative system is

Kr =

{
K : y → u

∣∣∣∣∣ lim
T→∞

1
T

∫ T

0

uT (t)v(t)dt 6 0, ∀a ∈ A

}
(3)

The subset K`
r of linear feedback laws is defined analo-

gously. We note, however, that unlike in the passive case,
a K ∈ K`

r need not be colocated; i.e., it is not necessary
that y = v for a linear feedback law to be regenerative.

Comparing (3) to (1), we see two essential differences:
(i) We relax the requirement on the inner product of
(u, v), such that negativity is only enforced on the entire
trajectory, rather than on every subdomain [0, T ] therein,
and (ii) The domain over which the negativity condition
must hold is a specified domain A of possible disturbances,
a, rather than the domain of all y and v ∈ L2. The above
imply that the determination of whether a given K ∈ Kr

depends on the specification of a disturbance set A, and
also, implicitly, on the dynamics of the specific network
in which the actuation system is embedded. For example,
a given K may be regenerative for all disturbances with
frequency content confined to some range ω ∈ [ω1, ω2] but
not over other ranges [Jolly and Margolis, 1997]. Likewise,
a given K may be regenerative for the impulse response of
one system, but not for another.

The present paper examines the design of regeneratively-
constrained feedback laws in a stochastic setting. To do
this, we must define Kr in a probabilistic setting. For
our analysis, A becomes the probability space associated
with a stationary stochastic process with known spectrum
Sa(ω), and

Kr =
{
K : y → u

∣∣ E(uT v) 6 0, a ∼ A
}

(4)

where E(·) denotes the expectation in stationarity.

Of particular interest in this paper will be the optimization
of regeneratively-constrained feedback laws in the context
of multi-criterion LQG control. Specifically, we are inter-
ested in the following optimization problem:

K? = argmin
K∈K`

r

{
max

i=1...nz

E(z2i ) , a ∼ A
}

(5)

The remainder of the paper is organized as follows: Section
2 illustrates the straight-forward solution to this problem
using LMI techniques. Section 3 develops a means for
assessing how close K? is to K`

p; i.e., how “close” the op-
timal regenerative controller is to being passive. Section 4
considers some simple examples in the context of vibration
suppression. Finally, Section 5 ends with some concluding
remarks.
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2. REGENERATIVELY-CONSTRAINED OPTIMAL
STOCHASTIC CONTROL

We assume a finite-dimensional linear time-invariant dy-
namical model for the passive network; i.e.,

N :


ẋN = ANxN +BN

a a+BN
u u

v = CN
v xN +DN

vuu
y = CN

y xN +DN
yaa

z = CN
z xN +DN

zaa+DN
zuu

(6)

Due to the Kalman-Yakubovic-Popov lemma [Anderson
and Vongpanitlerd, 1973], we note that because N is
positive-real (i.e., passive), it follows that ∃W = WT > 0
such that[

(AN )TW +WAN WBN
u − (CN

v )T

(BN
u )TW − CN

v −DN
vu − (DN

vu)T

]
6 0 (7)

We will further strengthen this condition to weakly-strict
positive-real (WSPR) [Brogliato et al., 2007] by requiring
that (AN ,W 1/2) be observable, which by Lasalle’s theo-
rem, guarantees AN to be Hurwitz.

As discussed in the introduction, we will assume the dis-
turbance a(t) to be a stationary stochastic process. We will
further assume its power spectrum can be approximated to
sufficient accuracy as strictly-proper and rational. These
assumptions imply the existence of a state space model for
a(t) as

A :

{
ẋA = AAxA +BAw
a = CAxA

, Sw(ω) = I (8)

where Sw(ω) is the power spectrum of the generating white
noise signal w(t).

Augmenting systems N and A, we arrive at the composite
plant model

P :


ẋ = Ax+Buu+Bww
v = Cvx+Dvuu
y = Cyx
z = Ex+ Fu

(9)

with appropriate definitions for the augmented variables.

For this augmented system model, we re-state the control
design objective (5) as the minimization of

J , max
i∈{1...nz}

E
{

(Eix+ Fiu)
2
}

(10)

(where Ei and Fi are the ith rows of their respective ma-
trices), subject to the average generated power constraint

p̄ , −E
{
uT (Cvx+Dvuu)

}
> 0 (11)

For the optimization domain, we will assume the feedback
law is strictly proper, and that it is (at most) the same
order as P. As such, we assume a controller of the form

K :

{
ẋK = AKxK +BKyK
u = CKxK

, dimxK = dimx (12)

Controllers from the above set which also satisfy (11)
comprise the intersection K ∩ Kr.

The above problem falls into a broad class of multi-
criterion LQG problems that can be handled efficiently
through the use of semidefinite programming; i.e., Linear
Matrix Inequality (LMI) methods. Prior to illustrating
this, however, we will need one more result, which is
necessary to turn the above into a convex optimization.

This result, stated in the theorem below, was proven shown
by Scruggs [2010].

Theorem 1. Assume N to be WSPR, and that R ,
1
2

(
Dvu +DT

vu

)
> 0. Then

p̄ = p̄0 − E
{

(u−Gx)TR(u−Gx)
}

(13)

where p̄0 = −BT
wTBw > 0, G = −R−1

(
1
2Cv +BT

u T
)
, and

T = TT satisfies Riccati equation

0 = ATT + TA−
(
1
2C

T
v + TBu

)
R−1

(
1
2Cv +BT

u T
)

(14)

Using this theorem, we can restate constraint (11) as

E
{

(u−Gx)TR(u−Gx)
}
< p̄0 (15)

To frame the optimization problem as a convex linear
program, first define

S = E
{[

xxT xxTK
xKx

T xKx
T
K

]}
(16)

Then for some quantity γ, we have that J < γ if S
simultaneously satisfies the following three inequalities:[

A BuCK

BKCy AK

]
S + S

[
A BuCK

BKCy AK

]T
+

[
Bw 0
0 0

]
< 0

(17)

[Ei FiCK ]S

[
ET

i

CT
KF

T
i

]
< γ , i = 1...nz (18)

tr

{
([−G CK ])S

([
−GT

CT
K

])
R

}
< p̄0 (19)

Equivalently, defining Â =
[

A BuCK

BKCy AK

]
, J < γ if ∃P =

PT > 0 and Q = QT such that

0 >

ÂTP + PÂ P

[
Bw

0

]
[
BT

w 0
]
P −I

 (20)

0 <

 γ [Ei FiCK ][
ET

i

CT
KF

T
i

]
P

 , i = 1...nz (21)

0 <

 Q [−G CK ][
−GT

CT
K

]
P

 (22)

p̄0 > tr{QR} (23)

Our optimization problem is them to minimize γ over the
domain {P,Q,AK , BK , CK , γ}, and subject to constraints
(20), (21), (22), and (23).

We now make use of a standard coordinate transformation
which converts the above matrix inequalities into linear
form [Scherer et al., 1997]. Let

P =

[
Y N
NT ×

]
P−1 =

[
X M
MT ×

]
(24)

where “×” denotes terms that are unnecessary to be
solved. Now, define similarity transformation matrix

Π =

[
X I
MT 0

]
(25)

Recasting the above problem with the coordinate change

ξ = Π−1
[
xT xTK

]T
gives
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0 >

∆1 + ∆T
1 A+ ÃT Bw

AT + Ã ∆2 + ∆T
2 Y Bw

BT
w BT

wY −I

 (26)

0 <

 γ EiX + FiC̃ Ei

XET
i + C̃TFT

i X I
ET

i I Y

 , i = 1...nz (27)

0 <

 Q C̃ −GX −G
C̃T −XGT X I
−GT I Y

 (28)

where the transformed optimization variables for the con-
troller are

Ã =NAKM
T +NBKCyX + Y BuCKM

T + Y AX (29)

B̃ =NBK , C̃ = CKM
T (30)

where

∆1 =AX +BuC̃ ∆2 =Y A+ B̃Cy (31)

We thus have that the optimization problem becomes to
minimize γ over the domain {γ,Q, Ã, B̃, C̃,X, Y }, subject
to LMI constraints (26), (27), (28), and (23). Noting that
all matrix inequalities are linear, we thus arrive at a convex
optimization that can be solved by standard LMI solvers
[Boyd et al., 1994]. We note that, in contrast to many
multi-objective LMI optimization problems, it was not
necessary to impose any conservatism on the optimization
domain (other than bounding the order of the controller)
to arrive at a convex problem.

As stated above, the optimal solution may be unbounded,
because the feedback measurement signal y has been
assumed to be uncorrupted by noise. To force a finite
solution, we presume a small level of artificial measurement
noise on y, with spectral intensity matrix Ξ. This merely
modifies (26) to

0 >


∆1 + ∆T

1 A+ ÃT Bw 0

AT + Ã ∆2 + ∆T
2 Y Bw B̃

BT
w BT

wY −I 0

0 B̃T 0 −Ξ−1

 (32)

Following the solution of the above optimization, associ-
ated parameters M and N can be found as any matri-
ces satisfying XY + MNT = I. (Different solutions for
(M,N) correspond to different state space realizations of
the controller.) With M and N found, optimal controller
parameters {AK , BK , CK} can then found by inverting
equations (29)-(30).

2.1 Accounting for Parasitics

Irrespective of what technology (i.e., hydraulic, electronic,
etc.) might be used to realize a regenerative actuation
system, it will exhibit parasitic losses, which will hamper
its ability to recycle the energy it extracts from the net-
work. The set Kr defined in (3) and (4) (for deterministic
and stochastic situations, respectively) presumes idealized
hardware with perfect efficiency. However, it is straight-
forward to extend such definitions to account for basic
parasitic loss models [Scruggs et al., 2012]. Here, we do this
for the stochastic definition of Kr, with primary reference
to electronic implemenations.

We assume the power electronics in a regenerative force ac-
tuation system implement high-bandwidth current track-

u200

1

pd

actual

approximate

pa
ra

si
tic

 lo
ss

Rd

Fig. 3. Actual and approximate loss models for scalar u

ing at each of the transducers, through the use of pulse
width modulation or hysteretic switching control. The
drives that interface each transducer with the storage bus
facilitate these switching actions through high-frequency
gating of MOSFETs. If ideal circuit components were
used, this mode of switching control would exhibit zero
dissipation; i.e., there are no dissipative components in the
idealized electronics. However, in reality, parasitic losses
manifest themselves in many ways. There are conductive
losses in the conversion system, due to resistances in the
circuit components, including the MOSFETs and diodes.
There are also impulsive transition losses, incurred each
time a MOSFET switches on or off. Additionally, there is
a gating energy necessary to charge the gate capacitance
of a MOSFET each time it is switched on, and this energy
is generally not recovered when the MOSFET is switched
off again. This gives rise to potentially-significant parasitic
gating losses.

A highly accurate depiction of all these parasitic losses
would result in a considerably more complex character-
ization of Kr. However, it can be shown that for many
systems, these gating losses are predominantly a function
of u, and exhibit a semi-concave functionality with respect
to u2. This is shown for scalar u in Figure 3. Because of
this, there exist parameters (p̄d, Rd), representing effective
static power loss and transmission resistance respectively,
which over-bound the true loss model. This is also shown
in Figure 3. As such, we can conservatively account for
parasitics through a modification of the average power flow
p̄ from (11) to

p̄ , −E
{
uT (Cvx+Dvuu)

}
− E

{
p̄d + uTRdu

}
(33)

with corresponding changes to the definition of Kr.

In the analysis above, substitution of (33) for (11) has only
two consquences. First, it modifies R to be defined as

R = 1
2

(
Dvu +DT

vu

)
+Rd (34)

Second, it modifies the definition of p̄0 to

p̄0 = −BT
wTBw − p̄d (35)

With these changes in place, Theorem 1 still holds, and
the development which follows is still valid.

3. REGENERATIVE VS PASSIVE CONTROL

One of the reasons to use regenerative technology, rather
than passive techniques, is that it provides a larger design
domain. However, such technology will obviously be more
expensive, and its use in an application must be justified
by some evidence that its capabilities are indeed in excess
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of those achievable by passive systems. In this paper, we
reduce this down to the most basic question: How close is
the optimal K? ∈ K`

r to the set K`
p? Clearly, in order

for this to make sense, we must have y = v, because
linear passive feedback laws must be colocated. Beyond
this, however, the answer will depend on all the problem
data. In this paper we address this issue by checking to
see whether the optimal K?, obtained via the techniques
described in the previous section, is also in K`

p. If it is not,
then we wish to find some measure of how close it is to
K`

p.

Technically, if K? is passive then the KYP lemma must be
true; i.e., ∃WK = WK > 0 such that

AT
KWK +WKAK 6 0 , WKBK = −CT

K (36)

However, this precise condition may not exactly hold for
the optimal K?, even if it is, for all practical purposes,
passive. For example, consider a problem with one actua-
tor, thus where the K?(s) is scalar. In order to be passive,
we must have that K?(s) be stable, and at each finite
ω, K?(jω) + K?(−jω) 6 0. However, it may be the case
that this condition is satisfied at all ω where |K?(jω)| is
significant, but perhaps not at extremely high frequencies,
where |K?(jω)| is extremely small. In such circumstances,
there exists a passive system Kp which is extremely close
to K? (i.e., for which ‖Kp − K?‖∞ < ε0 for ε0 equal to
some tolerance), which gives performance which is nearly
indistiguishable.

To address the above issue, we assume that the “passive
equivalent” of K?, if it exists, has a realization of the same
order as K?, i.e.,

Kp ∼
[
Ap Bp

Cp Dp

]
, dim(Ap) = dim(AK) (37)

and we seek to find a realization of Kp ∈ K`
p which

minimizes ‖Kp−K?‖∞. Stated in generality, this problem
is nonconvex, due to the constraint on the domain. How-
ever, if we assume Ap = AK and Bp = BK , we recover
convexity.

Under this assumption we have that ‖Kp −K?‖∞ < ε if
∃Tp = TT

p > 0 satisfyingAT
KTp + TpAK TpBK CT

p − CT
K

BT
KTp −εI DT

p

Cp − CK Dp −εI

 < 0 (38)

In order for Kp to also satisfy passivity, we must have that
∃Wp = WT

p > 0 satisfying[
AT

KWp +WpAK WpBK + CT
p

BT
KWp + Cp DT

p +Dp

]
< 0 (39)

To find the best approximation ofK? within the parametriza-
tion for Kp, we then minimize ε over the domain
{ε, Cp, Dp, Tp,Wp}, subject to constraints Tp > 0, Wp > 0,
(38), and (39). Upon execution of this optimization, we
conclude that K? is “effectively passive” if ε < ε0, for ε0
defined to be some tolerance. If ε > ε0, then its value
implies a distance of K? to K`

p.

We note that the above technique is equivalent to recov-
ering passivity for K? by shifting the zeros of its transfer
function.

The above algorithm can be streamlined with the one
described in the previous section, by placing it directly

in terms of the optimal parameters {Ã?, B̃?, C̃?, X?, Y ?}.
Specifically, it is straight-forward to show that the above
are equivalent to finding feasible matrices T̃p > 0 and W̃p,

and transformed passive system parameters C̃p = CpM
T

and D̃p = Dp, satisfying the following LMIs, which are
equivalent to (38) and (39) respectively:ĀT T̃pZ + ZT T̃pĀ ZT T̃pB̃

? C̃T
p − C̃?T

B̃?T T̃pZ −εI DT
p

C̃p − C̃? Dp −εI

 < 0 (40)

[
ĀT W̃pZ + ZT W̃pĀ ZT W̃pB̃

? + C̃T
p

B̃?T W̃pZ + C̃p D̃T
p + D̃p

]
< 0 (41)

where

Ā =Ã? − B̃?CyX
? − Y ?BuC̃

? − Y ?AX? (42)

Z =I − Y ?X? (43)

Minimizing ε subject to the above inequalities, in lieu of
(38) and (39), obviates the need to solve for M , N , AK ,
BK , and CK to find ε.

We note also, as evident from (40) and (41), that these

inequalities are guaranteed to be infeasible (for T̃p > 0

and W̃p > 0) if ĀZ−1 is non-Hurwitz. In this circumstance,
the optimal K ∈ K`

r will be open-loop unstable (while still
stabilizing the closed loop), thus precluding the possibility
of a passive feedback law with the same poles.

4. EXAMPLE

Consider the three-degree-of-freedom structure in Figure
4a, in which a single regenerative actuator is used to sup-
press the vibrations. The structure is nondimensionalized,
with all springs and masses equal to 1, and dashpots
equal to 0.01. The acceleration a = ẍ0 is taken as an
exogenous stationary stochastic disturbance with power
spectral density

Sa(ω) =
ω2

(ω2 − 1)2 + (0.25ω)2
(44)

We further assume z = [x2 − x1 ẍ3 u]
T

and y = v = ẋ2 −
ẋ1. For this example, the unconstrained multi-criterion
LQG optimal performance is 1.701. We are interested in
knowing how the presence of the regenerative constraint,
and the severity of the parasitic losses, hamper the ability
of the system to achieve acceptable performance.

Figure 4b shows a surface plot of J values for uncon-
strained, over regenerative performance. We see that for
an extremely efficient regenerative system, the optimal un-
constrained performance is achieved, because p̄ > 0. As the
parasitics increase, there is a degradation in performance,
as the constraint p̄ > 0 becomes activated. Ultimately
this constraint imposes a boundary on feasibility, beyond
which there is no controller (no matter how poorly it might
perform) that can recover more energy than it expends.

Figure 4c shows a plot of the values of ε for this example,
normalized by ‖K?‖∞, for the same domain of (p̄d, R) val-
ues. We see that over the majority of the feasible domain,
K? is open-loop unstable. Where it is not unstable, ε = 1.
This is due to the fact that in these regions K? has high
gain at low frequencies, and exhibits positive feedback in
the low-frequency range.
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Fig. 4. First example: (a) system diagram, (b) surface plot
of performance ratio, relative to unconstrained LQG,
with values ranging from 1 (white) down to 0 (black)
(c) surface plot of ε solutions, normalized by ‖K?‖∞

5. CONCLUSIONS

The focus of this paper has been on the use of regenerative
actuation to control stochastically-excited passive systems,
and has highlighted some interesting potential advantages
of regenerative actuators:

• For a sufficiently efficient regenerative system, it may
be possible to realize a fully-active LQG control law.
• Regenerative actuation systems can implement open-

loop-unstable controllers, which affords them a capa-
bility which is fundamentally beyond passive systems.
• Even when regenerative controllers are open-loop-

stable, they generally are not passive.
• Regenerative systems with high parasitic loss parame-

ters can perform extremely poorly. Although we have
not investigated it here, there will almost always be a
subset of the feasible (p̄d, Rd) region, outside of which
a regenerative implementation is not useful, even if
it is physically possible. However, finding this region
requires that the optimal passively-constrained J be
found, which is a nonconvex optimization problem,
and is beyond the scope of this paper.
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