
Automated Custom Code Generation for
Embedded, Real-time Second Order Cone

Programming

Daniel Dueri, ∗ Jing Zhang, ∗ and Behçet Açikmeşe ∗

∗ The University of Texas at Austin, Austin, TX 78712 USA (e-mail:
daniel.dueri@utexas.edu, serenaj.zhang@gmail.com,

behcet@austin.utexas.edu).

Abstract: In this paper, we discuss the development of an Interior Point Method (IPM)
solver for Second Order Cone Programming optimization problems that is capable of producing
customized ANSI-C code for embedded, real-time applications. The customized code is generated
for a given problem structure and makes use of no dynamic memory allocation, minimizes
branching, wastes no mathematical or logical computations, and has minimal dependencies to
standard libraries. The resulting software is designed to be easy to implement on embedded
hardware with limited computing capabilities, while still providing accurate results rapidly
enough for real-time use. The core IPM algorithm is a fairly standard primal-dual IPM, which
makes use of Mehrotra predictor-corrector method with Nesterov-Todd scalings and Newton
search directions. We make use of the Approximate Minimum Degree heuristic to maximize the
sparsity of the Cholesky factorizations that are ultimately used to solve for the search directions.
We conclude the paper by presenting the computational performance results from two example
problems: a Mars landing optimal control problem and a reaction wheel allocation problem. The
code generated for the Mars landing problem was successfully validated in three flights onboard
a NASA test rocket, and was used in real-time to generate the optimal landing trajectories
that guided the rocket. To the best of our knowledge, this was the first time that a real-time
embedded convex optimization algorithm was used to control such a large vehicle, where mission
success and safety critically relied on the real-time optimization algorithm.

1. INTRODUCTION

Historically, optimization based algorithms have been rel-
egated to ground-based design and Monte-Carlo simula-
tions on desktop computers or even clusters. The main
reason behind this choice was that numerical optimiza-
tion was not believed to be reliable enough for real-time,
autonomous computations. This belief was somewhat jus-
tified since many traditional nonlinear programming tech-
niques (Bersekas, 1999) have no guarantees of finding
optimal (or, even feasible) solutions to constrained opti-
mization problems. On the other hand, Convex Optimiza-
tion (CO) contains a large class of optimization problems
that can be reliably solved in polynomial time to global
optimality, without any expert tweaking of solution pa-
rameters (Boyd and Vandenberghe, 2004). This motivated
researchers, including us, to formulate many challenging
control problems in a convex optimization framework.
Furthermore, recent research has shown that Linear and
Quadratic Programming (LP and QP) problems can be
solved by custom algorithms in real-time (Mattingley and
Boyd, 2010b). There have also been other approaches to
real-time convex optimization, such as multi-parametric
programming (Jones et al., 2007) that systematically gen-
erates tables, and later interpolates from them in real-
time to obtain the optimal solutions. Motivated by these
developments, our goal in this paper is to introduce a new
software capability (one of the first of its kind) to cus-
tomize a generic Interior Point Method (IPM) algorithm

for real-time solutions of Second Order Cone Programming
(SOCP) problems onboard autonomous systems.

Recently, we generated a real-time IPM for the Mars land-
ing path-planning problem that was successfully validated
in three flights onboard a NASA test rocket, and was used
in real-time to generate the optimal landing trajectories
that guided the rocket (JPL et al., 2013; Scharf et al.,
2014; Açıkmeşe et al., 2013; JPL and Systems, 2012; Aung
et al., 2013). To the best of our knowledge, this was the
first time that a real-time embedded IPM algorithm was
used to control such a large vehicle, where mission success
and safety critically relied on the real-time optimization
algorithm. The custom IPM algorithm solved a trajectory
optimization problem in real-time onboard the rocket in
order to obtain a fuel-optimal landing trajectory. This
capability enabled the rocket to fly laterally more than 2.5
times more than was previously possible. Consequently,
real-time convex optimization proved to be an enabling
technology for a dramatic improvement in the flight enve-
lope of the rocket. It is demonstrated, for the first time,
that real-time convex optimization can be used reliably in
time-critical applications for high performance missions.

Convex Optimization lends itself well to the solution of
constrained control problems, provided that the cost func-
tion and constraints are convex. The latter requirement
may seem restrictive, however, recent discoveries in the
field of optimal control theory have proven that a very

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 1605



general class of control problems with non-convex control
constraints can be posed as convex optimization prob-
lems without loss of generality via a procedure known
as “lossless convexification” (Harris and Açikmeşe, 2013;
Açıkmeşe and Blackmore, 2011; Blackmore et al., 2012;
Açıkmeşe and Ploen, 2007; Açikmeşe et al., 2013; Black-
more et al., 2010). It has been shown that a convex relax-
ation of many non-convex control constraints can be used
to obtain a globally optimum solution that is the same
as the globally optimal solution of the original non-convex
problem. As a consequence, the CO solver presented in this
paper can be used to solve a variety of control problems
with mixed convex and non-convex control constraints.

In this paper, we discuss the implementation of an IPM
algorithm that has the capability of producing customized
solvers for use on real-time computational hardware. The
ultimate aim of our work is to solve optimal control
problems in real-time onboard vehicles by making use of
IPM algorithms. For the purposes of this paper, we define
“customized” to mean “tailored to a particular problem
structure;” that is, when a solver is produced for a partic-
ular problem structure, it can only solve instances of this
problem class, but will do so with much increased com-
putational efficiency. This tailoring not only reduces the
number of operations required to solve the problem, but
also reduces the number of if statements that are used - a
property that makes it very appealing for real-time code,
which should have as few branches (or if statements) as
possible. Another property of the customized C solvers
that is advantageous for real-time code is that they use
absolutely no dynamic memory allocation and use only
the memory necessary for the problem at hand.

Several recent implementations of LP and QP solvers can
generate solvers for specific problem structures, but cannot
handle SOCP problems (a generalization of QPs) (Wang
and Boyd, 2010; Mattingley and Boyd, 2010a; Ferreau
et al., 2008). Other implementations can handle second
order cones, but use first order methods instead of IPM
algorithms at the core of the solver (Ullmann, 2011). The
ECOS (Domahidi et al., 2013) SOCP solver is a recently
produced, compact, and fast generic SOCP solver that can
tackle SOCP problems with IPMs, but does not generate
customized code for a particular problem structure.

We have developed a single threaded C++ based solver
that also has the ability to generate ANSI-C “customized”
solvers. We note that the customized solvers have no
library dependencies (other than standard libraries, such
as math and stdlib), which makes the software portable.
The specific implementation of the solver shares many
similarities with (Domahidi et al., 2013) in that it employs
a standard Mehrotra predictor-corrector IPM algorithm
with self-dual embedding and makes use of the Approxi-
mate Minimum Degree heuristic to increase the efficiency
of sparse Cholesky factorizations (Amestoy et al., 2004).
Furthermore, Nesterov-Todd scalings (Nesterov and Todd,
1997) are used to condition matrices.

2. SOCP OPTIMIZATION

In this section, we give a brief overview of the solver
implementation and the techniques that we use to make
the computations efficient. The formulation introduced

follows the formulation introduced by (Peng et al., 2001;
Wang, 2003) closely.

We give three key definitions in this section and refer read-
ers to (Boyd and Vandenberghe, 2004) for a comprehensive
study of convexity. From set theory, we define a linear cone,
KL, as (Boyd and Vandenberghe, 2004):

KL = {x : x ≥ 0} = R+ (1)

where we see that all non-negative real numbers (and
vectors of non-negative real numbers) are elements of the
linear cone. Furthermore, we can define a second order
cone as (Boyd and Vandenberghe, 2004):

KS = {x = [x1,x2:n]T ∈ Rn : x21 ≥ ‖x2:n‖2} (2)

for any n ≥ 2. One can use second order cones to express
quadratic inequality constraints and costs. Finally, the
dual, K∗, of a set K is defined as (Boyd and Vandenberghe,
2004):

K∗ = {s : xTs ≥ 0 ∀x ∈ K} (3)

It can easily be shown that the linear and second order
cones are self-dual (Boyd and Vandenberghe, 2004; Wang,
2003); that is, the dual cone of the linear cone is the linear
cone, etc. This property will be useful in the following
section.

2.1 SOCP Formulation

The goal of an SOCP solver is to find an optimal solution
of the Primal (P) problem, given (in canonical form) by:

minimize : cTx

subject to : Ax = b,

x ∈ K (4)

where x is the solution variable, c maps the solution
variable to a cost,A relates solution variables to constraint
equations with b on the right hand side, and K is given
by:

K = KL ×KS1
× . . .×KSm

(5)

where m second order cones are used to define the domain
of the solution variable, which is comprised of k = m + l
total cones (l linear cones in addition to m SOCs). We now
introduce the Dual (D) problem to bring more information
to the formulation. The dual problem is given by:

maximize : bTy

subject to : ATy + s = c,

s ∈ K∗ where K∗ = K (6)

where the goal of the dual problem is to find a y and
s that maximize bTy and the last constraint on s can
be rewritten as s ∈ K since K is comprised of purely
self-dual cones. It is also useful to note the duality gap
xTs = cTx − bTy ≥ 0 for any feasible primal-dual pair
x, (y, s). Also, when a strictly feasible primal-dual pair
exists (i.e., a pair that satisfies equality constraints and lie
strictly inside the cone K), the duality gap is zero for any
optimal primal-dual pair, i.e., xT∗ s∗ = cTx∗ − bTy∗ = 0
(Peng et al., 2001). Therefore, the duality gap can be used
to determine the closeness to the optimal solution.

2.2 Interior Point Methods

In order to solve the Primal and Dual problems together,
we use a primal-dual path-following IPM. For detailed

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1606



descriptions of IPM algorithms, we refer the reader to
(Peng et al., 2001; Wang, 2003; Vandenberghe, 2010).
In the following, we give a brief overview of the IPM
algorithm we implemented.

Homogenous Self-Embedding There are two major issues
with the primal/dual formulation we describe in the pre-
vious section. The first is that there is no readily apparent
way of determining whether a given optimization problem
is feasible. The second issue arises from the fact that to
use of a path-following IPM requires an initial guess that is
both feasible and in the strict interior of K. For this reason,
we lift the problem into the following equivalent self-dual
formulation (Peng et al., 2001; Nesterov and Nemirovski,
1994). Given (x0, s0, y0, τ0, κ0), solve:

minimize : βν

subject to : Ax− bτ − rpν = 0,

−ATy + cτ − s− rdν = 0,

bTy − cTx− κ− rgν = 0,

rTp y + rTd x+ rgτ = −β,
x, s ∈ K, τ, κ ≥ 0 (7)

where y and ν are free, and rp, rd, rg, β are residuals
(Peng et al., 2001; Wang, 2003) defined by:

rp ,
Ax0 − bτ0

ν0
, rd ,

−ATy0 + cτ0 − s0
ν0

,

rg ,
bTy0 − cTx0 − κ0

ν0
, β , −(rTp y0 + rTd x0 + rgτ0)

(8)

Using this formulation, a path-following algorithm can
be initialized trivially (Peng et al., 2001; Wang, 2003).
Any x0 and s0 that are in the interior of K serve as a
strictly feasible (but not necessarily optimal) solution to
the problem defined by Equation 7. Moreover, since y is
free, y0 can be taken to be a zero vector of appropriate
dimensions; finally, τ0 and κ0 must be non-negative, and
are typically chosen to be 1.

Now that our embedded problem (Equation 7) is initialized
with a strictly feasible solution, we look at the feasibility
of the Primal and Dual problems. Once the path-following
scheme converges, we can look at the values of τ and κ and
make claims about feasibility. The following list contains
all possible values that τ and κ can converge to, along with
their significance (Peng et al., 2001; Wang, 2003; Domahidi
et al., 2013; Nesterov and Nemirovski, 1994):

(1) τ > 0, κ = 0: An optimal solution of the self-
embedded problem has been found. x/τ is the optimal
solution of the primal problem.

(2) τ = 0, κ > 0, and bTy < 0: Primal is infeasible.
(3) τ = 0, κ > 0, and cTx < 0: Dual is infeasible.
(4) τ = 0, κ = 0: Problem is numerically ill-posed.

Central Path Finding the optimal solution to the ho-
mogenous, self-embedded formulation (Equation 7) is
equivalent to solving the following system of non-linear,
more specifically bilinear, equations for µ = 0 (Peng et al.,
2001; Nesterov and Nemirovski, 1994; Wang, 2003):

Ax− bτ − rpν = 0,

−ATy + cτ − rdν = 0,

bTy − cTx− κ− rgν = 0,

xTs = 0 + µ,

κτ = 0 + µ,

µ = µ0ν ≥ 0. (9)

where µ is a perturbation on the system of equations
formed by enforcing the constraints associated with the
homogenous, self-embedded formulation in the previous
section and µ0 is given by:

µ0 =
xT
0 s0 + τ0κ0
k + 1

. (10)

The solution to the system of equations in (9) is unique for
non-zero values of µ (Peng et al., 2001); therefore for each
positive µ, there exists a unique solution to the system
that can be found by using numerical techniques (such as
Newton’s method). Moreover, as µ → 0 (or equivalently,
ν → 0), the solution to the perturbed problem converges
to the solution of the original problem (Equation 7). The
solutions, (xµ, τµ, yµ, sµ, κµ, νµ), for any non-negative µ
are referred to as the central path. The difference between
one IPM and another lies primarily in how one tracks the
central path towards the unperturbed system solution.

Newton Search Directions To proceed with the solution
of the nonlinear equations (9), we need to introduce some
terminology. Given a vector, v = [v1, v2, . . . , vn]T ∈ Rn,
we define the arrowhead matrix to be:

arrow(v) ,

(
v1 vT2:n
v2:n Iv1

)
(11)

Using this definition, we can replace the fourth equation
in (9) with:

XSe = 0 (12)

since it can be shown that xTs = 0 ⇐⇒ XSe = 0,
where e = [1, 0, . . . , 0]T,

X , blkdiag(arrow(x(1)), . . . , arrow(x(k))) (13)

S , blkdiag(arrow(s(1)), . . . , arrow(s(k))) (14)

and x(i) represents the ith cone in the solution variable.
That is, we create a block diagonal matrix with an arrow-
head matrix corresponding to each cone in the solution
variable. Without loss of generality, one can arrange the
solution variables such that the linear cones are all in
the beginning, followed by the second order cones. Since
the linear cones correspond to positive scalars, the first l
elements of the block diagonal matrices reduce to just the
diagonal entries.

Given our current estimate of the solution, (x, τ , y, s, κ),
we seek to find the solution for the next iteration. In order
to do so, we can express the next solution as (x + ∆x,
τ + ∆τ , y+ ∆y, s+ ∆s, κ+ ∆κ). Plugging our expression
into the system in (9) and substituting Equation 12 into
the fourth equality, yields:

A∆x− b∆τ = rpν − (Ax− bτ),

−AT∆y + c∆τ −∆s = rdν − (−ATy + cτ − s),
bT∆y − cT∆x−∆κ = rgν − (bTy − cTx− κ),

X∆Se+ S∆Xe = νµ0e−Exs,
κ∆τ + τ∆κ = νµ0 − κτ − Eκτ (15)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1607



where Exs and Eκτ are approximations (that will be given
later) to the second order terms, ∆X∆Se and ∆κ∆τ ,
respectively. Also the ∆X and ∆S matrices are formed
in the same fashion as X and S in Equations 13 and
14. In its current form, the problem cannot be reliably
and efficiently solved (Wang, 2003), so we introduce cone
scalings that allow for an efficient method of solving the
system of equations.

Nesterov-Todd (NT) Scalings Nesterov and Todd intro-
duced a set of symmetric scalings that are inexpensive to
compute and make the problem numerically well condi-
tioned (Nesterov and Todd, 1997). An important property
of scaling matrices is that they do not change the cone or
the central path. Now, consider the ith linear or second
order cone, we can define a scaling matrix, G = GT, and
positive number, θ, as follows (Nesterov and Todd, 1997):

θ2 =

√
s(i)TQs(i)

x(i)TQx(i)
(16)

where Q = 1 for linear cones and

Q = diag(1,−1, . . . ,−1) (17)

for second order cones. For linear cones, G = 1, and for
second order cones,

G = −Q+
(e+ g)(e+ g)T

1 + eTg
(18)

where g is defined as:

g =
s(i)/θ + θQx(i)√

2
(
x(i)Ts(i) +

√
x(i)TQx(i)s(i)TQs(i)

) (19)

We can now define the scaled cones, as follows:

x̄(i) = θGx(i), s̄(i) = (θG)−1s(i). (20)

This operation can be repeated for every cone in the
solution variable (finding a unique G and θ for each
second order cone) and the scaled solution variable can
be reconstructed by concatenating all of the cones to form
x̄ and s̄. Equivalently, a pair of block diagonal matrices
can be formed such that:

x̄ = ΘG̃x, s̄ = (ΘG̃)−1s, (21)

where

Θ = diag(θ(1), . . . , θ(k)),

G̃ = blkdiag(G(1), . . . ,G(k)). (22)

We can see that by inverting the relations in Equation 21,
the following expressions hold:

x = (ΘG̃)−1x̄, s = ΘG̃s̄ (23)

Plugging Equation 23 into the fourth equality of the
system in (15), we get:

A∆x− b∆τ = r1,

−AT∆y + c∆τ − s = r2,

bT∆y − cT∆x−∆κ = r3,

X̄(ΘG̃)−1∆s̄+ S̄ΘG̃∆x̄ = r4,

κ∆τ + τ∆κ = r5, (24)

where the following convenience variables are defined (as
in (Wang, 2003)):

r1 = rpν − (Ax− bτ), r2 = rdν − (−ATy + cτ − s),
r3 = rgν − (bTy − cTx− κ), r4 = νµ0e−Exs,
r5 = νµ0 − κτ − Eκτ . (25)

Given the current solution (x, τ , y, s, κ), Exs, and Eκτ ,
one can calculate r1 through r5. We can begin to solve for
individual terms in the system of equations. Looking at
the last equality in (24) is easy to see that:

∆κ =
r5 − κ∆τ

τ
(26)

Further, we can use the fourth equality to obtain:

∆s = ΘG̃(X̄)−1r4 − (ΘG̃)2∆x (27)

Let D = (ΘG̃)−1, then it can be shown that the following
relations also hold (Wang, 2003):

∆x = D2
(
r′2 +AT∆y − c∆τ

)
, (28)

∆τ =
r′3 + aT

1 ∆y

a2
, (29)

r′2 = r2 + ΘG̃(X̄)−1r4, (30)

r′3 =r3 +
r5
τ

+ cTD2r′2, a1 =−b+AD2c,

a2 =
κ

τ
+ cTD2c.

Finally, the system of equations boils down to solving the
following linear equation:(

AD2AT + āaT
1

)
∆y = ξ (31)

where

ā=
−AD2c−b

a2
, ξ=r′1+

r′3
a2

(AD2c+b), r′1 =r1−AD2r′2.

The system in Equation 31 can be solved efficiently by
making use of the Sherman-Morrison formula (Hager,

1989; Wang, 2003). Let P̂ = AD2AT, then it can be
shown that the solution to (31) can be found by solving
the following 2 linear systems for v0 and v1:

P̂ v0 = ξ, (32)

P̂ v1 = ā (33)

and plugging the results into:

∆y = v0 −
aT
1 v0

1 + aT
1 v1

v1 (34)

We note that P̂ is a symmetric, positive definite matrix
due to the Nesterov-Todd scalings that we make use of.
Furthermore, since both Equation 32 and 33 have the
same coefficient matrix, one Cholesky factorization of P̂
is sufficient to solve both linear systems. This offers a
significant advantage since the Cholesky factorization is
the most computationally expensive part of solving a linear
system. In practice, P̂ is often a sparse matrix, so sparse
techniques can be employed to further reduce solver run-
times. Once ∆y has been found, it can be plugged into
the expressions for the other variables to produce Newton
directions. However, we still have not discussed a method
for obtaining Exs and Eκτ .

Mehrotra Predictor-Corrector The purpose of using a
predictor-corrector scheme is to deal with the second order
terms that arise from our non-linear system of equations
and update the centering term, ν. The Mehrotra predictor-
corrector has been shown to have excellent convergence

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1608



properties in practice while still being inexpensive to
compute. The procedure can be broken down into 2 steps:
prediction, and then correction. During the prediction
step, Exs and Eκτ are taken to be zero; these values
are then used to solve the system of equations in (24).
At this point, a scaling term 0 < α ≤ 1 is computed
such that the next solution does not deviate far from the
central path. There are many strategies for selecting this
scaling term, but we employ the maximum Newton step
size method given in (Wang, 2003). After the predicted
search direction is obtained, we can compute the predicted
complementarity gap as:

gp = (x+α∆xp)
T(s+α∆sp)+(κ+∆κp)(τ +∆τp), (35)

and use it to find the new centering parameter, ν:

ν =

(
gp

xTs+ κτ

)2
gp

k + 1
(36)

Moreover, we can use the predicted Newton directions to
approximate the second order terms:

Exs = ∆X̃p∆S̃pe, (37)

Eκτ = ∆κp∆τp, (38)

where

∆X̃p = blkdiag(arrow(∆x̃(1)
p ), . . . , arrow(∆x̃(k)

p )),

∆S̃p = blkdiag(arrow(∆s̃(1)p ), . . . , arrow(∆s̃(k)p )),

∆x̃p = ΘG̃∆xp, ∆s̃p = (ΘG̃)−1∆sp.

The second order approximations and centering parameter
can be used to solve the system in (24) again. However,
since the coefficient matrix is the same for both the pre-
dictor and corrector, one can reuse the factorized matrix
from the prediction step.

2.3 Algorithm Overview

We now provide a summary of our IPM algorithm in order
to bring together the core solver techniques that we have
implemented.

The above algorithm represents an overview of the opti-
mization techniques we used to solve general SOCP prob-
lems, but does not delve into the customization aspect of
our implementation.

3. CODE CUSTOMIZATION

This section presents the methods we developed to gener-
ate efficient, customized C code for specific SOCP prob-
lem classes and discusses the benefits of customized code,
which make up the bulk of our contribution. Embedded
systems typically operate in environments with stringent
real-time requirements and limited memory. For this rea-
son, it is important that the solver not allocate more mem-
ory than it needs and that it not perform any operations
unnecessarily. Moreover, some autonomous systems rely on
the results of the optimization in order to safely perform
their task, so it is important that logical branches are
avoided when possible, and are well-formulated otherwise.
We make use of “explicit coding;” where we automatically
generate code that performs certain specific, otherwise
computationally expensive tasks (mostly, sparse linear al-
gebra). To this end, we have implemented a generic IPM
algorithm for SOCPs in C++ that also has the capability

Data: a tolerance, ε, an initial point (x0, s0, y0, τ0, κ0)
as described above, and the problem structure
given as: A, b, and c.

Result: an optimal solution, (x∗, s∗, y∗, τ∗, κ∗)
begin

x = x0, τ = τ0, y = y0, s = s0, κ = κ0;

while xTs+ κτ > ε do
predict: solve (24) with ν = 0, Exs = 0, Eκτ = 0;
calculate Newton step size, α;
update ν, Eq. (36);
correct: solve (24) with Exs, Eκτ in Eqs. (37, 38);
calculate Newton step size, α;
x = x+ α∆x, τ = τ + α∆τ ;
y = y + α∆y, s = s+ α∆s;
κ = κ+ α∆κ;

if τ > 0 then
x∗ = x

τ ;
s∗ = s

τ ;
y∗ = y

τ ;
τ∗ = τ ;
κ∗ = κ;

else if κ = 0 then Problem is ill posed;

else if cTx < 0 then Dual is infeasible;

else if bTy > 0 then Primal is infeasible;

to generate a specialized ANSI-C solver tailored to the
problem it was given. In the following, we provide details
regarding our implementation of both the generic and
customized IPM solvers.

3.1 Sparsity

Many problems that naturally occur in engineering tend
to translate into sparse optimization problems, particu-
larly discrete controls problems (Açıkmeşe and Blackmore,
2011). Therefore, it is advantageous to make use of this
sparsity by avoiding computations that add or multiply
zeros. As we discussed in the previous section, the opti-
mization problem boils down to solving a pair of linear
systems. Since P̂ is a symmetric, positive definite matrix,
a Cholesky factorization of the coefficient matrix in (32)
is performed to obtain:

P̂ = L̂L̂T (39)

where L̂ is a lower triangular matrix. The number of
non-zeros present in L̂ depends on the sparsity pattern
of the P̂ matrix (the locations of the non-zero entries).
Therefore, a permutation matrix, R, can be found that
seeks to minimize the number of non-zero entries in L̂ by
transforming P̂ :

RP̂RT = LLT (40)

where L is a lower triangular matrix with a minimal
number of non-zero entries. We use the Approximate
Minimum Degree method (Amestoy et al., 2004) to obtain
an R that is both inexpensive to compute and very good
at reducing the fill-in ratio of the Cholesky factorization.
Substituting Equations 39 and 40 into Equation 32 gives:

LLTRv0 = Rξ. (41)

where RRT = I, and the Cholesky factorization and
corresponding forward/back substitutions have the least

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1609



number of non-zero entries to process. A similar transfor-
mation can be done to the linear equation found in (33)
to obtain its final form:

LLTRv1 = Rā. (42)

where L and R are the same as in Equation 41.

With a methodology for solving sparse linear systems es-
tablished, we turn our attention to other sparse operations.
In general, sparse linear algebra operations (like sparse
matrix-matrix multiplication) reduce the total number of
elementary operations, but increase the cost of each op-
eration; in other words, we reduce operations by avoiding
the addition and multiplication of zeros, but must now
determine how the remaining non-zero terms interact with
each other. In the next section, we discuss our explicit
coding scheme and how it can mitigate these issues.

3.2 Memory Allocation and Explicit Coding

Much of the computational effort associated with sparse
linear algebra stems from not knowing the problem struc-
ture beforehand, and therefore having to dynamically de-
termine which non-zero elements interact every time an
operation is carried out. However, we observe that a given
embedded system typically only solves a single class of
problems, and that the problems’ structures themselves
remain uniform; that is, the locations of the non-zero
elements in A, b, and c do not change. In order to take
advantage of this, we define a problem class; given a
problem defined byA0, b0, c0, and K0, we define a problem
class, P, as:

P = {A, b, c,K : str(A) ≤ str(A0), str(b) ≤ str(b0),

str(c) ≤ str(c0),K = K0} (43)

where the ≤ operator denotes element-wise inequality, and
str maps any non-zero element to a 1 and leaves 0 elements
undisturbed (thereby forming the sparsity structure of its
input). Clearly,A, b, and cmust have the same dimensions
as A0, b0, and c0 respectively. In this framework, any
A that is more sparse than A0 can still be in P, so
long as any zero element in A0 is also a zero element
in A (similarly for b and c). Now, assume that a given
embedded system solves a sequence of problems Pi ∈ P,
i = 1, . . . , N (which we have observed is not a bad
assumption). Then, the problem class, and therefore an
upper bound on the sparsity structure, is known and
implementing a generic solver on an embedded device is
wasteful. We have developed software that takes advantage
of this knowledge by keeping track of non-zero element
interactions and using this to generate code that is free of
logical operations (which are introduced by using sparse
algorithms). That is, once the impact of the interaction
between two non-zero elements has been determined, one
line of C code can be generated that correctly handles the
interaction without any logic. As a consequence, an added
benefit of our explicit code generation is that it reduces
branching. Moreover, since the problem size is known, we
can statically allocate exactly the amount of memory that
is necessary to solve a specific problem class.

We note that the permutation matrix, R, found above
depends only on the sparsity structure of P̂ . We recall
that P̂ = AD2AT, and observe that the sparsity structure
of A can be bounded from above by some A0 assuming

that we are solving a problem that is in P. We further
observe that D is constructed by forming a block diagonal
matrix out of a series of arrowhead matrices corresponding
to the solution variable; therefore, the sparsity structure
of D relies solely on the sizes of the cones that are used
in the solution variable. Since all problems in a problem
class have the same cone definition (K) this is invariant.

Therefore, the sparsity structure of P̂ is constant for
a given problem class, and the permutation matrix can
be found when the custom solver is generated and hard
coded into the solver. The permutation can be further
optimized by avoiding the matrix multiplications (RP̂RT)
and treating it as an element-wise mapping, where the
mapping is determined when the custom IPM solver is
auto-generated.

As problem size increases, the amount of C code that is
generated grows rapidly. Therefore, the sheer amount of
machine instructions eventually outweighs the algorithmic
advantages of avoiding sparse logic because of instruction
cache misses. For this reason, customization is best suited
for small to medium problem sizes, as we see from the
results in the next section.

4. RESULTS

In this section, we briefly discuss two optimization prob-
lems and give computational timing results for each prob-
lem using different solvers. Every problem class is run 500
times, and the average runtime on a workstation with an
Intel Core i7 (3.4 GHz) processor and 15 GB of RAM is
presented. The first problem is the planetary soft landing
problem (Açikmeşe et al., 2013), where we compute a fuel-
and-time-optimal landing trajectory. The second is a reac-
tion wheel allocation problem, where we use optimization
to obtain the spin rates that best match a desired torque
while minimizing the power usage.

4.1 Planetary Soft Landing

Quickly finding an optimal trajectory onboard a lander ve-
hicle is crucial. In this case, a lander vehicle uses thrusters
to slow its descent and ultimately carry out a soft landing
at a prescribed target (Açikmeşe et al., 2013). At the start
of the maneuver, the vehicle obtains its relative position
and velocity vectors with respect to the target, and uses
these states to compute a fuel-and-time-optimal trajectory
to the target. The longer it takes to compute the landing
trajectory, the less accurate the initial conditions become
- making this an ideal, time-critical application for our
customized solver. A methodology for posing the planetary
soft landing problem as a convex optimization problem,
specifically as SOCPs, with velocity upper bounds, time-
varying mass, minimum and maximum thrust magnitude
constraints, glide slope angle bounds, and pointing con-
straints is given in (Açikmeşe and Ploen, 2005; Açıkmeşe
and Ploen, 2007; Açikmeşe et al., 2013), and adapted
herein.

We use SDPT3, (Tutuncu et al., 2002)), SeDuMi ((Sturm,
1999)), ECOS ((Domahidi et al., 2013), our generic solver
(named Bsocp), and customized solvers over a range of
problem sizes to find optimal solutions of the planetary
soft landing problem described above. We increased the

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1610



problem size by increasing the number of points in the dis-
cretization of the dynamics (Açıkmeşe and Ploen, 2007).
For small problems, our customized solver was able to solve
problems about two times faster than the general Bsocp
solver (Figure 1). Problems with about 2,000 solution
variables gain almost no advantage by customization, as
expected. ECOS and Bsocp performed similarly for small
to medium problems, with each taking turns outperform-
ing the other over different sub-regions.

0 500 1000 1500 2000

10
−2

10
−1

Solution Variable Size

L
og

 M
ea

n 
R

un
ti

m
e 

(s
)

 

 

ECOS
General Bsocp
Custom Bsocp

Fig. 1. Planetary Landing Benchmark

For problems with more solution variables than that of the
simulations shown in Figure 1, instruction cache misses
dominate any gains from customization. For this reason,
we show benchmarking results for larger problems using
the other solvers. As one can see, ECOS scales better
than the general Bsocp solver for problems with more
than about 10,000 solution variables. The linear algebra
libraries that were written for Bsocp were not intended to
be used on larger problems, therefore this result did not
surprise us. Nonetheless, Bsocp outperforms SDPT3 and
SeDuMi for all problem sizes in the benchmark.

0 5000 10000 15000
10

−4

10
−2

10
0

Solution Variable Size

L
og

 M
ea

n 
R

un
ti

m
e 

(s
)

 

 

SDPT3−v4.0
SeDuMi
ECOS
General Bsocp
Custom Bsocp

Fig. 2. Planetary Landing Benchmark 2

In Table 1, we present details regarding the types of cones
that were used in the simulations for Figures 1 and 2. As
we can see, a large amount of second order cones are solved
for the bigger problem sizes.

n # KL # Ks
320 153 49
567 270 88
757 360 118

1,137 540 178

1,327 630 208
1,612 765 253
1,897 900 298
3,797 1,800 598
9,497 4,500 1,498
15,197 7,200 2,398

Table 1: Benchmark Details

where n represents the solution variable size, the middle
column corresponds to the number of linear cones in
the solution variable, and the last column represents the
number of second order cones in the solution variable.

4.2 Reaction Wheel Allocation

Spacecraft that make use of reaction wheels to control
their attitude dynamics must have an algorithm that
maps a given desired control torque to their corresponding
flywheel rates. Typically, some variation of the Moore-
Penrose pseudo-inverse is used to obtain a minimum
torque error mapping; however, these algorithms do not
take into consideration the physical constraints of the
flywheels, such as upper bounds on flywheel rates and
accelerations (Dueri et al., 2014). A methodology for
posing this mapping problem as a constrained convex
optimization problem that seeks to minimize power usage
is given in (Dueri et al., 2014). Here we will explore how
quickly these problems can be solved by using custom IPM
solution algorithms.

Since this problem formulation leads to LPs and QPs,
we were able to also compare our customized code with
CVXGEN (Mattingley and Boyd, 2010a). We note that
the timings presented here correspond to a system with 4
reaction wheels, making it minimally redundant.

ECOS CVXGEN Cust. Bsocp
CPU-time (msec) 0.5 0.2 0.2

Table 2: CPU Times Using Different IPM Solvers

We can see from Table 2 that the customized Bsocp solver
performs as well as CVXGEN for linear optimization prob-
lems, even though it is implementing a more general solver.
We also see that for tiny problems like this one (with only
40 solution variables), the customization process yields a
roughly 2.5 times improvement in runtime efficiency.

5. CONCLUSION

In this paper, we have presented the algorithms and
techniques that were used to implement an SOCP solver
capable of generating custom code for given problem
structures. The core solver algorithm makes use of a
fairly standard Mehrotra predictor-corrector IPM with
NT cone scalings and scaled Newton search directions.
The customized code is generated by creating explicit
code for the otherwise cumbersome sparse linear algebra
operations that are needed to compute solutions. Timings
from both the customized IPM and the general IPM
were compared to ECOS, SDPT3, SeDuMi, and CVXGEN
(when possible). We found that for small to medium
problems, solvers customized for a problem class out-

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1611



performed the competition; however, for problems with
a large amount of solution variables (2,000 or more),
instruction cache misses and prohibitively time consuming
compilation times plagued the customized solvers due to
source code length.

Future work will involve finding ways to make the linear
algebra libraries that are used by Bsocp more scalable and
to continue to find ways of implementing more efficient
IPM algorithms. We are also currently exploring ways of
reducing the compilation time of customized code.

REFERENCES

Açıkmeşe, B., Aung, M., Casoliva, J., Mohan, S., Johnson,
A., Scharf, D., Masten, D., Scotkin, J., Wolf, A., and
Regehr, M.W. (2013). Flight testing of trajectories
computed by G-FOLD: Fuel optimal large divert guid-
ance algorithm for planetary landing. In AAS/AIAA
Spaceflight Mechanics Meeting.

Açıkmeşe, B. and Blackmore, L. (2011). Lossless convex-
ification for a class of optimal control problems with
nonconvex control constraints. Automatica, 47(2), 341–
347.

Açıkmeşe, B. and Ploen, S.R. (2007). Convex program-
ming approach to powered descent guidance for mars
landing. AIAA Journal of Guidance, Control and Dy-
namics, 30(5), 1353–1366.

Açikmeşe, B., Carson, J.M., and Blackmore, L. (2013).
Lossless convexification of non-convex control bound
and pointing constraints of the soft landing optimal con-
trol problem. IEEE Transactions on Control Systems
Technology.

Açikmeşe, B. and Ploen, S. (2005). A powered descent
guidance algorithm for Mars pinpoint landing. In
AIAA Guidance, Navigation, and Control Conference
and Exhibit. San Francisco, USA.

Amestoy, P.R., Davis, T.A., and Duff, I.S. (2004). Al-
gorithm 837: AMD, an approximate minimum degree
ordering algorithm. ACM Trans. Math. Softw., 30(3),
381–388. doi:10.1145/1024074.1024081. URL http://
doi.acm.org/10.1145/1024074.1024081.

Aung, M., Açıkmeşe, B., Johnson, A., Regehr, M., Caso-
liva, J., Mohan, S., Wolf, A., Masten, D., and Scotkin,
J. (2013). ADAPT a closed-loop testbed for next-
generation EDL GN&C systems. In 23rd AAS/AIAA
2013 GN&C Conference. Breckenridge, USA.

Bersekas, D. (1999). Nonlinear Programming. Athena
Scientific, 2 edition.

Blackmore, L., Açıkmeşe, B., and Carson, J.M. (2012).
Lossless convexication of control constraints for a class
of nonlinear optimal control problems. Systems and
Control Letters, 61, 863–871.

Blackmore, L., Açikmeşe, B., and Scharf, D.P. (2010).
Minimum-Landing-Error Powered-Descent Guidance
for Mars Landing Using Convex Optimization. Journal
of Guidance, Control, and Dynamics, 33(4), 1161–1171.
doi:10.2514/1.47202.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimiza-
tion. Cambridge University Press.

Domahidi, A., Chu, E., and Boyd, S. (2013). ECOS: An
SOCP solver for Embedded Systems. In Proceedings
European Control Conference.

Dueri, D., Leve, F., and Açıkmeşe, B. (2014). Reaction
wheel dissipative power reduction control allocation via

lexicographic optimization. In In review, American
Astronautical Society.

Ferreau, H., Bock, H., and Diehl, M. (2008). An online
active set strategy to overcome the limitations of explicit
MPC. Int. Journal of Robust and Nonlinear Control, 18.

Hager, W.W. (1989). Updating the inverse of a matrix.
SIAM, 31(2), 221–239.

Harris, M.W. and Açikmeşe, B. (2013). Lossless convexifi-
cation of non-convex optimal control problems for state
constrained linear systems. Under review, Automatica.

Jones, C., Bari, M., and Morari, M. (2007). Multipara-
metric linear programming with applications to control.
European Journal of Control, 13(2-3), 152 – 170.

JPL and Systems, M.S. (2012). 650 meter divert Xombie
test flight for G-FOLD, Guidance for Fuel Optimal
Large Divert, validation. http://www.youtube.com/
watch?v=WU4TZlA3jsg.

JPL, Systems, M.S., and of Texas, U. (2013). First
flight testing of real-time G-FOLD, Guidance for Fuel
Optimal Large Divert, validation. http://www.jpl.
nasa.gov/news/news.php?release=2013-247.

Mattingley, J. and Boyd, S. (2010a). Automatic Code
Generation for Real-Time Convex Optimization. Con-
vex Optimization in Signal Processing and Communi-
cations,Y. Eldar and D. Palomar, Eds. Cambridge
University Press.

Mattingley, J. and Boyd, S. (2010b). Real-time convex op-
timization in signal processing. IEEE Signal Processing
Magazine, 27(3), 50–61.

Nesterov, Y. and Nemirovski, A. (1994). Interior Point
Polynomial Algorithms in Convex Programming. SIAM.

Nesterov, Y.E. and Todd, M.J. (1997). Self-scaled barriers
and interior-point methods for convex programming.
Mathematics of Operations Research, 22(1), 1–42.

Peng, J., Roos, C., and Terlaky, T. (2001). Self-Regularity:
A New Paradigm for Primal-Dual Interior-Point Algo-
rithms. Princeton Series in Applied Mathematics.

Scharf, D.P., Regehr, M.W., Dueri, D., Açıkmeşe, B.,
Vaughan, G.M., Benito, J., Ansari, H., M. Aung, A.J.,
Masten, D., Nietfeld, S., Casoliva, J., and Mohan, S.
(2014). ADAPT demonstrations of onboard large-divert
guidance with a reusable launch vehicle. Submitted to
IEEE Aerospace Conference.

Sturm, J. (1999). Using SeDuMi 1.02, a MATLAB toolbox
for optimization over symmetric cones. Optimization
Methods and Software, 11–12, 625–653. Version 1.05
available from http://fewcal.kub.nl/sturm.

Tutuncu, R.H., Toh, K.C., and Todd, M.J. (2002). Solving
semidefinite-quadratic-linear problems using SPDT3.
Mathematical Programming.

Ullmann, F. (2011). FiOrdOs: A Matlab Toolbox for C-
Code Generation for First Order Methods. Master’s
thesis, ETH Zurich.

Vandenberghe, L. (2010). The CVXOPT linear and
quadratic cone program solvers. URL http://www.
seas.ucla.edu/~vandenbe.

Wang, B. (2003). Implementation of Interior Point Meth-
ods for Second order Conic Optimization. Master’s
thesis, McMaster University.

Wang, Y. and Boyd, S. (2010). Fast model predictive
control using online optimization. IEEE Transactions
on Control Systems Technology, 18(2), 267–278.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1612


