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Abstract: Galerkin models for 3D-turbulent boundary layers usually are too complex to be
successfully incorporated into model based control strategies. Limiting the frequency spectrum
of the ensemble data offers a possibility to reduce the model size and still map the control-
relevant dynamics into the reduced-order model. An adaptation of the standard POD-Galerkin
procedure is proposed using the example of a turbulent boundary layer, which is actuated by
a periodic volume force. A closed-loop simulation shows an exemplary application of such a
reduced order model in a model based control setup.
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1. INTRODUCTION

Turbulent boundary layer drag reduction offers a potential
for energy saving in aeroplanes, trains and other appli-
cations with large flow attached surfaces. Turbulent fluc-
tuations close to the wall cause a significant increase in
friction drag compared to a laminar flow. These fluctu-
ations are not stochastically independent but follow pe-
riodic patterns in time and space, the so-called coherent
structures (Holmes et al. [1996]). The disruption of these
near-wall cycles has been investigated by passive means
such as riblet structures, cf. Walsh [1982], for a long
time. However, passive means are limited to a narrow area
of operation and may even deteriorate turbulent friction
drag outside the design point. Active flow control can be
adapted to the current operating conditions, but at the
cost of external actuation energy. Therefore, the important
factor to be considered is the net-energy balance of the
actuated system (Frohnapfel et al. [2012]). Understanding
of the near-wall flow physics has to be incorporated into
the actuation scheme to achieve a efficient use of actuation
energy. The numeric simulations of Choi et al. [1994] and
the experimental works from Rathnasingham and Breuer
[2003] and Yoshino et al. [2008] are investigations towards
a targeted actuation. This actuation aims at the destruc-
tion of individual coherent structures. Good results were
achieved with that approach, however, for low Reynolds-
number flows. Things become more difficult for higher
Reynolds-numbers, which are relevant for technical appli-
cations. Here the size of the turbulent structures reduces to
sub-micrometer-scale (Du et al. [2002]). An alternative to
the detection and destruction of individual structures is to
measure the effects of the actuation on the drag resistance
and adapt the system input based on this information.
This brings feedback-control into play.
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Actuation is then used for global jamming of the near-
wall dynamics. Pressure-gradients induced in spanwise
direction have proven to be successful for that task.
Akhavan et al. [1993] have achieved a stabilization of this
effect in simulation by the use of an oscillating wall motion.
Zhao et al. [2004] and Klumpp et al. [2010] investigated
spanwise travelling waves on the surface and reported
significant reduction in friction drag. Subject of these
simulations were fixed operating conditions, which did not
include any use of feedback information. Changing inflow
conditions require the rejection of disturbances in order to
keep the mean friction drag at a low level. This task will
be considered in this paper.

Model-based control of flows has been performed for vari-
ous applications. Common control problems are the wake
flow of a cylinder (e.g. Graham et al. [1999] or Tadmor
et al. [2004]), the backward facing step (e.g. Ravindran
[2000]) or the suppression of Tollmien-Schlichting waves
(e.g. Semeraro et al. [2011]). These approaches use mode
based model reduction strategies like Proper Orthogonal
Decomposition (POD) and Galerkin-projection or bal-
anced POD. However, for a turbulent boundary layer, the
number of modes needed to model the near-wall dynamics
is to high to be directly used in model-based control. On
the other hand, the controller model needs to represent
only the dynamic behaviour of the mean friction drag
towards changes in actuation. A detailed reproduction of
the high-frequent turbulent wall cycles is not necessary.
This paper discusses a model reduction based on a lim-
ited frequency range of the CFD-simulation data, which
extracts the desired actuation influence on the mean drag.

Section 2 introduces the flow setup and the numeric
solution of the flow field. In section 3 the general POD-
Galerkin model reduction is explained. The modifications
of that procedure are described in section 4. Subsequently,
section 5 gives an example of a closed-loop control and the
last section draws a short conclusion.
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Fig. 1. Computational domain of the flow simulation

2. FLOW SETUP

The physical model for continuous flows are the Navier-
Stokes equations, which result from balances of mass,
momentum and energy of infinitesimal fluid elements. The
free-stream Mach-number of the flow considered here is
0.2, which allows the approximation as an incompressible
flow. The resulting governing equations in non-dimensional
form are the mass balance

∇ · v = 0 (1a)

and the momentum balance

∂tv + (v · ∇)v = −∇p+
1

Re
∆v + f . (1b)

Here v denotes the vector of the three velocity components
u, v and w in direction of the Cartesian coordinates x, y
and z respectively. The static pressure is denoted by the
variable p and f represents a volume force which is used for
actuation. All variables are given in non-dimensional form
by referring to the boundary layer thickness δ as reference
length and the inflow velocity u∞ as reference velocity.
The Reynolds-number Re is the product of these reference
variables divided by the kinematic viscosity of air.

An initial full-scale numerical simulation of the system is
required to obtain an ensemble of snapshots, from which
a reduced order model can be derived. Actuation of the
system is included by the volume force f , which acts
in form of a spanwise travelling wave. The current wave
position for each spanwise coordinate z is given by the
function

yW (z, t) = Â · (1 + sin(2π(
z

λ(t)
− t

T
))) , (2)

with the amplitude Â = 0.13 and period time T =
0.44. The wavelength λ(t) is varied during simulation and
represents the dynamic excitation of the system. Figure 1
shows a sketch of the computational domain, which was
used for the simulation. The lengths of the edges are
Lx/δ = 14.3, Ly/δ = 2.5 and Lz/δ = 2.5. The domain
is discretised with 241 × 34 × 76 grid points in the x, y
and z direction. The Reynolds-number considered here is
Reδ = 104. The data ensemble from the initial simulation
consists of 2901 snapshots at a constant sampling interval
of 0.01.
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Fig. 2. Wavelength of the volume force excitation over
time.

The inflow velocity distribution was generated by a syn-
thetic turbulence generation method from Roidl et al.
[2013]) and a characteristic outflow condition was used
at the outlet. On the wall a no-slip boundary condition
was applied and the velocity at the top of the domain
was set to the free-stream velocity of Ma∞ = 0.2. The
solver is the same as used by Klumpp et al. [2010], which
solves the compressible Navier-Stokes-Equations. Since the
grid resolution is too coarse to resolve all turbulent scales
directly, an implicit Large-Eddy-Simulation approach is
used, where the dissipation is adjusted to take the non-
resolved scales into account.

As mentioned above, the system is dynamically excited by
changing the wavelength of the volume force function (2).
This wavelength is depicted in figure 2 in a wall-unit scale
as function of the simulation time. The conversion factor
between the wall unit scale and the boundary layer scale
is Reτ = 470. The simulation is done for a fixed control
volume, and the travelling wave moves from left to right
through this domain. Therefore, the change of wavelength
is superimposed by the movement of the wave inside the
domain. To isolate the system response towards the change
in wavelength, the flow is considered in a moving frame of
reference for the model reduction procedure. This frame
moves with the current propagation velocity of the wave,
and the ensemble data is rearranged appropriately before
the POD is performed.

3. POD-GALERKIN METHOD

To enable the use of common control design methods, the
system of partial differential equations has to be reduced to
a system of ordinary differential equations. This is done in
two steps. At first, through the choice of an optimal set of
few spatial basis functions, which approximate the known
solution of the system, i.e. the ensemble data. The second
step is a semi-discretisation of the governing equations
based on these spatial functions. This is the standard
POD-Galerkin method which is introduced shortly in the
next two paragraphs.

Prior to this, let the inner product of two square-integrable
functions f and g be defined as

(f ,g)Ω =

d∑
i=1

∫
Ω

fi(x)gi(x)dx , (3)

where Ω describes the computational domain.
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3.1 Proper Orthogonal Decomposition

Using the Reynolds Decomposition, the instantaneous flow
field va can be written as

va(x, tm) = v̄(x) + v′(x, tm) , (4)

where v̄ represents the ensemble average of the snapshots,
and v′ is the deviation from that average for each of the
M snapshots in the ensemble data. The POD gives a low-
order approximation of these snapshots in decomposed
form

va(x, tm) ≈ v̄(x) +

N∑
i=1

a(i)(tm)φ(i)(x) =

N+1∑
i=1

a(i)φ(i) .

(5)
Here φ(x) represents a spatial basis function, which is
optimal for the representation of the fluctuation data v′

and a(tm) denotes the corresponding temporal coefficient.
To simplify notation, the function arguments x and t
are dropped when their meaning becomes clear from
the context. Furthermore the average flow field will be

introduced as mode φ(N+1), with a temporal coefficient
identical to one for all times a(N+1) ≡ 1. When the number
of modes N is increased, the approximation becomes more
accurate. If N equalled the number of snapshots M the
representation of the ensemble data would become exact,
but no reduction would be achieved.

A detailed introduction of the Proper Orthogonal Decom-
position requires the formal introduction of a cost function
and the subsequent derivation of the eigenvalue problem
for the determination of the modes. Good introductions
are given by Chatterjee [2000] and Cordier and Bergmann
[2008]. The calculation of the modes is accomplished here
with the Method of Snapshots, which was introduced
by Sirovich [1987]. With this method the temporal coeffi-
cients a(i) of the decomposition (5) are determined first,
and the spatial basis functions are calculated from these
afterwards. The temporal coefficients can be obtained as
a solution of the eigenvalue problem

Ca(i) = λia
(i) . (6)

Here λi denotes the i-th eigenvalue and the corresponding
eigenvector a(i) contains the values of the modal coeffi-
cients for each time-step. C is a M ×M temporal correla-
tion matrix, whose elements are given by the inner product
of two snapshots

Ckm =
1

M
(ŷ(x, tk), ŷ(x, tm))Ω .

With the temporal coefficients from the solution of (6),
the i-th POD-mode is determined via

φ(i)(x) =
1√
Mλ(i)

M∑
m=1

a(i)(tm)v′(x, tm) . (7)

These modes form a set of basis functions which are
mutually orthogonal, that is

(φ(i),φ(j))Ω =

{
1 for i = j,

0 for i 6= j.
(8)

The modes are ordered with regard to their information
content towards the reproduction of the ensemble data.
For any given truncation N < M , the reconstruction
of the flow field with the first N modes is the optimal
approximation in the least-squares sense.

Equation (7) states that the modes are linear combinations
of the snapshots. This ensures that certain features of the
ensemble data are inherited by the POD modes. This ap-
plies especially for the divergence-free condition (1a) and
homogeneous boundary conditions of the original solution.
Therefore the approximation (5) describes a divergence-
free velocity field and only the momentum balance (1b)
needs to be considered as conditional equation for the
reduced order model.

3.2 Galerkin model

The Galerkin projection is a technique for the discretisa-
tion of functional equations, such as partial or ordinary dif-
ferential equations. Here, this discretisation is a necessary
step to transform the PDE into an ODE system. Rewriting
the momentum balance in operator notation, (1b) can be
formulated as

L(v,f) = 0 (9)

with

L(v,f) := ∂tv + (v · ∇)v +∇p− 1

Re
∆v − f .

Here v is the desired solution of the flow field and f the
volume force. The operator L denotes the residual of the
momentum balance. By applying a trial solution of the
type (5) to L and projecting the residual onto the set
of POD basis functions, a system of ordinary differential
equations is obtained. These ODEs describe the dynamics
of the temporal coefficients a(i). Taking the orthogonality
of the modes into account, the reduced-order model for the
momentum balance becomes

ȧ(i) = −(aT1)Qi

(
a
1

)
+

1

Reδ
lTi

(
a
1

)
+ (f ,φ(i)) (10)

for i = 1, . . . , N

with q
(i)
j,k =

(
(φ(j) · ∇)φ(k),φ(i)

)
and l

(i)
j = (∆φ(j),φ(i))

for j, k = 1, . . . , N + 1 .

The non-linear structure of this ODE-System reflects the
structure of the original governing equation and the num-
ber of states N is determined by the number of modes used
for the trial solution.

4. FREQUENCY SELECTIVE MODEL REDUCTION

An accurate approximation of the turbulent boundary
layer dynamics requires a large number of modes due
to the small turbulent scales. The blue line in figure 3
shows the relative information content from a POD of
the snapshot data. More than 150 modes are necessary
to reconstruct about 80% of the turbulent kinetic energy
of the original ensemble data. A model of that size is too
complex for real-time applications. The key for a successful
model reduction is to include only those dynamics in the
reduced order model that are relevant for the control task.
The standard POD-Galerkin model contains dynamics of
turbulent fluctuations, which are not relevant for control
of the mean friction drag. To carve out the dynamics of
the mean friction change in response to the variation in
actuation, four steps are necessary, which are exemplified
for the flow setup described in section 2.
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Fig. 3. Relative Information Content from POD of the
original ensemble data (blue), the filtered data (red)
and from the dynamic relevant subset (green).

Step 1: Determination of the relevant frequency range
from analysis of the controlled variable.

Step 2: Filtering of the ensemble data with the identified
relevant frequency range.

Step 3: Calculation of the POD modes from the dynamic
relevant subset of the filtered ensemble data.

Step 4: Estimation of the coefficients of the resulting
Galerkin model.

The first task is to examine and limit the frequency range
of the control variable, such that the significant variations
from the mean value are captured, whereas high frequency
oscillations are suppressed. The cut-off-frequency is a
design parameter for the reduced model. In this case, the
frequency range of the wall-shear stress τw is examined.
The blue line in figure 4 displays the variation of the wall-
shear stress, in the original ensemble data. Figure 5 shows
the corresponding amplitude spectrum. The red lines in
both figures show the same signal with a frequency range
limited to 4, which still exhibits the striking increase of
friction drag during the first 5 time units.
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Fig. 4. Wall shear stress variation over time for the
ensemble data (blue), the filtered signal (red) and the
reconstruction from POD (green).

The second step requires filtering of the original ensem-
ble data with the cut-off-frequency determined from the
previous step. Here, a Butterworth low-pass filter of order
4 with a cut-off-frequency of 4 is applied to the velocity
snapshots. To avoid phase delays the filter is implemented
using forward-backward filtering.

In the next step, the filtered ensemble data is decomposed
by POD. The red line in figure 3 shows the relative
information content of this decomposition for the flow
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Fig. 5. Amplitude spectrum of the wall shear stress signal
(blue) and the filtered frequency range (red).

case. Comparison with the blue line from the original data
ensemble shows that the filtered ensemble data can be
approximated with fewer modes. A restriction of the data
ensemble to the first 10 time units further decreases the
number of modes needed to represent the chosen dynamics.
With 15 modes, the relative information content of the
reconstruction is above 90%. This number of modes will
be used for the reduced order model. The wall-shear stress
signal from the velocity field, which is reconstructed with
this POD-approximation, is given by the green line in
figure 4.

The last step for the reduced-order modelling is the iden-
tification of the model parameter values. In the stan-
dard POD-Galerkin approach these are determined by the
Galerkin-projection. Due to the nonlinearity of the govern-
ing equations, the neglected turbulent scales influence the
mean field behaviour. If the decomposition is performed
on the non-filtered snapshot data, this influence would be
incorporated in the reduced order model. However, for the
POD modes from the filtered ensemble, the Galerkin pro-
jection generates parameter values, which do not represent
the influence of the neglected scales. Therefore, the model
parameter values are identified using the modal coefficients
from the POD. This approach was introduced by Couplet
et al. [2005] and later adapted by Cordier et al. [2010]. For
ease of notation, the right-hand-side of the reduced order
model (10) is introduced in operator notation

Ni(p,a) = −(aT1)Qi

(
a
1

)
+

1

Reδ
lTi

(
a
1

)
+ p

(i)
0 · f(t) .

(11)
The vector p denotes the parameter values of the matrix
Qi and the vector li. Furthermore it is assumed that the
actuation function can be split up into a time dependent
part f(t) and a spatial distribution factor. The inner
product of the latter one with the i-th mode is considered

as the actuation parameter p
(i)
0 .

Since the modal coefficients are known from the POD, the
estimation of the model parameters can be reduced to the
optimization problem

min
p
Jγ(p)

with Jγ(p) = ‖ȧ(i) −Ni(p,a)‖2 + γ‖p− pG‖2
(12)

which can be solved independently for each of the N
model equations. The time derivatives of the modal coeffi-
cients ȧ(i) are computed via numerical differentiation. The
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Fig. 6. Comparison of the first three states of the iden-
tified Galerkin model with the corresponding modal
coefficients of the POD.

second term in the cost function represents a Thikonov-
regularisation to improve the numeric condition of the
problem. pG represents the parameter vector obtained
from the Galerkin-projection. The weight factor γ for this
penalty term is chosen as 10−5.

Note that the cost function is quadratic with regard to the
model states, but depends only linear on the parameter
values. The solution of the optimization problem (12) can
be determined by the computation of N linear equation
systems of the form

(ATA+ γI)p = (ATb+ γpG) . (13)

The structure of the matrix A and the vector b is given
by Cordier et al. [2010]. In spite of the regularization, a
simultaneous determination of the parameters belonging
to the quadratic convection term and the linear diffusion
term is still numerically ill-conditioned. Therefore the
matching of the parameters is done consecutively. First
the parameters of the diffusion term and the actuation
influence are determined. Second, the parameters of the
convection term are adapted.

For the parameter identification the actuation function
in (11) should match the actuation of the initial system
simulation. However, in this case the wall-shear-stress, as
depicted in figure 4, seems to depend on the change of
the wavelength rather than on the absolute value of the
wavelength itself. For that reason the rate of change of the
wave function was used for the parameter identification.
Thus the input signal is

f(t) = −Â · 2πλ0

(λ(t))2
· λ̇(t) · cos(

2πλ0

λ(t)
) , (14)

where λ0 is the width of the moving reference frame in z-
direction. Figure 6 shows the model states of the identified
Galerkin model in comparison to the modal coefficients
of the POD. Both data agree very well, which indicates
that the model structure suits the set of training data.
Identification approaches with linear models were not able
to fit the training data that well.

5. RESULTS

5.1 Validation

The model is validated by comparing the model prediction
to those parts of the ensemble data, that were not used for
the parameter estimation. The red curve in figure 7 shows
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Fig. 7. Wall-shear stress signal from the numerical solution
(red) and from the reduced-order model (blue). The
shaded background indicates the data, that was used
for parameter identification.

the wall shear-stress from the initial numerical solution.
The blue line displays the wall-shear stress as predicted
with the reduced-order-model. The grey background in-
dicates those parts that were used for the training of
the reduced-order model. To eliminate noise effects which
result from the discretisation of the flow field, the displayed
shear-stress signals are limited to the frequency range of
4. The mean friction drag is slightly overestimated by
the reduced-order model but the dynamics match the
behaviour of the ensemble data.

5.2 Closed Loop Control

A closed-loop simulation with model predictive control is
demonstrated as an application example. The plant model
in this simulation is represented by an reduced order model
with 25 states, which was derived by the procedure out-
lined above. For the controller model 15 states where used.
To include persisting changes in friction drag, both models
were equipped with an additional integrating state that
influences the mean field. The measurement information
for the controller model is the wall-shear stress signal at
the current time step.

The controller consists of an Extended Kalman Fil-
ter (EKF) and a linear model predictive controller (MPC),
as formulated by Maciejowski [2002]. Both model and filter
use the 15 state reduced-order model. The prediction in the
EKF is done with the non-linear model, whereas for the
correction step and for the MPC a local linearisation of the
model is used. This linearisation is performed analytically
from (10) at each sampling time. The resulting optimisa-
tion problem for the MPC is solved with the qp-Solver
qpOases from Ferreau et al. [2008].

The simulation result is depicted in figure 8. The controller
quickly responds to the unknown output disturbance and
is able to recover the original level of friction drag. The
limitations in the plant input are taken into account by
the optimization. The slow convergence of the shear-stress
towards the mean level after the disturbance results from
a difference in the static gain of the plant and controller
model.

6. CONCLUSION

The control application that was shown here represents
a single SISO problem. A direct identification of the
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Fig. 8. Closed-loop simulation result. Depicted are the
controlled wall shear-stress (blue) and the reference
trajectory (red dots), the plant input u (green) with
limitations (grey) and the output disturbance d (red).

transfer function between the variation in wavelength
and the resulting change in friction drag would be an
obvious choice to obtain a plant model. The POD-Galerkin
procedure seems to be disproportionate for such a control
problem. However, this method shows two advantages
in comparison to an I/O-model. First, the non-linear
structure of the reduced-model is specified by the physical
governing equations. Indeed, the quadratic model fitted
the training data better than a linear model of comparable
size. The second and more important advantage is the
information that is contained in the reduced-order model.
The Galerkin model is able to reconstruct the whole flow
field that was used to generate the POD basis. This
becomes important for real-world applications in which
the wall-shear stress usually cannot be measured directly.
In that case, the Galerkin-model offers the possibility to
observe the friction drag e.g. from velocity measurements.
In that context, the presented frequency limitation is a
proper method to constrain the reduced-order model, such
that only the desired dynamics are incorporated.

The next steps are a further validation of the reduced order
model with different excitation signals and a co-simulation
of the controller with the numerical flow solver.
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