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Abstract: This paper studies the discrete-time sampled-data approximation of the input-constrained
finite-horizon linear quadratic regulator problem. Explicit estimates for the error in the performance
index rendered by the solution of a discrete-time approximation are provided. This result can be used to
evaluate the level of sub-optimality of the sampled-data solution corresponding to a given discretisation
interval, or to compute a discretisation interval length that guarantees a given approximation error. In
addition, the (in general) unknown structure of the solution of the continuous-time constrained linear
quadratic regulator problem can be investigated via this discrete-time approximation result. Examples of
such a study are provided.
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1. INTRODUCTION

This paper is concerned with the following basic optimal
control problem: Given a linear control system ẋ(t) =
Ax(t) + Bu(t) with initial condition x(t0) = x0 and in-
put constraint set U (assumed to be a closed convex set
with 0 ∈ U and U = −U ), find the control input u ∈
L2([t0, T ], U) that minimises a performance index, over the
fixed time interval [t0, T ], given by Jx0(u) = x(T )TPx(T ) +∫ T
t0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt. This problem is known as

the (continuous-time) input-constrained Linear Quadratic Reg-
ulator (LQR) problem.

Despite some elegant formalisms to deal with constrained opti-
mal control problems (notably, the Pontryagin Maximum Prin-
ciple and the Hamilton-Jacobi-Bellman equation) no exact so-
lutions to the aforementioned basic constrained LQR problem
are known in general, except in a few cases, as in the uncon-
strained problem (when U = Rm). Thus, in practice, the prob-
lem is usually discretised in time and posed as a finite dimen-
sion optimisation problem. Typically, the time discretisation of
the problem is performed by means of a sampled-data (or zero-
order hold) control problem, whereby the control inputs are
held constant during each discretisation interval. In recent times
there has been a substantial amount of research related to fixed
horizon discrete-time constrained optimal control problems.
Part of this interest is due to the fact that these problems form
the main building block of Model Predictive Control (MPC)
strategies, one of the most extensively used control techniques
in modern industrial applications [see, e.g., Mayne et al. (2000);
Rawlings and Mayne (2009)]. This research has lead to a num-
ber of well-established methods for computing the solution to
finite dimensional constrained optimal control problems, par-
ticularly for those that can be casted as a Quadratic Program,
ranging from efficient numerical algorithms to explicit solu-
tions [see, for example, Goodwin et al. (2005); Mayne et al.
(2000); Seron et al. (2003) and references therein].

These discrete-time solutions are relevant to the original
continuous-time problem as long as they provide good approx-
imations to the (typically unknown) continuous-time solution.
In Yuz et al. (2005) it has been shown that the optimal per-
formance index achieved by solving the discrete-time sampled-
data problem converges (as the length of the discretisation inter-
val tends to zero) to the optimal performance index achievable
in the continuous-time framework. However, no rate of conver-
gence is provided in Yuz et al. (2005); nor bounds on the error
for a given length of the discretisation interval are computed.
So, while the results of Yuz et al. (2005) are reassuring and
theoretically important in that they provide a sound foundation
to constrained sampled-data optimal control, they do not pro-
vide a practical answer as to what level of discretisation one
should choose so as to achieve a given degree of approximation
to the problem. For other related work concerning discrete-
time approximations for time-varying linear systems see for
example Dontchev (1981), where an optimal control problem
for a system with linear dynamics is discretised using Euler’s
integration scheme and it is shown that the discretisation error is
bounded by a linear function of the length of the discretisation
interval. However, no explicit expression for the proportionality
constant is provided and hence it is not directly clear how
to determine a discretisation interval length that guarantees a
given error of approximation.

The main contribution of this paper is to provide an explicit
bound on the error in the performance index rendered by the
solution of a discrete-time approximation. The error estimation
that is derived in this paper has the following form:

0≤ Jx0

L−1∑
j=0

fj(t)ū
∗
j

− Jx0
(u∗x0

)

≤ F (A,B, T − t0, Q,R, P ) · ‖x0‖2

L
, (1)

where u∗x0
is the (unknown) optimal solution of the constrained

continuous-time control problem and
∑L−1
j=0 fj(t)ū

∗
j is the ap-
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proximated solution rendered by a discrete-time optimisation
problem (details are provided in the remainder of the paper).
That is, the bound on the error is directly proportional to the
square of the size of the initial condition x0 and inversely
proportional to the number of discretisation intervals (degree
of approximation) L. (In our notation, (T − t0)/L denotes the
length of the discretisation interval.) The term F in (1) does
not depend on the number of discretisation intervals L and
only depends on the data of the underlying continuous-time
problem: the system model matrices A and B, the length of
the time interval T − t0, and the performance index weight-
ing matrices Q, R and P . An explicit expression to compute
F (A,B, T − t0, Q,R, P ) is easily obtained from the results pre-
sented in this paper and is summarised in Table 1. In addition,
an estimation of the norm of the error on the optimal control
input solution is also provided, which depends on 1/

√
L.

The results in this paper differ from previous existing results
in the following way. In contrast with the results in Yuz et al.
(2005), we not only establish convergence of the sampled-data
optimal solution to the optimal continuous-time solution as the
length of the discretisation interval tends to zero, but also pro-
vide explicit bounds on the estimation error, of the form (1), that
correspond to a given discretisation interval length (T − t0)/L.
The main difference with the results in Dontchev (1981) is that
we do not use Euler’s integration method to approximate the
system with a discrete-time one but, since we focus attention on
linear time-invariant systems, we compute the exact integral so-
lutions that correspond to piecewise-constant 1 input functions.
Similarly to the results in Dontchev (1981), we obtain error
bounds given by a linear function of the length of the discretisa-
tion interval (T−t0)/L. In addition, we provide explicit expres-
sions to compute the term F (A,B, T − t0, Q,R, P ) in (1). The
practical relevance of expression (1) is that given a set of prob-
lem data, it is straightforward to select the number of sampling
intervals L [equivalently the discretisation interval length (T −
t0)/L] so as to achieve a desired degree of approximation to the
continuous-time solution. Moreover, the rate of convergence
to the continuous-time optimal solution as L is increased can
be directly estimated from expression (1). Expression (1) also
allows to evaluate the level of sub-optimality of the sampled-
data solution that corresponds to a given discretisation interval
length.

The layout of the remainder of the paper is as follows. In Sec-
tion 2 we formulate the problem and present some preliminary
definitions. In Section 3 we show existence and uniqueness
of the solution of the continuous-time problem and prove the
continuity of the performance index Jx0

. In Section 4 we show
that the optimal control and corresponding adjoint trajectory
are Lipschitz continuous and compute bounds for the relevant
Lipschitz constants. The main result of the paper is presented
in Section 5, which allows to compute explicitly error estimates
for the optimal performance index and the optimal control tra-
jectories that result from optimising a discrete-time problem.
In Section 6 we present two examples illustrating the results.
In the first example, we use the error bounds obtained in the
paper to verify a conjecture that for first-order systems (n = 1),
when U = [−1, 1], the optimal control that minimises the
performance index considered (with terminal weight given by
the infinite-horizon unconstrained optimal value function) is

1 Considering piecewise-constant input functions is in agreement with usual
practice in sampled-data systems and is standard in technological implementa-
tions (e.g., using a ‘zero-order hold’ device).

equal to sat(Kx) [where sat(·) is the usual saturation function
between ±1 and K is the optimal state feedback gain that
solves the ‘unconstrained’ LQR problem]. To the best of the
authors knowledge, this is a result that has not been previously
reported in the literature. Here, we verify it by comparing the
resulting performance index with the one obtained with the
discretised problem, and by using the error bound (converging
to zero for L increasing) afforded by the main result (1) of this
paper. In the second example we illustrate two situations for a
second-order system, one where sat(Kx) is still the (nontrivial)
optimal control solution and one where sat(Kx) is no longer
the optimal solution. Conclusions are provided in Section 7.
To avoid interrupting the flow in reading the conceptual ideas
contained in the main body, some of the lengthy mathematical
proofs have been included in appendices at the end of the paper.

Notation: For a vector x ∈ Rn we denote the Euclidean norm
‖x‖ :=

√
xTx. For a matrixM ∈ Rn×m we denote the induced

norm ‖M‖ := sup
0 6=x∈Rm

‖Mx‖
‖x‖

. The nonnegative integers are

denoted N0 := N ∪ {0}.

2. PROBLEM FORMULATION AND ADJOINT SYSTEM

In this section we define the optimal control problem and
introduce some preliminary definitions. Let A ∈ Rn×n and
B ∈ Rn×m be matrices, let P,Q ∈ Rn×n be (symmetric and)
positive semidefinite, and let R ∈ Rm×m be (symmetric and)
positive definite. Let t0 < T be real numbers, and x0 ∈ Rn
be some initial state. Let U ⊂ Rm be a nonempty, closed and
convex set. We consider a linear time-invariant system given by

ẋ(t) = Ax(t) +Bu(t), x(t0) = x0. (2)

If u ∈ L2([t0, T ], U) is some control the corresponding trajec-
tory is given by the Integral Equation IE(x0, u):

x(t) = x0 +

t∫
t0

(
Ax(γ) +Bu(γ)

)
dγ if t ∈ [t0, T ],

i.e. x(t) = e(t−t0)Ax0 +
∫ t
t0
e(t−γ)ABu(γ) dγ.

The optimisation problem considered here consists in minimis-
ing the performance index

Jx0(u) = x(T )TPx(T ) (3)

+

T∫
t0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt,

i.e. to find u∗ ∈ L2([t0, T ], U) that minimises Jx0 .

If u ∈ L2([t0, T ], U) is some control and x given by IE(x0, u)
is the corresponding trajectory, the Cauchy problem AS(x0, u)
given by {

ψ̇(t) = 2Qx(t)−ATψ(t) if t ∈ [t0, T ]
ψ(T ) = −2Px(T )

is called the Adjoint System. The solution of AS(x0, u) is

ψ(t) = −2e(T−t)ATPx(T )− 2

T∫
t

e(γ−t)ATQx(γ) dγ. (4)

Moreover it is a straightforward calculation that if we define the
negative semidefinite matrix
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h(t) := −
T∫
t

eγA
T

QeγA dγ − eTA
T

PeTA ∈ Rn×n

and the mapping

k(t, β) :=

{
e−tA

T

h(t)e−βA if β ≤ t
e−tA

T

h(β)e−βA if t ≤ β
(5)

then,

ψ(t)

2
= k(t, t0)x0 +

T∫
t0

k(t, β)Bu(β) dβ.

3. EXISTENCE AND UNIQUENESS OF THE OPTIMAL
SOLUTION

The following theorem provides a preliminary result for the
error estimation that will be derived later. It is presented here
since it also shows that Jx0

is continuous.
Theorem 1. Let u1, u2 ∈ L2([t0, T ],Rm). Define:

λ :=
1

2
λmax(A+AT ),

the half of the biggest eigenvalue of A+AT , and

η(λ) :=

T∫
t0

e2λ(T−β) dβ =

T∫
t0

e2λ(β−t0) dβ

=

 T − t0 if λ = 0
e2λ(T−t0) − 1

2λ
if λ 6= 0

.

Moreover define

η1(λ) := 2‖B‖
(
‖Q‖

√
T − t0η(λ)

+ ‖P‖eλ(T−t0)
√
η(λ)

)
,

and

η2(λ) := ‖R‖+ ‖Q‖ · ‖B‖2(T − t0)η(λ)

+‖P‖ · ‖B‖2η(λ).

Then

|Jx0(u1)− Jx0(u2)| ≤ ‖x0‖ · ‖u1 − u2‖L2η1(λ)

+‖u1 − u2‖L2
‖u1 + u2‖L2

η2(λ).

Proof. The proof is included in Appendix A. 2

It is a known fact that Jx0
is strictly convex and thus we

omit the proof. Hence, it follows from the convexity of U that
there is at most one optimal control in L2([t0, T ], U). Existence
of a solution follows for example from Theorem 4.2.1 and
Lemma 4.2.2 in Jost and Li-Jost (1998).

The following result provides an expression for the optimisa-
tion problem derived from the Maximum Principle.
Theorem 2. The optimal control solution u∗x0

:=
arg min

u∈L2([t0,T ],U)
Jx0

(u) is the unique solution of the equation:

u∗x0
(t) = arg min

v∈U

(
vTRv − vTBTψ∗x0

(t)
)

= R−1/2prR1/2U

(
1

2
R−1/2BTψ∗x0

(t)

)
, (6)

where ψ∗x0
solves AS(x0, u

∗
x0

), and prR1/2U is the Euclidean
projection on the set R1/2U .

Proof. The proof is included in Appendix B. 2

4. REGULARITY OF THE OPTIMAL CONTROL

From the expression for the optimiser (6) and the convexity of
U it follows that the optimal solution u∗x0

of the constrained
optimal control problem is continuous. In this section we prove
that it is in fact Lipschitz continuous and give an estimation
of the Lipschitz constant. First, we present the following re-
sult concerning the projection operator that appears in expres-
sion (6).
Lemma 3. We have for all z1, z2 ∈ Rm∥∥∥∥R−1/2prR1/2U

(
1

2
R−1/2z1

)
−R−1/2prR1/2U

(
1

2
R−1/2z2

)∥∥∥∥≤ ‖z1 − z2‖
λmin(R)

.

Proof. The proof is included in Appendix C. 2

The following result provides bounds for the optimal control
u∗x0

, the optimal state x∗x0
and the optimal adjoint system ψ∗x0

trajectories.
Lemma 4. Let U be as before with 0 ∈ U , and define,

δ(λ) := ‖P‖e2λ(T−t0) + ‖Q‖η(λ),

ε(λ) := max
{

1, eλ(T−t0)
}

+ ‖B‖
(
δ(λ)η(λ)

λmin(R)

)1/2

,

and

ϕ(λ) := ε(λ)
(
‖P‖max

{
1, eλ(T−t0)

}
+ ‖Q‖

√
(T − t0)η(λ)

)
.

Then we have:

1) ‖u∗x0
‖2L2
≤ ‖x0‖2

λmin(R)δ(λ).

2) ‖x∗x0
‖∞ ≤ ε(λ)‖x0‖.

3) ‖ψ∗x0
‖∞ ≤ 2ϕ(λ)‖x0‖.

Proof. The proof is included in Appendix D. 2

The following corollary provides explicit estimates of the Lip-
schitz constants. We recall that, for a vector valued function
f : [t0, T ]→ Rn the Lipschitz constant is defined as ‖f‖Lip :=
inf {c > 0 : ‖f(t)− f(s)‖ ≤ c|t− s|, ∀ t, s ∈ [t0, T ]}.
Corollary 5. We have

1) ‖ψ∗x0
‖Lip ≤ 2‖x0‖(‖Q‖ε(λ) + ‖A‖ϕ(λ)).

2) ‖u∗x0
‖Lip ≤

‖B‖‖ψ∗
x0
‖Lip

λmin(R) .

Proof.

1) follows from the equation ˙ψ∗x0
(t) = 2Qx∗x0

(t)− ATψ∗x0
(t),

and Lemma 4.

2) follows from Theorem 2 and Lemma 3. 2
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5. APPROXIMATION AND ERROR ESTIMATION

This section presents the main result of the paper; namely, the
estimation of the error on the optimal performance index and on
the optimal control trajectory that result from optimising a zero-
order hold (zoh) discrete-time approximation of the problem.
(This problem is also known as optimal sampled-data problem.)
Let 1M denote the characteristic function on the setM . In order
to approximate the continuous-time system by a zoh discrete-
time system with a given number of sampling intervals L ∈ N
we define Ti = t0 + i

L (T − t0) for 0 ≤ i ≤ L and fj(t) :=√
L

T−t0 · 1[Tj ,Tj+1) ∈ L2([t0, T ],R) for 0 ≤ j ≤ L − 1. The
control inputs considered in the discrete-time approximation
consist of piecewise-constant functions

u(t) =

L−1∑
j=0

fj(t)ūj , (7)

with ūj ∈ Rm. An easy calculation shows that the
zoh discrete-time performance index (that is, the perfor-
mance index (3) evaluated on a piecewise constant func-
tion (7)) is given by the following quadratic expression:
Jx0

(∑L−1
j=0 fj(t)ūj

)
= −x0

T k(t0, t0)x0−2ūTAx0 + ūTBū,

where ū = (ū0, . . . , ūL−1)T ,

A=

( A0

. . .
AL−1

)
∈ RmL×n,

Aj =BT
T∫
t0

fj(t)k(t, t0) dt ∈ Rm×n,

B=

( B0,0 . . . B0,L−1

. . . . . . . . .
BL−1,0 . . . BL−1,L−1

)
∈ RmL×mL,

Bj,k =

T∫
t0

fj(t)fk(t) dtR

−BT
T∫
t0

T∫
t0

fj(δ)fk(γ)k(δ, γ) dδ dγB ∈ Rm×m,

and where the matrices k(δ, γ) are defined in (5). The matrix B
is (symmetric and) positive definite.

We also define the constraint set U =
√

T−t0
L · U and consider

the following optimisation problem:
min
ū∈UL

−x0
T k(t0, t0)x0 − 2ūTAx0 + ūTBū. (8)

Notice that when the set U (and hence U ) is a polytope (i.e.,
a set defined by linear inequalities) then problem (8) is a
Quadratic Program that can be solved with a number of efficient
numerical algorithms.

The following theorem provides an estimation of the error be-
tween the optimal (unknown) continuous-time solution and the
(approximated) zoh discrete-time solution rendered by solving
problem (8).
Theorem 6. Let U ⊂ Rm be closed and convex with 0 ∈ U =

−U . Let U =
√

T−t0
L ·U and let ū∗ = (ū∗0, . . . , ū

∗
L−1)T ∈ UL

be the solution of the discrete-time optimal control problem
consisting in the Quadratic Program (8).

Then we have
∑L−1
j=0 fj(t)ū

∗
j ∈ L2([t0, T ], U), and

if u∗x0
∈ L2([t0, T ], U) is the optimal solution of

the constrained (continuous-time) optimal control problem
minu∈L2([t0,T ],U) Jx0

(u) we have the error estimation:

0 ≤ Jx0

L−1∑
j=0

fj(t)ū
∗
j

− Jx0
(u∗x0

) ≤ (T − t0)3/2

2
√

3L

·‖u∗x0
‖Lip

[
‖x0‖η1(λ) + 2‖u∗x0

‖L2η2(λ)
]
.

Proof. The proof is included in Appendix E. 2

Remark 7. Note from the expression of the error estimation in
Theorem 6 that, using the bound for ‖u∗x0

‖Lip computed in
Corollary 5, the bound for ‖u∗x0

‖L2
computed in Lemma 4, and

the expressions of η1(λ) and η2(λ) given in Theorem 1, the
expression for the term F (A,B, T − t0, Q,R, P ) in expression (1)
can be readily obtained as a function of the data of the underly-
ing continuous-time problem: the system model matricesA and
B, the length of the time interval T − t0, and the performance
index weighting matrices Q, R and P . The required computa-
tions are summarised in Table 1.

Finally, we present an estimation of the error between the
optimal continuous-time control input u∗x0

and an arbitrary
input u ∈ L2([t0, T ], U) provided the performance index of
u is within ε of the optimal performance index. This result is
particularly useful in estimating the error rendered by the zoh
discrete-time approximation u(t) =

∑L−1
j=0 fj(t)ū

∗
j , obtained

from the solution to (8), since we have already obtained in
Theorem 6 an estimation for the performance index error.
Theorem 8. Assume that 0 ≤ Jx0

(u)− Jx0
(u∗x0

) ≤ ε.

Then ‖u− u∗x0
‖2L2
≤ ε/λmin(R).

Proof. The proof is included in Appendix F. 2

6. EXAMPLES

The results obtained thus far are for any symmetric positive
semidefinite matrix P in the ‘terminal cost’ term of the per-
formance index (3). In the examples presented in this section,
we make the following additional assumption.
Assumption 9. The matrix P in the ‘terminal cost’ term in (3)
is given by the solution of the algebraic Riccati equation:

PA+ATP − PBR−1BTP +Q = 0.

Remark 10. Assumption 9 is a reasonable choice for a number
of good reasons; including:

(i) Performance: In the case when the ‘terminal state’ at the
end of the time-horizon, x(T ), is in the region where
the constraints are no longer active, the terminal cost
term x(T )TPx(T ) in (3) is the infinite-horizon optimal
performance index—from initial state x(T )—and, hence,
we recover infinite-horizon optimal performance in the
finite-horizon optimal control problem.

(ii) Stability: The choice of the algebraic Riccati solution for
the terminal weight matrix can be effectively used to prove
stability of receding horizon implementations [see, e.g.,
Goodwin et al. (2005); Mayne et al. (2000)].
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λ = 1
2λmax(A+AT ), η(λ) =

 T − t0 if λ = 0,
e2λ(T−t0) − 1

2λ
if λ 6= 0,

(λmax(·) denotes maximum eigenvalue)

η1(λ) = 2‖B‖
(
‖Q‖
√
T − t0η(λ) + ‖P‖eλ(T−t0)

√
η(λ)

)
,

η2(λ) = ‖R‖+ ‖Q‖ · ‖B‖2(T − t0)η(λ) + ‖P‖ · ‖B‖2η(λ),

ε(λ) = max
{

1, eλ(T−t0)
}

+ ‖B‖
√
‖P‖e2λ(T−t0)η(λ)+‖Q‖η(λ)2

λmin(R) , (λmin(·) denotes minimum eigenvalue)

ϕ(λ) = ε(λ)
(
‖P‖max

{
1, eλ(T−t0)

}
+ ‖Q‖

√
(T − t0)η(λ)

)
,

F (A,B, T − t0, Q,R, P ) = (T−t0)3/2‖B‖(‖Q‖ε(λ)+‖A‖ϕ(λ))

λmin(R)
√

3

(
η1(λ) + 2

√
‖P‖e2λ(T−t0)+‖Q‖η(λ)

λmin(R) η2(λ)

)
.

Table 1. Summary of the computation of the constant term F (A,B, T − t0, Q,R, P ) in expression (1), which is a
function of only the data of the underlying continuous-time problem: system model matrices A and B, length of
time interval T − t0, and performance weighting matrices Q, R and P . (Note that this term does not depend on the
discrete-time approximation—in particular, it does not depend on the number of discretisation intervals L—nor
does it depend on the magnitude of the initial condition x0.)

6.1 First-order system

In this first example, we use the error bound (1) to verify a
conjecture 2 that, for first-order systems with constraint set
U = [−1, 1], the optimal control that minimises globally (i.e.,
for any initial condition x0 ∈ R) the quadratic performance
index (3) with terminal weight matrix P chosen as in
Assumption 9 is equal to sat(Kx) [where sat(·) is the usual
saturation function between −1 and 1, and K is the optimal
state feedback gain that solves the ‘unconstrained’ LQR
problem corresponding to the terminal weight matrix P ;
i.e., K = −R−1BTP ]. For system (2) with A = −0.5,
B = 1, initial condition x0 = 5, and performance index (3)
with Q = 1, R = 1, P = 0.618 (solution of the algebraic
Riccati equation), K = −0.618, and t0 = 0, T = 5, we
computed the upper bound in (1), which resulted in F = 552.
(Notice that, with the initial condition considered, x0 = 5, the
unconstrained control law has initial value Kx0 = −3.09 and
hence it exceeds the allowed range [−1, 1]; in other words, the
case considered is not a trivial one where the unconstrained
solution solves the problem.) In Figure 1 we have plotted
the error upper bound F‖x0‖2/L (right hand side of (1))
and the difference between J1 := Jx0

(∑L−1
j=0 fj(t)ū

∗
j

)
and J2 := Jx0

(sat(Kx)). It is verified that J1 − J2

is always under the error upper bound F‖x0‖2/L.
From (1) we have

∣∣∣Jx0

(∑L−1
j=0 fj(t)ū

∗
j

)
− Jx0

(u∗x0
)
∣∣∣ ≤

F‖x0‖2/L, and from the simulation (Figure 1) we have∣∣∣Jx0

(∑L−1
j=0 fj(t)ū

∗
j

)
− Jx0(sat(Kx))

∣∣∣ ≤ F‖x0‖2/L.
We then have, from the triangular inequality, that∣∣Jx0

(sat(Kx))− Jx0
(u∗x0

)
∣∣ ≤ 2F‖x0‖2/L, for all L ∈ N.

Since 2F‖x0‖2/L converges to zero as L → ∞, we then
have that Jx0

(sat(Kx)) = Jx0
(u∗x0

). We thus conclude,
from the uniqueness of the optimal control (and, also, from
the result of Theorem 8), that u∗x0

= sat(Kx), and the
conjecture is verified. In Figure 2, the performance indices
J1 := Jx0

(∑L−1
j=0 fj(t)ū

∗
j

)
and J2 := Jx0

(sat(Kx)) are

2 To the best of the authors’ knowledge, this result has hitherto not been
reported in the literature.
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plotted, where the convergence of the discretised solution to
the conjectured optimal continuous-time solution can also be
verified.
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19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2466



6.2 Second-order system

We explore here a second-order system consisting in a double

integrator, with A =

[
0 1
0 0

]
, B =

[
0
1

]
, Q =

[
1 0
0 1

]
,

R = 1, P =

[
1.7321 1

1 1.7321

]
(solution of the algebraic

Riccati equation), K = [−1 − 1.7321], U = [−1, 1], t0 = 0
and T = 10. In Figure 3, the performance indices J1 :=

Jx0

(∑L−1
j=0 fj(t)ū

∗
j

)
and J2 := Jx0

(sat(Kx)) are plotted for
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Fig. 3. J1 := Jx0

(∑L−1
j=0 fj(t)ū

∗
j

)
and J2 := Jx0(sat(Kx))

versus L, for second-order system example with initial
condition: x0 = [2 0]T .

the case of an initial condition x0 = [2 0]T , where it can
be seen (using the convergence of the discretised solution to
the optimal continuous-time solution) that, as in the case of
the first-order system, u∗x0

= sat(Kx). Notice again that, with
x0 = [2 0]T , the initial value of the unconstrained control law
is Kx0 = −2, thus exceeding the allowed range [−1, 1] and
making this a nontrivial case. Contrary to first-order systems,
this situation cannot be expected to hold ‘globally’ (i.e., for any
initial condition x0 ∈ R2), and in Figure 4 both performance
indices J1 and J2 are plotted for an initial condition x0 =
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Fig. 4. J1 := Jx0

(∑L−1
j=0 fj(t)ū

∗
j

)
and J2 := Jx0

(sat(Kx))

versus L, for second-order system example with initial
condition: x0 = [10 − 5]T .

[10 − 5]T , where it can be seen that the discretised solution
converges to the (unknown) continuous-time optimal solution

which is lower than the one corresponding to sat(Kx) (i.e., the
latter control is no longer optimal in this case).

7. CONCLUSIONS

This paper has explored the discrete-time sampled-data approx-
imation of the input-constrained finite-horizon linear quadratic
regulator problem. The main result consists in providing ex-
plicit expressions for estimates of the error rendered by the
solution of the discrete-time approximation. This result can be
used, for example, to evaluate the level of sub-optimality of the
sampled-data solution that corresponds to a given length of the
discretisation interval, or to compute a discretisation interval
length that guarantees a given error of approximation. More-
over, it also allows to estimate the rate of convergence to the
continuous-time optimal solution as the length of the discreti-
sation interval is decreased to zero. Two examples illustrating
the results of the paper have been presented, a first-order system
example where a conjecture that the optimal control solution is
sat(Kx) was verified, and a second-order system with an initial
condition for which sat(Kx) is still the (nontrivial) optimal
control solution and with a different initial condition for which
sat(Kx) is no longer the optimal control solution.
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Appendix A. PROOF OF THEOREM 1

Proof. If xi is given by IE(x0, ui), i = 1, 2, then we have:

‖x1(t) + x2(t)‖ ≤ 2‖x0‖eλ(t−t0)

+

t∫
t0

‖e(t−γ)AB‖ · ‖u1(γ) + u2(γ)‖ dγ

≤ 2‖x0‖eλ(t−t0)

+ ‖B‖ · ‖u1 + u2‖L2

 t∫
t0

e2λ(t−γ) dγ

1/2

,
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where we used Hölder’s inequality and the fact that if µ ≥ 0
then ‖eµA‖ = eµλ. Moreover,

‖x1(t)− x2(t)‖ ≤
t∫

t0

‖B‖ · ‖e(t−γ)A‖ · ‖u1(γ)− u2(γ)‖ dγ

≤ ‖u1 − u2‖L2‖B‖

 t∫
t0

e2λ(t−γ) dγ

1/2

.

Thus,∣∣∣∣∣∣
T∫
t0

(
x1(t)TQx1(t)− x2(t)TQx2(t)

)
dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
T∫
t0

(x1(t)− x2(t))TQ(x1(t) + x2(t)) dt

∣∣∣∣∣∣
≤ ‖Q‖ · ‖u1 − u2‖L2

‖B‖
T∫
t0

 t∫
t0

e2λ(t−γ) dγ

1/2

·

(
2‖x0‖eλ(t−t0) + ‖B‖ · ‖u1 + u2‖L2 t∫
t0

e2λ(t−γ) dγ

1/2
 dt

≤ ‖Q‖ · ‖u1 − u2‖L2‖B‖ · 2 · ‖x0‖ T∫
t0

t∫
t0

e2λ(t−γ) dγ dt

1/2 T∫
t0

e2λ(t−t0) dt

1/2

+ ‖Q‖

·‖u1 − u2‖L2
‖u1 + u2‖L2

‖B‖2
T∫
t0

t∫
t0

e2λ(t−γ) dγ dt.

Since, for t ∈ [t0, T ],
∫ t
t0
e2λ(t−γ) dγ ≤ η(λ) we obtain:∣∣∣∣∣∣

T∫
t0

(
x1(t)TQx1(t)− x2(t)TQx2(t)

)
dt

∣∣∣∣∣∣
≤ 2‖x0‖ · ‖Q‖ · ‖B‖ · ‖u1 − u2‖L2

√
T − t0η(λ)

+‖Q‖ · ‖B‖2 · ‖u1 − u2‖L2
‖u1 + u2‖L2

(T − t0)η(λ).

Moreover,∣∣x1(T )TPx1(T )− x2(T )Px2(T )
∣∣

=
∣∣(x1(T )− x2(T ))TP (x1(T ) + x2(T ))

∣∣
≤ ‖P‖ · ‖u1 − u2‖L2

‖B‖
√
η(λ)

(
2‖x0‖eλ(T−t0)

+‖B‖ · ‖u1 + u2‖L2

√
η(λ
)
,

and finally,∣∣∣∣∣∣
T∫
t0

(
u1(t)TRu1(t)− u2(t)TRu2(t)

)
dt

∣∣∣∣∣∣

≤
T∫
t0

‖R‖ · ‖u1(t)− u2(t)‖ · ‖u1(t) + u2(t)‖ dt

≤ ‖R‖ · ‖u1 − u2‖L2
‖u1 + u2‖L2

.

The assertion follows from these estimations. 2

Appendix B. PROOF OF THEOREM 2

Proof. The Maximum Principle [see for example Afanasev
et al. (1996)] shows that

T∫
t0

∂H

∂u
(t, x∗x0

(t), u∗x0
(t), ψ∗x0

(t))

·(v(t)− u∗x0
(t)) dt ≤ 0, (B.1)

for all v ∈ L2([t0, T ], U), where x∗x0
is the optimal trajectory,

and the Hamiltonian is given by H(t, x, u, λ) = λT (Ax +
Bu) − xTQx − uTRu. We note that we cannot use the more
familiar form of the Maximum Principle (see Afanasev et al.
(1996)), since this requires the pre-knowledge that the optimal
control is continuous from the right.

From (B.1) we have, for all v ∈ L2([t0, T ], U),

T∫
t0

(
ψ∗x0

(t)TB − 2u∗x0
(t)TR

)
v(t) dt

≤
T∫
t0

(
ψ∗x0

(t)TB − 2u∗x0
(t)TR

)
u∗x0

(t) dt.

Therefore

T∫
t0

(
ψ∗x0

(t)TBu∗x0
(t)− u∗x0

(t)TRu∗x0
(t)
)
dt ≥

T∫
t0

(
ψ∗x0

(t)TBv(t)− 2u∗x0
(t)TRv(t) + u∗x0

(t)TRu∗x0
(t)
)
dt

=

T∫
t0

(
ψ∗x0

(t)TBv(t)− v(t)TRv(t)

+(u∗x0
(t)− v(t))TR(u∗x0

(t)− v(t))
)
dt

≥
T∫
t0

(
ψ∗x0

(t)TBv(t)− v(t)TRv(t)
)
dt.

Thus,

T∫
t0

(
ψ∗x0

(t)TBv(t)− v(t)TRv(t)
)
dt

≤
T∫
t0

(
ψ∗x0

(t)TBu∗x0
(t)− u∗x0

(t)TRu∗x0
(t)
)
dt,

where v(t) := argmaxv∈U ψ
∗
x0

(t)TBv − vTRv.

Since for almost all t ∈ [t0, T ], ψ∗x0
(t)TBu∗x0

(t) −
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u∗x0
(t)TRu∗x0

(t) ≤ ψ∗x0
(t)TBv(t)− v(t)TRv(t), we conclude

that ψ∗x0
(t)TBu∗x0

(t) − u∗x0
(t)TRu∗x0

(t) = ψ∗x0
(t)TBv(t) −

v(t)TRv(t), thus u∗x0
(t) = v(t) almost everywhere. 2

Appendix C. PROOF OF LEMMA 3

Proof. If z ∈ Rm define fz : Rm → R by fz(w) =
wTRw − wT z. Then wz := R−1/2prR1/2U

(
1
2R
−1/2z

)
=

argminw∈U fz(w).

If z1, z2 ∈ Rm we have

0≤ fz1(wz2)− fz1(wz1)

≤ fz1(wz2)− fz1(wz1) + fz2(wz1)− fz2(wz2)

=wTz2(z2 − z1) + wTz1(z1 − z2)

= (wz1 − wz2)T (z1 − z2).

Moreover, fz1(wz2) = fz1(wz1) +∇fz1(wz1) · (wz2 −wz1) +
(wz2 − wz1)TR(wz2 − wz1), thus

0≤∇fz1(wz1) · (wz2 − wz1) + (wz2 − wz1)TR(wz2 − wz1)

≤ (wz1 − wz2)T (z1 − z2).

Since wz1 is the global minimiser of fz1 on U we have
∇fz1(wz1) · (wz2 − wz1) ≥ 0, thus (wz1 − wz2)T (z1 − z2) ≥
(wz2−wz1)TR(wz2−wz1). Hence we have ‖wz1−wz2‖‖z1−
z2‖ ≥ (wz1 − wz2)T (z1 − z2) ≥ (wz1 − wz2)TR(wz1 −
wz2) ≥ ‖wz1 − wz2‖2λmin(R), and we conclude that ‖wz1 −
wz2‖ ≤ ‖z1 − z2‖/λmin(R). 2

Appendix D. PROOF OF LEMMA 4

Proof.

1) Since xTRx ≥ ‖x‖2λmin(R) for all x ∈ Rm, we have

λmin(R)‖u∗x0
‖2L2
≤

T∫
t0

u∗x0
(t)TRu∗x0

(t) dt ≤ Jx0
(u∗x0

)

≤ Jx0
(0) = x(T )TPx(T ) +

T∫
t0

x(t)TQx(t) dt,

where x(t) = e(t−t0)Ax0. We also have

Jx0
(0)≤ ‖P‖ · ‖x0‖2e2λ(T−t0) + ‖Q‖ · ‖x0‖2

T∫
t0

e2λ(t−t0) dt

= ‖x0‖2δ(λ),

from which 1) follows.

2) From x∗x0
(t) = e(t−t0)Ax0 +

∫ t
t0
e(t−γ)ABu∗x0

(γ) dγ it
follows that

‖x∗x0
(t)‖ ≤ ‖x0‖ max

t∈[t0,T ]
eλ(t−t0)

+ ‖B‖ · ‖u∗x0
‖L2

 t∫
t0

e2λ(t−γ) dγ

1/2

≤ ‖x0‖max{1, eλ(T−t0)}

+ ‖B‖ · ‖x0‖
(
δ(λ)η(λ)

λmin(R)

)1/2

.

3) We have from (4),

‖ψ∗x0
(t)‖ ≤ 2‖P‖eλ(T−t)‖x∗x0

‖∞

+ 2‖x∗x0
‖∞‖Q‖

T∫
t

eλ(γ−t) dγ

≤ 2‖x0‖ε(λ)

(
‖P‖max{1, eλ(T−t0)}

+ ‖Q‖
√
T − t0

 T∫
t

e2λ(γ−t) dγ

1/2)
.

2

Appendix E. PROOF OF THEOREM 6

Proof. We first show that if (u0, . . . , uL−1) ∈ U
L

then∑L−1
j=0 fj(t)uj ∈ U for all t ∈ [t0, T ]. Let c =

√
T−t0
L . Since∑L−1

j=0 fj(t)uj =
∑L−1
j=0 (cfj(t))

uj
c with uj

c ∈ U and since 0 ∈
U = −U is convex it suffices to show that

∑L−1
j=0 cfj(t) = 1

for all t ∈ [t0, T ], which is true.

Next we show that if 0 ≤ l < L then
(〈fl, u∗1〉, . . . , 〈fl, u∗m〉)T ∈ U , where 〈·, ·〉 denotes the usual
scalar product in L2 and u∗x0

= (u∗1, . . . , u
∗
m) ∈ L2([t0, T ], U).

To this end we show that if h : [a, b] → U is continuous then∫ b
a
h(t) dt ∈ (b− a)U : If N ∈ N+ and r(N)

k := a+ k
N (b− a)

then the sequence h(N) =
∑N−1
k=0 1

[r
(N)

k
,r

(N)

k+1
)
· h(r

(N)
k )

converges in L1 to h, and 1
b−a

∫ b
a
h(N)(t) dt =

1
b−a

∑N−1
k=0

b−a
N h(r

(N)
k ) ∈ U since U is convex. Thus

1
b−a

∫ b
a
h(t) dt = limN→∞

1
b−a

∫ b
a
h(N)(t) dt ∈ U ,

since U is closed. Therefore (〈fl, u∗1〉, . . . , 〈fl, u∗m〉)T =
1
c

∫ Tl+1

Tl
u∗x0

(t) dt = c
Tl+1−Tl

∫ Tl+1

Tl
u∗x0

(t) dt ∈ cU = U .

Now we complete the orthonormal system (fj)
L−1
j=0 of

L2([t0, T ],R) to some complete orthonormal basis (fj)j≥0 (we
make a specific choice below).

Then we have, by Theorem 1,

0≤ Jx0

L−1∑
j=0

fj(t)ū
∗
j

− Jx0
(u∗x0

)

≤ Jx0

L−1∑
j=0

fj(t)

( 〈fj , u∗1〉
. . .

〈fj , u∗m〉

)
− Jx0

 ∞∑
j=0

fj(t)

( 〈fj , u∗1〉
. . .

〈fj , u∗m〉

)
≤
[
‖x0‖η1(λ) + 2‖u∗x0

‖L2η2(λ)
]
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∥∥∥∥∥∥
∞∑
j=L

fj(t)

( 〈fj , u∗1〉
. . .

〈fj , u∗m〉

)∥∥∥∥∥∥
L2

=
[
‖x0‖η1(λ) + 2‖u∗x0

‖L2
η2(λ)

]
 ∞∑
j=L

m∑
k=1

|〈fj , u∗k〉|
2

1/2

.

Now we choose the Haar system to complete (fj)
L−1
j=0 . It is well

known that the functions (h
(q)
p )p∈N0,1≤q≤2p given by:

h(q)
p (t) =


2p/2 if t ∈

(
q − 1

2p
,
q − 1/2

2p

)
−2p/2 if t ∈

(
q − 1/2

2p
,
q

2p

)
0 elsewhere

together with h
(0)
0 = 1[0,1] form an orthonormal basis in

L2([0, 1],R).

If 0 ≤ l < L let Fl(t) = L
T−t0 (t − Tl). Then the func-

tions
√

L
T−t0 · h

(q)
p ◦ Fl (p ∈ N0, 1 ≤ q ≤ 2p) to-

gether with the constant function
√

L
T−t0 form an orthonor-

mal basis in L2([Tl, Tl+1],R), thus (fj)
L−1
j=0 together with(√

L
T−t0 · h

(q)
p ◦ Fl

)
· 1[Tl,Tl+1) (p ∈ N0, 1 ≤ q ≤ 2p, 0 ≤

l < L) form an orthonormal basis in L2([t0, T ],R).

With this choice we obtain

∞∑
j=L

m∑
k=1

|〈fj , u∗k〉|
2

=

m∑
k=1

L−1∑
l=0

∞∑
p=0

2p∑
q=1

∣∣∣∣∣〈
√

L

T − t0
h(q)
p ◦ Fl, u∗k〉l

∣∣∣∣∣
2

,

where 〈·, ·〉l is the scalar product in L2([Tl, Tl+1],R).

With the substitution s = Fl(t) we have∣∣∣∣∣〈
√

L

T − t0
h(q)
p ◦ Fl, u∗k〉l

∣∣∣∣∣
2

=

(
L

T − t0

) ∣∣∣∣∣∣
Tl+1∫
Tl

h(q)
p (Fl(t))u

∗
k(t) dt

∣∣∣∣∣∣
2

=

(
T − t0
L

) ∣∣∣∣∣∣∣
q−1/2

2p∫
q−1
2p

2p/2u∗k

(
T − t0
L

s+ Tl

)
ds

−

q
2p∫

q−1/2
2p

2p/2u∗k

(
T − t0
L

s+ Tl

)
ds

∣∣∣∣∣∣∣∣
2

= 2p
(
T − t0
L

) ∣∣∣∣∣∣∣∣
q
2p∫

q−1/2
2p

(
u∗k

(
T − t0
L

s+ Tl

)

−u∗k
(
T − t0
L

(
s+

1

2p+1

)
+ Tl

))
ds

∣∣∣∣2

≤ 2p
(
T − t0
L

)
‖u∗k‖2Lip

∣∣∣∣∣∣∣∣
q
2p∫

q−1/2
2p

T − t0
L

1

2p+1
ds

∣∣∣∣∣∣∣∣
2

=
1

23p+4

(
T − t0
L

)3

‖u∗k‖2Lip.

Therefore

∞∑
j=L

m∑
k=1

|〈fj , u∗k〉|
2

≤
(
T − t0
L

)3 m∑
k=1

L−1∑
l=0

∞∑
p=0

1

23p+4

2p∑
q=1

‖u∗k‖2Lip

≤
(
T − t0
L

)3 L−1∑
l=0

∞∑
p=0

1

23p+4

2p∑
q=1

‖u∗x0
‖2Lip

=
(T − t0)3

L2
‖u∗x0
‖2Lip ·

1

12
,

thus

0≤ Jx0

L−1∑
j=0

fj(t)ū
∗
j

− Jx0(u∗x0
)

≤ 1

L
(T − t0)3/2 ·

‖u∗x0
‖Lip

2
√

3

[
‖x0‖η1(λ) + 2‖u∗x0

‖L2
η2(λ)

]
.

2

Appendix F. PROOF OF THEOREM 8

Proof. We have, by Taylor’s theorem (see Kantorovich
and Akilov (1964)), Jx0

(u∗x0
+ h) = Jx0

(u∗x0
) +

DJx0(u∗)(h) + 1
2D

2Jx0(u∗x0
)(h, h), where DJx0 denotes the

Frechet-derivative of Jx0 . Letting h = u − u∗x0
we obtain

DJx0(u∗x0
)(u−u∗x0

) ≥ 0, otherwise u−u∗x0
would be a descent

direction in u∗x0
.

Moreover, it follows from (3) that
1

2
D2Jx0(u∗x0

)(h, h) = 〈h,Rh〉 − 〈h,Fh〉,

where 〈·, ·〉 denotes the usual scalar product in L2 and F is the
negative Fredholm operator:

F : L2([t0, T ],Rm)→L2([t0, T ],Rm)

Fz(t) =

T∫
t0

BT k(t, β)Bz(β) dβ,

where k(t, β) is as defined in (5). Since 〈h,Fh〉 ≤ 0 we obtain
0 ≤ 1

2D
2Jx0(u∗x0

)(h, h) ≤ ε and also 0 ≤ 〈h,Rh〉 ≤ ε. We
have h(t)TRh(t) ≥ ‖h(t)‖2λmin(R) for all t ∈ [t0, T ], and
hence

ε ≥
T∫
t0

‖h(t)‖2λmin(R) dt = λmin(R)‖h‖2L2
.
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