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Abstract: For affine control problems, it is known that the optimal controller for these classes
of problems can be expressed in terms of the associated co-state. A method to obtain the co-
state vector in terms of the state vector is given in this article. Using this method, the optimal
control can be written as a function of state variable. Further the method is illustrated using
examples.
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1. INTRODUCTION

Solution to the Linear Quadratic Regulator (LQR) prob-
lem is well known [1], [2]. There have been some works
in the control literature in which the optimal control, for
various classes of problems, is expressed as a function
of the state [3], [4], [5]. Recently in [6] affine quadratic
problems were studied and it was shown that the optimal
control is a function of the associated co-state vector.
In this article, we show that the co-state vector for an affine
quadratic control problem can be expressed in terms of the
state vector. In Section 2, we introduce the affine quadratic
control problem and show how the optimal control u∗(·)
can be written in terms of the co-state. In Section 3, we
explain how to obtain the co-state in terms of the state and
hence establishing a way of getting the optimal control in
terms of the state vector. This method is illustrated using
an example in Section 4.

2. AFFINE QUADRATIC CONTROL PROBLEM

We consider the affine control system:

ẋ(t) = f(x(t), t) + g(x(t), t)u(t); x(0) = x0, t ∈ [0, T ].(1)

Here x is an n-vector, u is an m-vector, and f, g are
C1 functions. Corresponding to each control on the time
interval [0, T], a cost is assigned via the cost or objective
functional

J(x0, u(·)) =
1

2

T
∫

0

(x′(t)Qx(t) + u′(t)Ru(t)) dt, (2)

where ′ denotes transposition, Q ∈ Rn×n is a positive
semidefinite matrix and R ∈ Rm×m is a positive definite
matrix.
⋆ The first author is thankful to UGC for financial assistance in the

form of SRF.

The optimal control problem is to find a control u∗(·)
which minimizes the cost functional J(x0, u(·)). The
Hamiltonian associated with the optimal control problem
(1), (2) is given by,

H(x, u, λ, t) =
1

2
(x′Qx+ u′Ru) + λ′(f(x, t) + g(x, t)u),(3)

where λ ∈ Rn is the co-state variable.
To derive an expression for the optimal control, it is
convenient to introduce the adjoint system:

λ̇(t) = −
∂H

∂x
; λ(T ) = 0

i.e. λ̇(t) = −Qx(t)−

(

∂f

∂x
(x(t), t)

)

′

λ(t)

+ u′(t)

(

∂g

∂x
(x(t), t)

)

′

λ(t); λ(T ) = 0.















(4)

By Pontryagin’s Minimum Principle (PMP) [6], [7] the
optimal control is

u∗(t) = −R−1g′(x∗(t), t)λ∗(t). (5)

Here x∗(·) and λ∗(·) are respectively the solutions of (1)
and (4), corresponding to u∗(·). Now to obtain λ∗(t), we
solve the following 2n-dimensional system:

ẋ∗(t) = f(x∗(t), t) + g(x∗(t), t)(−R−1g′(x∗(t), t)λ∗(t));
x∗(0) = x∗

0,

λ̇∗(t) = −Qx∗(t)−

(

∂f

∂x
(x∗(t), t)

)

′

λ∗(t) +
(

Σm
i=1Σ

m
j=1

Σn
k=1λ

∗

k(t)gkj(x
∗(t), t)rij

∂gi

∂x
(x∗(t), t)

)

λ∗(t);

λ∗(0) = λ∗

0.







































(6)

Here λ∗

k(t) denotes the k-th element of the vector λ∗(t),
gkj(x

∗(t), t) denotes the (k, j)-th element of the matrix
g(x∗(t), t), rij denotes (i, j)-th element of the matrix
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(R−1)′, and
g(x∗(t), t) = [g1(x

∗(t), t), g2(x
∗(t), t), ..., gm(x∗(t), t)] with

gi(x
∗(t), t) ∈ Rn, i = 1, 2, ...,m.

Now to obtain λ∗(·), it is enough to find λ∗

0. From the
PMP, it follows that this λ∗

0 has the property to minimize
the map

λ0 7→ |λ∗(T, λ0)|
2 (7)

In the next section, we explain how to minimize the map
in (7) and obtained λ∗

0.
Note that this will help us in expressing λ∗(·) (and hence
u∗(·) in (5)) in terms of the state x∗(·).

3. CO-STATE IN TERMS OF STATE

We begin by expressing λ∗(t) in terms of an n× n matrix
valued function Z(t) and an n× 1 matrix valued function
y(t), where Z(t) and y(t) satisfy differential equations
simpler than (6).
(A) Let x∗(t), λ∗(t) be the solution of (6). In this solution,
the second component λ∗(t) can be computed using the
following relation:

λ∗(t) = Z−1(t)y(t),

where (y(t), Z(t)) is the solution of

ẏ(t) = −

(

∂f

∂x
(x∗(t), t)

)

′

y(t)− Z(t)Qx∗(t)

; y(0) = λ∗

0,

Ż(t) = −
(

Σm
i=1Σ

m
j=1Σ

n
k=1yk(t)gkj(x

∗(t), t)rij
∂gi

∂x
(x∗(t), t)

)

; Z(0) = I.































(8)

Here yk(t) denotes the k-th element of the vector y(t)
and it is assumed that Z(t) commutes with the matrices
(

∂f
∂x

(x∗(t), t)
)

′

and
(

Σm
i=1Σ

m
j=1Σ

n
k=1λ

∗

k(t)gkj(x
∗(t), t)rij

∂gi
∂x

(x∗(t), t)
)

for ev-

ery t.
We now use (A) to find the derivative of the map given in
(7). Note that this derivative, evaluated at λ0 = λ∗

0, has
to be zero because λ∗

0 is the minimizer for the map given
in (7).

Lemma 1. Under the assumption of (A), the derivative of
the map in (7) is

2

(

∂λ∗

∂λ0
(T, λ0)

)

′

λ∗(T, λ0),

where

∂λ∗

∂λ0
(T, λ0) = exp







T
∫

0

[

−
∂f

∂x
(x∗(t), t) + 2Σm

i=1Σ
m
j=1Σ

n
k=1

λ∗

k(t, λ0)gkj(x
∗(t), t)rij

∂gi

∂x
(x∗(t), t)

]

dt

}

.

Proof. We consider the map given in (7). It is clear that
the derivative of this map is

2

(

∂λ∗

∂λ0
(T, λ0)

)

′

λ∗(T, λ0).

Using corollary (Pg. 83 in [8]), we have

∂λ∗

∂λ0
(t, λ0) = Φ(t, λ0), (9)

where Φ(t, λ0) is the fundamental matrix solution of

Φ̇ = D

(

−Qx∗(t)−

(

∂f

∂x
(x∗(t), t)

)

′

λ∗(t) +
(

Σm
i=1Σ

m
j=1

Σn
k=1λ

∗

k(t)gkj(x
∗(t), t)rij

∂gi

∂x
(x∗(t), t)

)

λ∗(t)

)

Φ;

Φ(0, λ0) = I.

Here D denotes the Jacobian evaluated at λ∗(t) =
Z−1(t)y(t) and its value is given as

(

∂f

∂x
(x∗(t), t)

+ 2Σm
i=1Σ

m
j=1Σ

n
k=1λ

∗

k(t)gkj(x
∗(t), t)rij

∂gi

∂x
(x∗(t), t)

)

.

Now using the above fact, we have

Φ(t, λ0) = exp







t
∫

0

[

−
∂f

∂x
(x∗(s), s) + 2Σm

i=1Σ
m
j=1Σ

n
k=1

λ∗

k(s, λ0)gkj(x
∗(s), s)rij

∂gi

∂x
(x∗(s), s)

]

ds

}

.

(10)

Hence the result follows by using (9) and (10).

We now recall the fact that u∗(t) can be written in terms
of λ∗(t) (see equation (5)). From Lemma 1, we obtain a
necessary condition that should be satisfied by λ∗

0(t), as
given in the theorem below.

Theorem 2. Under the assumption of (A), the derivative
(

∂λ∗

∂λ0
(T, λ0)

)

′

λ∗(T, λ0) = 0 at λ0 = λ∗

0.

Proof. From PMP, it is clear that λ∗

0 minimizes the map
in (7). Therefore the derivative of the map in (7), evaluated
at λ0 = λ∗

0, has to be zero. This proves the result.

Remark 3. Theorem 2 helps us to express λ∗

0 in terms of
x∗(·). This allows us to express λ∗(·) (and hence u∗(·)) as
a function of x∗(·).

4. ILLUSTRATIVE EXAMPLES

In this section, we illustrate the theoretical development
of Section 3 using some examples.

Example 4. We consider the one-dimensional nonlinear
affine control problem (as in (1), (2)) with

f(x(t), t) = x2, g(x(t), t) = x,Q = −1, and R = 1.

With this choice, (1), (2) reduces to

ẋ(t) = x2 + xu; x(0) = x0, t ∈ [0, T ], (11)

J(x0, u(·)) =
1

2

T
∫

0

(−x2(t) + u2(t)) dt . (12)

Hamiltonian for this system is

H(x, λ, u, t) =
1

2
(−x2 + u2) + λ(x2 + xu), (13)
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and the adjoint equation is

λ̇(t) = x− 2xλ+ xλ2; λ(T ) = 0. (14)

Now by PMP, the optimal control is

u∗(t) = −x∗(t)λ∗(t). (15)

Here x∗(·) and λ∗(·) are respectively the solutions of (11)
and (14), corresponding to u∗(·). Now to obtain λ∗(t), we
solve the following system:

ẋ∗(t) = x∗2(t)− x∗2(t)λ∗(t); x∗(0) = x∗

0,

λ̇∗(t) = x∗(t)− 2x∗(t)λ∗(t) + x∗(t)λ∗2(t);
λ∗(0) = λ∗

0.







(16)

In the solution x∗(t), λ∗(t) of the initial value problem (16),
the second component λ∗(t) can be computed as

λ∗(t) =
y(t)

z(t)
, (17)

where y(t) and z(t) satisfy the differential equations:

ẏ(t) = −2x∗(t)y(t) + x∗(t)z(t); y(0) = λ∗

0,
ż(t) = −x∗(t)y(t); z(0) = 1.

}

(18)

Solving (18) and then substituting y(t), z(t) into (17), we
get

λ∗(t) = 1 +
λ∗

0 − 1

(1− λ∗

0)tx
∗(t) + 1

. (19)

Now using the results given in Section 3, we have

λ∗

0 =
x∗(t)T

x∗(t)T − 1
. (20)

Now substituting (20) into (19), we get λ∗(t) (and hence
u∗(t) in (15)) in terms of the state variable x∗(t) i.e.

λ∗(t) =
(T − t)x∗(t)

(T − t)x∗(t)− 1
.

Example 5. We consider the two-dimensional nonlinear
affine control problem (as in (1), (2)) with

f(x(t), t) =

[

0
sinx2

]

, g(x(t), t) =

[

x1

0

]

, Q =

[

1 0
0 0

]

,

and R= 1.

With this choice, (1), (2) reduces to

ẋ(t) =

[

x1u
sinx2

]

; x(0) = x0, t ∈ [0, T ], (21)

J(x0, u(·)) =
1

2

T
∫

0

(x2
1(t) + u2(t)) dt . (22)

Hamiltonian for this system is

H(x, λ, u, t) =
1

2
(x2

1 + u2) + λ′

[

x1u
sinx2

]

, (23)

and the adjoint equation is

λ̇(t) = −

[

x1 + λ1u
λ2cosx2

]

; λ(T ) = 0. (24)

Now by PMP, the optimal control is

u∗(t) = −x∗

1(t)λ
∗

1(t). (25)

Here x∗

1(·) and λ∗

1(·) are respectively the solutions of (21)
and (24), corresponding to u∗(·). Now to obtain λ∗

1(t), we
solve the following system:

ẋ∗(t) =

[

−x∗

1
2(t)λ∗

1(t)
sinx∗

2(t)

]

; x∗(0) =

[

x∗

01
x∗

02

]

,

λ̇∗(t) = −

[

x∗

1(t)− x∗

1(t)λ
∗

1
2(t)

λ∗

2(t)cosx
∗

2(t)

]

; λ∗(0) =

[

λ∗

01
λ∗

02

]

.















(26)

In the solution x∗(t), λ∗(t) of the initial value problem (26),
the second component λ∗(t) can be computed as

λ∗(t) = Z−1(t)y(t), (27)

where y(t) and Z(t) satisfy the differential equations:

ẏ(t) =

[

−z1(t)x
∗

1(t)
−y2(t)cosx

∗

2(t)− z3(t)x
∗

1(t)

]

;

y(0) =

[

λ∗

01
λ∗

02

]

,

Ż(t) = −

[

y1(t)x
∗

1(t) 0
0 0

]

; Z(0) = I.































(28)

Solving (28) and then substituting y(t), z(t) into (27), we
get

λ∗(t) =









(λ∗

01 − 1)etx
∗

1
(t) + (λ∗

01 + 1)e−tx∗

1
(t)

−(λ∗

01 − 1)etx
∗

1
(t) + (λ∗

01 + 1)e−tx∗

1
(t)

λ∗

02e
−tcosx∗

2
(t)









. (29)

Now using the results given in Section 3, we have

λ∗

0 =







eTx∗

1
(t) − e−Tx∗

1
(t)

eTx∗

1
(t) + e−Tx∗

1
(t)

0






. (30)

Now substituting (30) into (29), we get λ∗(t) (and hence
u∗(t) in (25)) in terms of the state variable x∗(t) i.e.

λ∗(t) =







−e−(T−t)x∗

1
(t) + e(T−t)x∗

1
(t)

e−(T−t)x∗

1
(t) + e(T−t)x∗

1
(t)

0






.
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