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Abstract: The security problem of consensus has been attracting increasing research attention for a
large number of application scenarios. Many existing solutions in this aspect rely on the assumption
that most of the neighboring nodes of each safe node are honest which may not be able to satisfy
various practical situations. Motivated by a recent work dealing with the secure consensus for time
synchronization in asynchronous networks, this paper aims to handle secure synchronous consensus
under message manipulation attacks. Specifically, we first propose a secure synchronous consensus
algorithm (SSCA), and prove that SSCA converges with an exponential rate through matrix analysis.
Furthermore, we investigate how the exact behavior of message manipulation attack will affect the
convergence of SSCA. Specifically, we show how such result can be employed to classify the attack
behavior and help analyze the consensus performance. Examples and extensive simulations are provided
to evaluate the effectiveness of proposed results.

Keywords: secure synchronous consensus, verification mechanism, convergence, valid/invalid attack.

1. INTRODUCTION

Consensus has found a large number of applications, including
clock synchronization (He et al. [2014a,b]), sensor information
fusion (Xiao et al. [2005], Cao et al. [2008]), distributed estima-
tion and detection (Pasqualetti et al. [2010]), and etc. In the past
decade, extensive efforts have also been devoted to the related
theories and algorithms (Ren et al. [2005], Zhou et al. [2013]).
It should be noted that most existing works are based on the
assumption that the system is deployed in benign environment.
However, in harsh surroundings with various malicious attacks,
such as denial-of-service and message manipulation attack (He
et al. [2013]), they may become vulnerable or even invalid.

Recently, secure consensus design has attracted increasing re-
search attention. Fabio Pasqualetti et al. in (Pasqualetti et al.
[2012, 2010], N. H. Vaidya and Liang [2012], LeBlanc et al.
[2013]) provide Intrusion Detection System (IDS) by detecting
behavior of each node and isolating misbehaving nodes in time.
LeBlanc and Koutsoukos utilize the information provided by
the limited number of neighbors to ensure the security of con-
sensus (LeBlanc and Koutsoukos [2011]). Zhang et al. propose
Median Consensus Algorithm (MCA) where each node only
uses the median of states from all neighbors (Zhang and Sun-
daram [2012]). Note that all the results may become vulnerable
or even invalid when the network is weakly connected. In order
to deal with this issue, Yan et al. propose a distributed hash-
based verification mechanism for ensuring trust-worthy state
update of each node. However, it still requires the assumption
that the majority of nodes in the neighborhood are honest. Such
assumption is relaxed in (He et al. [2013]), which develops
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a Secure Average-consensus-based Time Synchronization pro-
tocol (SATS) for time synchronization in asynchronous sen-
sor networks by exploiting the two-hop information. Yet, two
important questions are not answered in (He et al. [2013]),
namely, 1) whether and how SATS can be extended to deal with
synchronous networks; 2) how exactly the attack behavior will
affect the convergence of consensus.

Motivated by the questions arising from existing works, in
this paper we develop a defence mechanism inspired by the
safeguard method proposed in (He et al. [2013]) in order to
provide secure consensus in synchronous networks.

Furthermore, we aim to reveal the answers for why and when
the message manipulation attack can accelerate the conver-
gence of consensus. The main contributions of our paper are
as follows.

1. For synchronous networks, we propose a verification pro-
cess and update rules based on two-hop neighbor nodes’
information, which guarantees the safe nodes always use
credible information to update their states.

2. We depict the dynamics of nodes’ states (including safe
and attack nodes) under SSCA in matrix and prove the
convergence as well as the exponential convergence rate of
SSCA.

3. We analyze how attack affects the convergence of consensus
under SSCA. Attack is classified into valid and invalid attack
to investigate the variation of the max-min state deviation of
all safe nodes for one iteration update.

The remainder of this paper is organized as follows. Section 2
provides the models and formulations of the problem, and the
detailed secure synchronous consensus algorithm is presented
in Section 3. Section 4 analyzes performance of SSCA. Section
5 tests main results through numerical examples and simula-
tions. Conclusion is given in Section 6.
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2. PRELIMINARIES AND PROBLEM FORMULATION

Consider a network with n safe nodes and m attack nodes,
their communication topology is described by an undirected
connected graph G = {V, E}, where V = {1, 2, ...,N} (n+m = N)
is a set of N nodes and E ⊂ V × V is an edge set. The neighbor
set of node i is denoted by Ni = { j|(i, j) ∈ E, i, j ∈ V}, i.e.,
(i, j) ∈ E if and only if node j is the neighbor of node i. Let
Vs = {1, 2, ..., n} and Va = {n + 1, n + 2, ..., n +m} represent safe
nodes set and attack nodes set, respectively. Clearly, we have
V = Vs

∪
Va. Let Es denote the edge set, where each edge in the

set connects two safe nodes. An undirected graph Gs = {Vs, Es}
consists of all safe nodes and the edges connecting between
them. Assume that Gs is a static and strongly connected graph.
Assume that there are more than two safe nodes in the network,
i.e., n > 2 and m should have a lower bound, which means more
details about the value of m should be given such as n > m >=
0. Each node is assumed to have only one corresponding ID
number.

2.1 Synchronous Consensus

Different from asynchronous consensus, each node broadcasts
and updates its state simultaneously in synchronous consensus,
which needs to be modeled and handled in a distinct way. We
give the related description as follows.

Let X(k) = [x1(k), x2(k), ..., xn(k), xn+1(k), ..., xn+m(k)]T be the
state vector of all sensor nodes, where k is the iteration times
of a consensus algorithm and X(0) represents the initial states
of all nodes. At iteration k, let Xs(k) = [x1(k), ..., xn(k)]T and
Xa(k) = [xn+1(k), ..., xn+m(k)]T be the state vector of safe nodes
and attack nodes,respectively. In this paper, we consider the
general consensus algorithm as follows

Xs(k + 1) = AXs(k), (1)
where A is a row stochastic matrix, i.e.,

∑n
j=1 ai j = 1, i ∈ Vs.

Assume ai j ∈ {0} ∪ [α, 1] ∀i, j ∈ Vs, where aii ≥ α and ai j ≥ α
when (i, j) ∈ Es. It follows from (Olfati-Saber et al. [2007])
that under (1) all nodes’ states will approximately converge to
a same constant state with an exponential rate. At iteration k,
while there are safe nodes using attack nodes’ states for update,
the minimum and maximum state of safe nodes are denoted
by h′(k) = min[Xs(k)], H′(k) = max[Xs(k)]. Otherwise, they
are denoted by h(k) = min[Xs(k)] and H(k) = max[Xs(k)].
Meanwhile, we denote the maximum deviation of all safe
nodes’ states for different cases as D(k) = H(k) − h(k) and
D′(k) = H′(k) − h′(k), respectively.

2.2 Problem Setup

Most existing works concerning consensus are established un-
der the assumption that the network is secure (all nodes are safe
nodes). In reality, message manipulation attack may show up
in the network, where the attack node may be a new entrant
to the network or a compromised node which was a safe node
before. The state of attack node is selected arbitrarily and we
mainly consider two kinds of message manipulation attack, i.e.,
constant injection attack (CIA) and random injection attack
(RIA) (He et al. [2013]). Without defence mechanism, safe
nodes cannot distinguish the state of safe node and that of attack
node so that they may use attack node’s information to update
their own states. Therefore, under the consensus algorithm (1),
the form of iteration rule for each safe node can be indicated as:

xi(k + 1) =
n∑

j=1

a′i j(k)x j(k) +
n+m∑

j=n+1

a′i j(k)x j(k),∀i ∈ Vs, (2)

where each a′i j(k) satisfies a′i j(k) ≥ α when (i, j) ∈ E and
a′i j(k) = 0 when (i, j) < E, and

∑n+m
j=1 a′i j(k) = 1. Just as proven

in (Khanafer et al. [2012]), any form of message manipulation
attack can easily make algorithm (1) invalid, i.e., the consensus
cannot be achieved by all safe nodes.

This paper considers two assumptions for attack: attack nodes
only have safe neighbor nodes, i.e., there are not any two
attack nodes neighboring with each other, thus no cooperation
attack; attack nodes can read the information of safe nodes but
cannot modify it. The second assumption can be realized by
information authentication (Lu et al. [2012]).

We find that synchronous consensus cannot be solved by the
method in (He et al. [2013]) for some cases. For example,
when there are only two states Q1,Q2 in the network and
each node with state Q1 (Q2) has two neighbor nodes with
state Q2 (Q1), under that method, nodes with state Q1 will
just change their states into Q2 while nodes with state Q2 will
just change their states into Q1 according to the update rule
in (He et al. [2013]). As a result, each node will always have
different state from its neighbors which means that consensus
cannot be achieved. Therefore, this method cannot be used for
synchronous consensus directly. Hence, we need to modify the
method to avoid the infinite loop of states and guarantee that
synchronous consensus can be achieved by any initial states.

The first goal of this paper is to develop a secure consensus
algorithm which is not constrained by the connectivity of net-
work and guarantees that consensus can still be achieved by
all the safe nodes under attack in synchronous networks. More
importantly, we will investigate the fundamental problem that
how the states selected by attack nodes affect the convergence
of SSCA.

3. SECURE SYNCHRONOUS CONSENSUS
ALGORITHM

In this section, we first introduce the verification mechanism,
and then propose a secure synchronous consensus algorithm
with this mechanism.

Let Θ j(k), k > 0 denote the information set of safe node j at
iteration k,
Θ j(k) = {x j(k), x jm (k−1), x jM (k−1), j, jm, jM}, j ∈ Vs, jm, jM ∈ N j

where x jm (k − 1) and x jM (k − 1) denote the smallest and largest
state among all its neighbor nodes that node j receives from its
neighbor node jm and jM at iteration k − 1, respectively.

Verification Process: suppose that safe node i receives informa-
tion set Θ j(k), j ∈ Ni. Then node i will check the following two
conditions,

c1. j , jm , jM .
c2. x jm (k − 1) ≤ x j(k) ≤ x jM (k − 1).

If conditions c1 and c2 hold, the state x j(k) is credible for node
i. Where condition c1 ensures that nodes jm and jM are two
different neighbor nodes of node j, and condition c2 guarantees
that node j’s state is bounded by two neighbor nodes’ states.

Unlike SATS (He et al. [2013]), in step 2 and step 4, we improve
the update rule for the node with maximum or minimum state
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Algorithm 1 : Secure Synchronous Consensus Algorithm (SS-
CA)
Initialization

1. Each safe node i initializes its state xi(0), i ∈ Vs and broadcasts it.
2. After receiving all neighbor nodes’ states, node i gets the information set
{xim (0), xiM (0), im, iM} and updates its state as follows

(a) If xi(0) < xim (0), xi(0) = xi(0)+xim (0)
2 ;

(b) If xi(0) > xiM (0), xi(0) = xiM (0).
Then, node i broadcasts its initial information set Θi(0).

Iteration

3. Node i broadcasts Θi(k) to its neighbor nodes.
4. Based on neighbors’ states, node i gets the information set
{xim (k), xiM (k), im, iM} and updates its state as follows

(a) If xi(k) < xim (k), xi(k) = xi(k)+xim (k)
2 ;

(b) If xi(k) > xiM (k), xi(k) = xiM (k).
5. Node i executes the verification process for its neighbors’ information set
Θ j(k), j ∈ Ni. If and only if information set Θ j(k) passes the verification
process, x j(k), j ∈ Ni is credible enough for node i and gets stored.

6. Node i updates its state according to (2), where only a positive weight
a′i j(k) ≥ α is set for safe neighbor nodes or credible attack neighbor
nodes, and then update the information set Θi(k + 1).

among its neighbors. In order to avoid infinite loop of the state,
we modify the update rule for the node with minimum state
which is different from the rule for the node with maximum
state. When the node notices that it owns the maximum state
among its neighbors, it will change its state into the second
largest state. But for the node with minimum state, it will just
update its state by averaging its state with the second smallest
state which guarantees it will use the honest state for update and
move closer to the final state.

Since for the synchronous consensus, all nodes usually have
synchronized clock, it is easy to verify whether the received
information is latest created. Thus, the above verification sim-
plifies the verification of condition c2 in (He et al. [2013]). For
each safe node i, a′i j(k) in step 6 can be set with some simple
and practical rules, for example, a′i j(k) = 1

|Ni |+1 .

Remark 1. In (LeBlanc and Koutsoukos [2011], Zhang and
Sundaram [2012], Pasqualetti et al. [2012]), when the tolerable
number of attack nodes is restricted by connectivity of original
network, SSCA does not need to satisfy that restriction since
design of algorithm has no direct relationship with the connec-
tivity of safe nodes. Under SSCA, attack nodes cannot attack
consensus with random states selection.

4. PERFORMANCE ANALYSIS OF SSCA

In this section, we first give the matrix description of the
dynamic of SSCA, and then prove the convergence property
of our algorithm based on matrix theory. In the following part,
regarding the states of attack nodes, we will investigate that how
attack behaviors affect SSCA. Invalid and valid attack are also
discussed to analyze the variation of max-min state deviation of
all safe nodes under SSCA.

4.1 Matrix Description

Since under SSCA attack nodes should send credible informa-
tion (can go through the verification process) to avoid being
detected by the safe neighbor nodes, we assume that the infor-
mation used for attack is always credible. Consider attack nodes
always exist in the network.

For safe node i, it follows from steps 5 and 6 in SSCA that

xi(k + 1) =
∑
j∈Ni

a′i j(k)x j(k) + a′ii(k)x̃i(k), (3)

where
∑

j∈Ni
a′i j(k)+a′ii(k) = 1 and a′i j(k) ≥ α hold for j ∈ Ni

∪
i,

x̃i(k) = xim (k)+xi(k)
2 when xi(k) < xim (k), x̃i(k) = xiM (k) when

xi(k) > xiM (k) and x̃i(k) = xi(k), otherwise. For attack node
i, i ∈ Va, its credible state xi(k + 1) is bounded by the states
of safe nodes at time k, i.e., h′(k) ≤ xi(k + 1) ≤ H′(k), which
means that there exists a′i j(k), j ∈ Ni ∩Vs to make the following
equation hold,

xi(k + 1) =
∑
j∈Ni

a′i j(k)x j(k).

Based on the above observations, there exists a row stochastic
matrix A′(k) such that

X(k + 1) = A′(k)X(k). (4)

From (3), the details of the above matrix are given as

[
Xs(k + 1)
Xa(k + 1)

]
=

[
B(k) C(k)
E(k) 0m×m

] [
P1(k) P2(k)
0m×n Im×m

] [
Xs(k)
Xa(k)

]
=

[
B̃(k) C̃(k)
Ẽ(k) F̃(k)

] [
Xs(k)
Xa(k)

]
(5)

where B̃(k) = B(k) × P1(k) ∈ Rn×n, C̃(k) = B(k)P2(k) + C(k) ∈
Rn×m, Ẽ(k) = E(k)P1(k) ∈ Rm×n, F̃(k) = E(k)P2(k) ∈ Rm×m,
P2(k) ∈ Rn×m and Im×m is an identity matrix. Meanwhile,
each element bi j(k) ≥ α of B(k) iff (i, j) ∈ Es or j = i.
P(k) = [P1(k) P2(k)] is a matrix with its elements as follows

1. when xi(k) > xiM (k), iM = j, pi j(k) = 1, i ∈ Vs, j ∈ V
2. when xi(k) < xim (k), im = j, pi j(k) = 1/2, pii(k) = 1/2, i ∈

Vs, j ∈ V
3. otherwise, pi j(k) = 0, i ∈ Vs, j ∈ V

The above description reveals the relationship between the
states of safe nodes and attack nodes for SSCA. It is observed
that some safe nodes’ states are constrained by attack nodes’
credible states while attack nodes’ states totally depend on safe
nodes’ states referring to (5) among two hop information. We
will analyze the performance of SSCA and attack’s impact on
SSCA in the following part based on these tools.

4.2 Convergence of the Algorithm

We give a theorem to guarantee convergence with an expo-
nential rate of SSCA and then investigate when attack can
accelerate consensus under SSCA.
Theorem 1. Under SSCA, convergence of discrete consensus is
achieved with an exponential rate in the presence of attack, i.e.,
there holds that,

lim
k→∞

xi(k) = c,∀i ∈ Vs

where c is a constant.

Proof. According to (5), we have
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[
Xs(k + 1)
Xa(k + 1)

]
=

[
B̃(k) C̃(k)
Ẽ(k) F̃(k)

] [
Xs(k)
Xa(k)

]
=

[
B̃(k)B̃(k − 1) + C̃(k)Ẽ(k − 1) B̃(k)C̃(k − 1) + C̃(k)F̃(k − 1)
Ẽ(k)B̃(k − 1) + F̃(k)Ẽ(k − 1) Ẽ(k)C̃(k − 1) + F̃(k)Ẽ(k − 1)

]
[

Xs(k − 1)
Xa(k − 1)

]
=

[
W1(k) C1(k)
E1(k) W2(k)

] [
X(0)
0m×1

]
.

where W1(k) ∈ Rn×n, C1(k) ∈ Rn×m, E1(k) ∈ Rm×n and W2(k) ∈
Rm×m. Denote

W(k) = A′(k)A′(k − 1)...A′(0)

=

[
W1(k) C1(k)
E1(k) W2(k)

]
Since each A′(k) is a row stochastic matrix, we get row stochas-
tic matrix W(k). Consider that node q, q ∈ Vs has the largest
initial state and more than two nodes in neighborhood. Since
all safe nodes are always strongly connected with each other,
all other safe nodes will get node q’s state xq(0) = H′(0) after
T = n iterations for their states update. The detailed analysis is
as follows.

Because xq(0) is the largest initial state, under our algorithm
node q will update its state as follows xq(0) = xqM (0) ≥ h′(0).
For its one hop safe neighbor node i1, if xi1 (0) < xi1m(0), node
i1 will update its state by setting the weight a′(i1q) ≥ α for
node q. For node q with xq(1), when xq(1) > xqM (1), it will
firstly update its state as follows xq(1) = xqM (1) ≥ h(1). For its
two hop safe neighbor node i2, if xi2 (0) < xi2m(0), node i2 will
update its state by setting the weight a′(i2q) ≥ α2 for node q.
For its r hop safe neighbor node ir, if xir (r − 1) < xm(r − 1),
node in will update its state by setting the weight a′(irq) ≥ αr

for node q. Therefore, after T = n, there must exist that W1(T )
is a matrix with all elements being positive in column q and
W1

iq(T ) ≥ (αH(0)
h(0) )T , and 0 <

∑n
1 w1

iq(T ) ≤ 1. Each safe node’s
state can be represented as

xi(T ) =
n∑

j=1

w1
i j(T )x j(0).

Therefore, we have H′(T ) < H′(0) and h′(T ) > h′(0) and
there exists min[w1

iq(T )] ≤ σ1 ≤ 1 − min[w1
iq(T )] to make

D′(T ) < σ1D′(0) hold.

If safe node q with the largest state among all safe nodes at
iteration T , i.e., xq(T ) = H′(T ). If xq(T ) > xqM (T ), then node q
will update its state as xq(T ) = xq(T ) firstly. Otherwise, it will
just update its state according to (2). Hence, after T iteration,
just as our analysis before, there exists min[w1

iq(2T )] < σ3 < 1−
min[w1

iq(2T )] to make D′(2T + 1) < σD′(T ) hold. Otherwise,
we consider that xqM (T +1) = max[X(T +1)] > H′(T +1), qM ∈
Va at iteration T + 1. Since attack node qM has to pass the
verification process, its state satisfies xqM (T+1) ≤ H′(T ). Then,
attack node qM will update its state as the second largest state of
its neighbor. Hence, the state of attack node qM will decrease.
For the r hop safe neighbor node ir of node q, it will set the
weight a′(irq) ≥ αr for node q. For the same reason, there exists
min[w1

i1q(2T + 1)] < σ2 < 1 − min[w1
i1q(2T + 1)],w1

i1q(2T +

1) ≥ (αH(T )
h(T ) )nw1

i1q(T + 1)n to make D′(2T + 1) < σ2D′(T ) hold.
Therefore, we have min[w1

iq(2T + 1)] < σ2 < 1−min[w1
iq(2T +

1)], i ∈ Vs, i ∈ Nq to make D′(2T + 1) < σ2D′(T ) hold. It infers
that when k > pT + p, T ≥ n, we have

0 ≤ D′(pT ) < σpσp−1...σ1D′(0),
Hence, we have

lim
k→∞

D′(k) = 0,

which means that limk→∞ xi(k) = c,∀i ∈ Vs and consensus is
achieved with an exponential rate.
Remark 2. In the proof part of Theorem 1, it is observed that
attack nodes’ states can be constrained in a limited interval
under SSCA, which means that different states of attack nodes
may bring different results. In the next subsection, related
detailed analysis will be provided.

4.3 The Effect of Attack Behavior

Here, We first provide a condition for analysis of faster con-
vergence under SSCA. Then, the variation of max-min state
deviation is discussed for one iteration update by classifying
attack into valid and invalid attack.
Theorem 2. Under SSCA, if h′(k) ≤ xi(k) ≤ H′(k), i ∈ Va, we
have Xs(k + 1) = Â(k)Xs(k), where Â(k) is a row stochastic
matrix.

Proof. When h′(k) ≤ x j(k) ≤ H′(k), j ∈ Va, there exists
ωa

ji(k) ≥ 0, i ∈ Vs with
∑n

j=1 ω
a
ji(k) = 1, such that

x j(k + 1) =
n∑

i=1

ωa
ji(k)xi(k).

Hence, for ∀i ∈ Vs, under SSCA, the following equation

xi(k + 1) =
n∑

j=1

a′i j(k)x j(k) +
n+m∑

j=n+1

a′i j(k)x j(k)

=

n∑
j=1

a′i j(k)x j(k) +
n+m∑

j=n+1

a′i j(k)[
n∑

q=1

ωa
jq(k)xq(k)]

=

n∑
j=1

âi j(k)x j(k)

holds, where
∑n+m

j=1 a′i j(k) = 1. Note that
n∑

j=1

âi j(k) =
n∑

j=1

a′i j(k) +
n+m∑

j=n+1

a′iq(k)(
n∑

q=1

ωa
jq(k)) = 1.

Therefore, there exists a row stochastic matrix Â(k) such that
Xs(k + 1) = Â(k)Xs(k).

Remark 3. Through Theorem 3, when the states of attack n-
odes are between the maximum and the minimum state of all
safe nodes’ states, the system can be noted as linear time-
varying system with zero-input. However, Â(k) is complex and
is hard to obtain, because it is decided by many factors, such
as value vector of safe nodes, attack nodes’ states selection, the
weight setting mode, etc. Meanwhile, the convergence rate of
a time-varying dynamic consensus algorithm is a challenging
problem. Therefore, it is hard to give a condition that when the
attack is beneficial for consensus.

Assume that attack nodes know the rules and obey it to attack
the consensus performance of our algorithm. We give an exam-
ple to illustrate attack nodes’ benefit for consensus under the
case described by Theorem 3 shown in Fig. 1.
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Example 1: Consider a network with n = 5 safe nodes and
m = 1 attack node. Set that X(0) = [2, 3, 5, 6, 7]T and attack
node 6 always sends safe node 4’s current state value to at-
tack consensus. Weight setting mode is to average neighbor
nodes’ value with its own value. Shown in Fig. 2, consensus
is reached with a faster rate. Since the appearance of attack
makes the connectivity of network stronger than before under
SSCA, which increases the communication frequency among
safe nodes, consensus can be achieved synchronously with a
faster rate. It can be observed that this 1-connected network
can tolerate one attack node, which means that SSCA relaxes
assumption that the tolerable number of attack is strictly decid-
ed by the connectivity of network in (Pasqualetti et al. [2010],
Zhang and Sundaram [2012], LeBlanc and Koutsoukos [2011]).

1 2 3 4 5

6

Fig. 1. An Illustrating Example
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Fig. 2. Max-min deviation

The above part has pointed out that when the states of attack
nodes satisfy the given condition, attack may even enhance the
convergence rate of consensus. We will provide a method to
classify different message manipulation attacks into invalid and
valid attack such that the variation of max-min state deviation of
all safe nodes for one iteration update can be fully investigated.
A sufficient condition for invalid attack in a special class of
consensus is obtained.

If an attack cannot increase one iteration maximum distance of
all safe nodes’ states, i.e, D′(k + 1) ≤ D(k + 1), the attack at
iteration k is defined as an invalid attack, and otherwise defined
as a valid attack. Here the special class of consensus means that
the weight setting mode does not change, i.e., for equations (1)
and (4),

a′i j(k)∑n
j=1 a′i j(k)

= ai j(k), i, j ∈ Vs, (6)

where ai j(k) is the weight that node i sets for node j without
attack injection. A simple consensus rule that each node updates
its state based on the average of its own state plus the states of
its neighbors is widely researched. A sufficient condition for
invalid attack is given as follows.
Theorem 3. Under SSCA, if x j(k), j ∈ Va satisfies h(k + 1) ≤
x j(k) ≤ H(k + 1), we have

D′(k + 1) ≤ D(k + 1),
i.e., this attack at iteration k is an invalid attack.

Proof.

For safe node i with state xi(k) satisfying xim(k) ≤ xi(k) ≤ xiM (k),
under SSCA in the presence of attack nodes, we have

xi(k + 1) =
n∑

j=1

a′i j(k)x j(k) +
n+m∑

j=n+1

a′i j(k)x j(k).

Because of h(k + 1) ≤ x j(k) ≤ H(k + 1), j ∈ Va, we get an
inequality as follows

xi(k + 1) ≥
n∑

j=1

a′i j(k)x j(k) +
n+m∑

j=n+1

a′i j(k)h(k + 1)

≥ (
n∑

j=1

a′i j(k))
n∑

j=1

{
a′i j(k)∑n
j=1 a′i j(k)

x j(k)} +

n+m∑
j=n+1

a′i j(k)h(k + 1) (7)

According to (6), we have

xi(k + 1) ≥ (
n∑

j=1

a′i j(k))
n∑

j=1

(ai j(k)x j(k)) +
n+m∑

j=n+1

a′i j(k)h(k + 1)

≥ (
n∑

j=1

a′i j(k))h(k + 1) +
n+m∑

j=n+1

a′i j(k)h(k + 1)

≥ h(k + 1). (8)
For the same reason, we can get x′i (k + 1) ≤ H(k + 1).

For safe node i with state satisfying xi(k) > xiM (k) or xi(k) <
xim (k), under SSCA without attack, we have

xi(k + 1) =
∑
j∈Ni

ai j(k)x j(k) + aii(k)xiM (k)

or
xi(k + 1) =

∑
j∈Ni

ai j(k)x j(k) + aii(k)(xim (k) + xi(k))/2.

Since h(k+ 1) ≤ xi(k+ 1) ≤ H(k+ 1), we have h(k+ 1) ≥ xim (k)
and xiM (k) ≥ H(k + 1).

If there exist attack nodes in its neighbor at update and their
states satisfy h(k + 1) ≤ x j(k) ≤ H(k + 1), j ∈ Va, the following
equality holds

xi(k + 1) =
∑

j∈Ni∩Vs

a′i j(k)x j(k) + a′ii(k)xiM (k) +
∑

j∈Ni∩Va

a′i j(k)x j(k)

or

xi(k + 1) =
∑

j∈Ni∩Vs

a′i j(k)x j(k) + a′ii(k)
(xim (k) + xi(k))

2
+∑

j∈Ni∩Va

a′i j(k)x j(k).

According to the same reason as (7) and (8), we get h(k +
1) ≤ xi(k + 1) ≤ H(k + 1).

Therefore, if x j(k), j ∈ Va satisfies h(k + 1) ≤ x j(k) ≤ H(k + 1),
we have H′(k + 1) ≤ H(k + 1) and h′(k + 1) ≥ h(k + 1). Hence,
D′(k + 1) ≤ D(k + 1) holds.

When xi(k) ∈ [xim(k− 1), xiM(k− 1)],∀i ∈ Va, attack node i will
select xim(k − 1) or xiM(k − 1) to attack consensus intuitively to
make D′(k + 1) as large as possible. On the other hand, for safe
nodes, the information they get is expected to come from safe
nodes, which means that the information is updated by obeying
SSCA. Hence, attack nodes should send information which is
deviated from the real one to realize valid attack.
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5. EVALUATION

In this part, we provide extensive simulation results to testify
the obtained theoretical results. Consider a network with n = 19
safe nodes and m = 1 attack node, and safe nodes’ states are
selected from the interval [0, 10] randomly. We first investigate
how the network equipped with SSCA evolves under constant
value attack. Specifically, we let the attack node i broadcast
xi(k) = 15 constantly, and draw the system state in Fig. 3(a)
and Fig. 3(b). It can be seen that SSCA effectively avoids that
final state of consensus is seriously deviated from the true value
and consensus is achieved with an exponential convergence
speed. The reason is that under SSCA, the states of attack nodes
are effectively bounded by their safe neighboring nodes, which
therefore guarantees that the final state of the whole network
will not deviate from the true value. Instead, without SSCA,
although the max-min deviation of the whole network will still
decrease, the converging speed is much slower which can be
seen through Fig. 3(b).

Then, We investigate how the network equipped with SSCA
evolves under random value attack. Specifically, we let the
attack node i broadcast xi(k) ∈ [0, 10] randomly, and draw the
system state in Fig. 3(c). It can be seen that SSCA ensures
that consensus is achieved with an exponential convergence
speedWithout SSCA, in a short time, the max-min deviation
of the network will remain fluctuating around as manipulated
random information attack keeps injecting into the system.
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Fig. 3. Performance of SSCA

6. CONCLUSION

In this paper, we mainly consider secure consensus in syn-
chronous networks under message manipulation attacks. Based
on two-hop neighbor nodes’ information, we first propose SS-
CA by revising the existing SATS protocol (He et al. [2013])
which was proposed for consensus in asynchronous sensor
networks. By utilizing matrix description of the nodes’ states
dynamics, we prove that SSCA can guarantee the exponential

convergence even under message manipulation attacks. We fur-
ther analyze how the attack behaviors affect the convergence
of consensus. Such result is also exploited for classifying the
attack behavior and analyzing the convergence rate. Illustrating
examples and extensive simulation results verify the effective-
ness of proposed mechanism and theoretical analysis.
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