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Abstract: This paper studies a visual feedback 3D pose regulation problem explicitly handling
camera frame rates. Although numerous works have already tackled vision-based estima-
tion/control problems by focusing on the limitation of measured output (2D visual information),
almost all of them have assumed that visual measurements of a camera are continuously
available. However, camera frame rates and image processing time are often non-negligible
compared with other computation time. In view of this fact, we newly propose a discrete visual
feedback pose regulation law under the situation that visual measurements are sampled due to
frame rates. We first give a sufficient condition of frame rates to achieve a desired relative pose
to a static target object. Then, the tracking performance for a moving target is analyzed via
the notion of ultimate boundedness. The present analysis provides a guideline for the design of
estimation/control gains. We finally show the significance and validity of this work through 3D
simulation.

1. INTRODUCTION

Fusion of control theory and computer vision has been
in wide spread use thanks to rich visual information
(Chaumette and Hutchinson [2006, 2007]). This technique
is originally motivated by robot control as in Hager and
Hutchinson [1996] and recently handles various problems
such as surveillance or security, image-based medical pro-
cedures or comprehension of biological perceptual informa-
tion processing (Ding et al. [2012], Gao et al. [2010], Han
et al. [2010]). One of main issues here is how to handle
2D visual information in order to estimate/control a 3D
relative pose (position and orientation) to a target object
(Dani et al. [2012], Cunha et al. [2011], Ayazoglu et al.
[2011], Karasev et al. [2011], Luca et al. [2008]).

This paper addresses a visual feedback 3D pose regulation
problem whose objective is to drive the camera pose rela-
tive to a target object to a desired one by using only visual
information extracted by a single camera. To meet this
goal, our previous works (Fujita et al. [2007], Kawai et al.
[2011]) have proposed a visual feedback 3D pose estimation
mechanism, called visual motion observer, and observer-
based control mechanisms. Here, passivity of rigid body
motion plays a central role and energy-based approaches
have been taken for convergence and performance analysis.
However, these works assume that visual measurements
are continuously available. This assumption permits any
positive estimation and control gains though we know
that high gain estimation or control does not work in
experiments. Moreover, most of works on these problems
focus only on the limitation of measured output and do not
consider the fact that frame rates and image processing
time are not small enough to be negligible compared with
other computation time.

In the case that frame rates or image processing time
are non-negligible, we have to consider estimation/control
input sampled by discrete visual measurements. When
we handle such sampled input, an event-based control
technique (Tabuada [2007], Bemporad et al. [2010], Garcia
and Antsaklis [2013]) becomes a good help for conver-
gence analysis. The appealing point of event-based control
is the possibility to reduce the number of re-computing
input and transmissions while guaranteeing desired perfor-
mances. One of the main topics here is to investigate inter-
event time guaranteeing monotonic decrease of potential
functions for convergence. This technique is suited to our
previous works (Fujita et al. [2007], Kawai et al. [2011])
since they also use non-increasing properties of potential
functions for convergence/performance analysis.

In view of these facts, this paper studies a visual feedback
3D pose regulation problem explicitly handling camera
frame rates and image processing time. We newly propose
a discrete pose regulation mechanism, where the present
input is sampled due to frame rates. We next provide
the relation between frame rates and estimation/control
gains to achieve the desired relative pose for a static
target object, which is our main contribution. The tracking
performance analysis is then conducted for a moving
target. Here, it is shown that estimation and control errors
are ultimately bounded by a function of the camera frame
rate, the estimation/control gains and the target object
velocity. We also give how to deal with the case that frame
rates and image processing time are variable. The second
contribution is that the convergence and performance
analysis provides the guideline for gain settings. We finally
demonstrate the validity and importance of this work via
3D simulation.
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Fig. 1. Coordinate frames for visual feedback system

Image Plane

Target Object Frame

Camera Frame

World Frame 

Fig. 2. Pinhole camera model

2. VISUAL FEEDBACK POSE REGULATION

We first give the problem formulation of visual feedback
3D pose regulation and introduce the main results of Fujita
et al. [2007] as the preliminary of this work.

2.1 Rigid Body Motion

We consider a visual feedback pose regulation system
shown in Fig. 1 throughout this work. Here, we respec-
tively denote the world frame, the camera frame and the
object frame as Σw, Σc and Σo. Then, the pose of the
origin of the camera frame Σc relative to the world frame

Σw is represented by gwc = (pwc, e
ξ̂wcθwc) ∈ SE(3), where

ξwc ∈ R3 (∥ξwc∥ = 1) and θwc ∈ (−π, π] are respectively
the direction and the angle of rotation. For notational
simplicity, we hereafter represent ξwcθwc by ξθwc. The
notation ’∧’ gives âb = a × b, a, b ∈ R3 for the vector
cross-product × and its inverse is represented by ’∨’. We
similarly represent the pose of the object frame Σo relative

to the world frame Σw by gwo = (pwo, e
ξ̂θwo) ∈ SE(3).

We also denote the body velocities of the camera frame Σc

and the object frame Σo relative to the world frame Σw by
V b
wc = [vTwc ωT

wc]
T, V b

wo = [vTwo ωT
wo]

T ∈ R6, where v ∈ R3

and ω ∈ R3 are respectively the linear and angular body
velocities (Ma et al. [2003]).

We now introduce the homogeneous representations of g
and V b for calculations as follows (note here that we use
another definition of ’∧’ for V b ∈ R6).

g =

[
eξ̂θ p
0 1

]
∈ R4×4, V̂ b =

[
ω̂ v
0 0

]
∈ R4×4.

RRBM
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Fig. 3. Block diagram of camera model with RRBM
(RRBM means relative rigid body motion)

Then, the body velocities V b
wc and V b

wo are respectively

defined as V̂ b
wc := g−1

wc ġwc and V̂ b
wo := g−1

wo ġwo (Ma et al.
[2003]).

Finally, the pose of the object frame Σo relative to the
camera frame Σc and its body velocity are respectively

denoted by gco = (pco, e
ξ̂θco) ∈ SE(3) and V b

co :=
(g−1

co ġco)
∨ ∈ R6. Then, gco = g−1

wc gwo holds, and the

following relative rigid body motion is obtained from V̂ b
co =

g−1
co ġco (Ma et al. [2003]).

ġco = −V̂ b
wcgco + gcoV̂

b
wo. (1)

2.2 Visual Measurement

We next introduce 2D visual measurements extracted by a
vision camera as measured output for 3D pose regulation.
Although we only introduce the extraction by perspective
projection in this paper, we can also introduce panoramic
camera models for the subsequent discussions as in Kawai
et al. [2011].

We consider the target object with k (k ≥ 4) feature
points. We represent the positions of the feature points
relative to the object frame Σo by poi ∈ R3, i ∈ {1, · · · , k}.
Then, the positions relative to the camera frame Σc are
given by pci = gcopoi from the coordinate transformation.
Here, we use the homogeneous representations [pTci 1]T

and [pToi 1]
T. We next denote the k feature points on the

image plane by f = [fT
1 · · · fT

k ]T ∈ R2k. Then, well
known perspective projection (Ma et al. [2003]) yields the
following relation for each fi ∈ R2 (Fig. 2).

fi =
σ

zci

[
xci

yci

]
, pci = [xci yci zci]

T. (2)

Here, σ > 0 is the focal length of the camera. Suppose
that the visual measurements f is only available for pose
regulation and the feature points poi are known a priori.
Then, the visual measurement is the function only of the
relative pose gco (i.e. f(gco)). Fig. 3 illustrates the block
diagram of the relative rigid body motion with perspective
projection.

The objective of this work is then to propose a discrete
pose regulation mechanism to drive gco to the fixed desired

pose, denoted by gd = (pd, e
ξ̂θd) ∈ SE(3), only from the

visual measurement f(gco) under the situation that the
frame rate and image processing time are non-negligible
(Fig. 1).

2.3 Review of Visual Feedback Pose Regulation

We next review the visual feedback pose regulation pre-
sented in Fujita et al. [2007] as the preliminary. Note here
that the authors in Fujita et al. [2007] assume that visual
measurements are continuously available.
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Since available visual measurements (2) are two dimen-
sional, it is necessary for 3D pose regulation to estimate the
relative pose gco by a nonlinear observer. We now represent

the estimate of gco by ḡco = (p̄co, e
ˆ̄ξθ̄co) ∈ SE(3). Similarly

to the Luenberger-type observer (Luenberger [1971]), we
first build the copy model of relative rigid body motion
(1) as follows.

˙̄gco = −V̂ b
wcḡco + ḡcoûe. (3)

Here, ue = [uT
ep uT

eR]
T ∈ R6 is observer input for the

estimation of gco, and notice that the model (3) does not
include V b

wo information since it is unknown (the pose
regulation problem with target velocity estimation has
been tackled in Ibuki et al. [2013]). It should be also
noted that the estimated visual measurements f̄ can be
computed by ḡco and (2).

We next introduce the estimation error gee = (pee, e
ξ̂θee) ∈

SE(3) between gco and ḡco and the estimation error vector
ee ∈ R6 defined as follows.

gee := ḡ−1
co gco, ee :=

[
pee

sk(eξ̂θee)∨

]
.

Here, sk(eξ̂θ) := (1/2)(eξ̂θ − e−ξ̂θ) ∈ so(3). We note the
important property that for θee ∈ (−π, π), ee = 0 holds
if and only if gee = I4, i.e. ḡco = gco (In ∈ Rn×n

represents the n-dimensional identity matrix). It should
be also noted that ee can be approximately reconstructed
by the measurement error fe ∈ R2kdefined as fe := f − f̄
(refer to Fujita et al. [2007]). Then, the time differentiation
of gee with (1) and (3) produces the following estimation
error system.

ġee = −ûegee + geeV̂
b
wo. (4)

This is given in the vector form by

V b
ee := (g−1

ee ġee)
∨ = −Ad(g−1

ee )ue + V b
wo.

Here, Ad(g) ∈ R6×6 represents the adjoint transformation
associated with g (Ma et al. [2003]).

We also build the control error system similarly to the
estimation error system (4). We respectively define the

control error gce = (pce, e
ξ̂θce) ∈ SE(3) and its vector

ec ∈ R6 as

gce := g−1
d ḡco, ec :=

[
pce

sk(eξ̂θce)∨

]
.

Notice again that for θce ∈ (−π, π), ec = 0 holds if
and only if gce = I4 (i.e. ḡco = gd). Then, the time
differentiation of gce with (3) gives the following control
error system.

ġce = −g−1
d V̂ b

wcgdgce + gceûe. (5)

This is written in the vector form by

V b
ce := (g−1

ce ġce)
∨ = −Ad(g−1

ce )Ad(g−1
d

)V
b
wc + ue.

In summary, combining the estimation error system (4)
and the control error system (5) yields the following total
error system.[

V b
ce

V b
ee

]
= −

[
Ad(g−1

ce ) −I6
0 Ad(g−1

ee )

]
uce +

[
0

V b
wo

]
, (6)

where uce := [(Ad(g−1
d

)V
b
wc)

T uT
e ]

T ∈ R12. Then, the

authors in Fujita et al. [2007] have shown that if V b
wo ≡ 0

holds, the total error system (6) is passive from the input
uce to the output νce ∈ R12 defined as

νce := Nece, N :=

[
−I6 0

Ad(e−ξ̂θce ) −I6

]
∈ R12×12.

Here, ece ∈ R12 is the total control and estimation
errors defined as ece := [eTc eTe ]

T. Note then that for
θce, θee ∈ (−π, π), ece = 0 means gco = gd (i.e. the goal is
achieved). The corresponding storage function U ≥ 0 for
this passivity is given by

U :=
1

2
∥pce∥2 + ϕ(eξ̂θce) +

1

2
∥pee∥2 + ϕ(eξ̂θee),

ϕ(eξ̂θ) :=
1

4
∥I3 − eξ̂θ∥2F =

1

2
tr(I3 − eξ̂θ) ≥ 0.

Note here that U = 0 means ece = 0, i.e. visual feedback
pose regulation works.

The paper Fujita et al. [2007] proposes the following pose
regulation input from this passivity.

uce = −Kνce, K :=

[
kcI6 0
0 keI6

]
∈ R12×12. (7)

Here, kc, ke > 0 and it has the following fact.

Fact 1. If V b
wo ≡ 0 holds, then the equilibrium point ece =

0 for the closed-loop system (6) and (7) is asymptotically
stable. In addition, given a positive scalar α, if K satisfies

ke −
1

2α
− 1

2
> 0

kc −
1

2
− ke(α+ 1)

α(2ke − 1)− 1
> 0

,

then the system (6) and (7) with the input V b
wo and the

output νce has L2-gain ≤ α.

The first statement means that the visual feedback pose
regulation works successfully when the target object is
static. Also, the second claim says that even for a moving
object, the regulation works well with the tracking perfor-
mance indicator α. The block diagram of the present visual
feedback system is depicted in Fig. 4 without Sampler
blocks.

We now note that Fact 1 does not consider camera
frame rates or image processing time though they are not
negligible compared with other computation time (general
cameras have 15, 30, 60 or less fps when the image
processing time is included). Therefore, we tackle a new
visual feedback pose regulation problem explicitly taking
into consideration camera frame rates in the next section.

3. FRAME RATE-BASED DISCRETE VISUAL
FEEDBACK POSE REGULATION

In this section, we reconsider a visual feedback pose
regulation problem by explicitly handling the camera
frame rate and the time for extracting feature points
via image processing. Throughout this section, we give a
little complicated analysis or conditions in order to make
conservativeness as less as possible.

3.1 Convergence Analysis

Suppose that the camera has the frame rate τ > 0 [fps]
and, for notational simplicity, this includes the image
processing time to extract feature points. Assume also that
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Fig. 4. Block diagram of discrete visual feedback system

the computation time to calculate the control/estimation
input is negligible compared with 1/τ . Based on the
frame rate τ , we now introduce sampling time sequence
{t0, t1, t2, · · · } such that ti+1−ti = 1/τ holds for all i ∈ N0

(N0 represents the union of natural numbers and {0}).
Then, the visual measurements (2) are extracted at each
time instant ti.

We thus newly propose frame rate-based discrete input as
follows.

uce(t) =−Kνce(ti) = −KN(ti)ece(ti),

ke ≥ kc > 0, t ∈ [ti, ti+1). (8)

Note here that the present pose regulation input is con-
stant till the next sampling time (the velocity input is
also sampled because it is built by the estimated relative
pose ḡco from sampled visual information). Moreover, we
newly utilize the gain condition ke ≥ kc with hope for
good transient responses. The block diagram of the present
discrete visual feedback system is depicted in Fig. 4. Since
the image Jacobian in the observer is the function of not
only f but f̄ and ḡco (Fujita et al. [2007]) and the velocity
law consists of ḡco, we apply the same samplers to these
estimates.

Let us now introduce the error e ∈ R12 caused by the
samplers as

e(t) := N(t)ece(t)−N(ti)ece(ti), t ∈ [ti, ti+1),
∀i ∈ N0.

We then have the following result (this theorem is proved
by the similar approach in Ibuki et al. [2013]).

Theorem 2. Suppose that the target object is static
(V b

wo ≡ 0). Then, if the camera frame rate satisfies the
condition

τ ≥
√
ke(16kc + 31ke)

2 arctan

(
(
√
5−2)kcδ

√
ke(16kc+31ke)

2kcke+(17+5
√
5)k2

e+(10−3
√
5)kckeδ

) (9)

for δ ∈ (0, 1), there exist finite time te > 0 and a positive
scalar β such that

U(t) ≤ U(te)e
−β(t−te) ∀t ≥ te.

Namely the equilibrium point ece = 0 for the closed-loop
system (6) and (8) is exponentially stable after time te.

Claim 3. The condition (9) implies that large feedback
gains kc and ke require fast frame rates τ (small sampling
intervals). This property is intuitive because large gains
increase the influence of e, which might be a poor impact
on estimation and control. Said differently, after choosing
a camera with a certain rate, it is not free to let gains
large. Although the condition (9) is only sufficient and

much conservative so far, we believe that this analysis
provides the significant insight that camera frame rates
or image processing time is not negligible (Section 4 gives
an example).

One of our future works is to reduce the conservativeness
of the sufficient condition (9).

3.2 Tracking Performance Analysis for Moving Target

We next give tracking performance analysis for a moving
target by introducing the theory of ultimate boundedness
(Khalil [2002]).

We first suppose that ∥V b
wo(t)∥ ≤ κ ∀t ≥ t0 holds for a

positive scalar κ (i.e. the target velocity is bounded). Then,
the time differentiation of the potential error function U
along the trajectories of (6) and (8) yields

U̇ =eTceN
Tuce + eTe Ad(eξ̂θee )V

b
wo

≤− keTceN
TKN(ti)ece(ti) + ∥ee∥∥V b

wo∥

≤ − (3−
√
5)kc

2
∥ece∥2 +

(1 +
√
5)ke

2
∥ece∥∥e∥+ κ∥ece∥,

where the first term is given by the similar approach in
Ibuki et al. [2013]. Thus, if the error e satisfies

∥e∥ ≤ γ

for a positive scalar γ, we get

U̇ ≤ − (3−
√
5)kc

2
∥ece∥2 +

(1 +
√
5)keγ + 2κ

2
∥ece∥. (10)

Then, since the right-hand side of (10) consists only of
∥ece∥, we can employ ultimate boundedness analysis, and
we have the following result from the similar analysis in
Ibuki et al. [2013].

Theorem 4. Suppose that the target object velocity is
upper-bounded by κ. Then, for every ece(t0), there exists
tb ≥ 0 such that the solution ece(t) of the closed-loop
system (6) and (8) meets

∥ece(t)∥ ≤ (1 +
√
5)keγ + 2κ√

2(3−
√
5)δkc

∀t ≥ t0 + tb (11)

if θce(t), θee(t) ∈ (−π/2, π/2) holds and the frame rate
satisfies

τ ≥ (1 +
√
5)ke

2 ln
(
1 + (1+

√
5)kckeδγ

4kcδκ+
√
2(23+11

√
5)((1+

√
5)keγ+2κ)ke

) ,
for ∥ece(t0)∥ ≤ (1 +

√
5)keγ + 2κ

(3−
√
5)δkc

,

τ ≥ (1 +
√
5)ke

2 ln

(
1 + (1+

√
5)keγ

4κ+(7+5
√
5)ke

√
2U(t0)

) ,

otherwise. (12)

Claim 5. It can be seen from (11), (12) and ke ≥ kc
that large gains achieve good performances but require
fast frame rates. It is also intuitive that the target object
velocity directly influences the tracking performance. In
addition, we can consider γ as the indicator of the perfor-
mance and the sufficiently allowable gains. For instance,
choosing a camera with a certain rate enables us to design
kc and ke for a desired performance related to γ from (11)
and (12) (Section 4 provides an example).
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Theorem 4 gives two frame rate conditions depending
on the initial estimation/control errors which might be
confusing. However, if we first run the present estima-
tion/control law (8) before the target moves, we can con-
sider only the first condition. Also, we see from simulation
experiences that the condition θce(t), θee(t) ∈ (−π/2, π/2)
is generally satisfied unless the initial estimation/control
errors are too big or κ is too large. Eliminating this
condition is a future work.

3.3 Variable Camera Frame Rate Case

So far, we have considered the situation that the visual
measurement (2) can be extracted every fixed sampling
time (1/τ). However, actual sampling time for frame rates
and extracting feature points by image processing is much
variable. To tackle this issue, we handle the worst case (the
maximum sampling time).

Let us now consider the case that the visual measurement
(2) is extracted at time instants {t0, t1, t2, · · · }, where
ti+1−ti = 1/τi, τi > 0, i ∈ N0. Namely, we do not assume
that every sampling interval is the same. We now suppose
that the worst frame rate, denoted by τmin > 0, is known
a priori from advance image processing tests. Then, note
from the convergence/performance analysis approaches
that by simply replacing τ for τmin in conditions (9)
and (12), the non-increasing property of U is always
guaranteed. We thus get the following corollary.

Corollary 6. Suppose that τi, i ∈ N0 satisfy τi ≥ τmin.
Then, the same statements as in Theorems 2 and 4 hold
by replacing τ for τmin.

4. VERIFICATIONS

We finally show the validity of the present discrete visual
feedback pose regulation mechanism (8) and the signifi-
cance to handle frame rates via 3D simulation.

We consider a 60fps camera pointing in the direction of
the z-axis of Σc with σ = 0.003 [m]. The initial poses of
the camera and the target object are respectively set as
gwc(0) = I4, pwo(0) = [1 0 2]T [m] and ξθwo(0) = [0 −
π/3 0]T [rad]. We also set po1 = [0.5 0.5 0.5]T, po2 = [0.5 −
0.5 0.5]T, po3 = [−0.5 0.5 0.5]T, po4 = [−0.5 − 0.5 0.5]T

[m] and

V b
wo =



0 t ∈ [0, 5)
[0 0 0.15 0 0 0]T t ∈ [5, 10)

[0.1 0 0 0 0 − 0.01]T t ∈ [10, 15)
[−0.1 0 0 0 0 0.01]T t ∈ [15, 20)
[0 0 − 0.15 0 0 0]T t ∈ [20, 25)

0 t ∈ [25, 35)

.

We now apply the present discrete input with kc = ke =
0.8, p̄co = [0 0 1]T [m] and ξ̄θ̄co(0) = 0 [rad] to the camera
in order to achieve the desired relative pose pd = [0 0 0.5]T

[m] and ξθd = 0 [rad]. In this setting with δ = 0.95,
the sufficient condition (9) gives τ ≥ 59.45 (i.e. satisfied).
Moreover, we get from (12) the best performance indicator
γ = 0.2 for kc = ke = 0.8 and 60fps. As a result,
Theorem 4 gives the fact that there exists tb ≥ 0 such
that ∥ece(t)∥ ≤ 0.996 ∀t ≥ tb.

The results are depicted in Figs. 5-7. We first show
the time response of the discrete input uce(t) in Fig.

0 5 10 15 20 25 30 35

-0.4

-0.2

0

0.2

0.4

0.6

Time [s]

Fig. 5. Discrete estimation and control input
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0

0.5

1

1.5

2

Time [s]

Fig. 6. Potential error function

5. This figure provides the confirmation that the input
is actually sampled due to the frame rate. The time
responses of the potential error function U(t) and the norm
of the estimation/control errors ∥ece(t)∥ are respectively
illustrated in Figs. 6 and 7. These figures give the validity
of the convergence (after 25s) and performance analysis,
i.e. the present discrete visual feedback pose regulation
mechanism works successfully.

In order to clarify the significance of our claim for handling
frame rates, we finally give the example that the high
gain setting for a slow frame rate causes poor estimation
and control. We now set the frame rate including image
processing time as 5fps. This rate is obtained by the worst
case of our experimental system, where we use FMVU-
03MTC CS camera (ViewPLUS) with 30fps and image
processing software OpenCV (Willow Garage) to extract
feature points. Then, by setting kc = 3 and ke = 4, we
get the oscillating response of ∥ece(t)∥ as shown in Fig. 8.
Here, the period of oscillation is 0.2s which is given by the
current frame rate. This result means that although the
sufficient conditions (9) and (12) are much conservative so
far, there must exist the upper-bound of gains as we claim
in this work.

5. CONCLUSIONS

This paper has investigated a visual feedback 3D pose
regulation problem in the case that camera frame rates
and image processing time are non-negligible. We have first
introduced the visual feedback pose regulation mechanism
proposed in Fujita et al. [2007] where visual information
is supposed to be continuously available. Then, a new
pose regulation scheme explicitly handling frame rates has
been proposed and it has been shown that the present
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Fig. 7. Norm of estimation and control errors
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Fig. 8. Norm of estimation and control errors (5fps)

law works successfully for a static target object. We have
also analyzed the tracking performance for a moving target
based on the theory of ultimate boundedness. Addition-
ally, we have given how to deal with the case that frame
rates and image processing time are variable. The present
analysis provides a guideline for the design of estimation
and control gains. Finally, the effectiveness of the present
scheme and analysis has been shown via 3D simulation.

The future directions of this work are to reduce the
conservativeness of the sufficient frame rate conditions,
to introduce the dynamics of rigid body motion, and to
employ the theory of L2-gain stability for performance
analysis as in Fujita et al. [2007], Kawai et al. [2011].
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