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Abstract: In this paper, we are concerned with doing system identification for biological sys-
tems using time series distributional measurements and Markov chain models. By distributional
measurements, we mean measurements provided by assays such as flow cytometry or FISH
(fluorescence in situ hybridization) that allow us to make the same single cell measurements
over a number of different cells. We focus here on the problem of estimating the transition
probabilities of a Markov chain from distributional measurements. We set this problem up
using Bayes’ rule and make simplifying assumptions to reduce the problem to a non-convex
optimization problem over finitely many variables. We propose methods for locally solving
this non-convex optimization problem. For a special case, we discuss necessary and sufficient
conditions for the Markov chain to be identifiable. Finally, we demonstrate our procedure on
instructive toy examples as well as on simulated stochastic data for a genetic toggle switch.
[Gardner et al. (2000)].

Keywords: system identification, systems biology, parameter estimation, convex optimization,
bio control

1. INTRODUCTION

In this paper, we are concerned with doing system iden-
tification for biological systems using time series distri-
butional measurements. Distributional measurements are
measurements provided by assays such as flow cytome-
try or fluorescence in situ hybridization that allow us to
take the same single cell measurements over a number of
different cells at each time step. Here, we assume that
the underlying model for each cell is a finite Markov
chain (FMC). Therefore, our problem reduces down to
identifying the transition probabilities of a FMC from
distributional measurements.

Biological systems are intrinsically stochastic [Elowitz
et al. (2002)], and stochastic effects can greatly influence
the function of biological circuits [Eldar and Elowitz
(2010)]. Thus, stochastic models are relevant in systems
biology, and system identification for these stochastic
models is relevant as well.

Stochastic chemical kinetics models [Gillespie (1977)] are
a popular type of stochastic model in systems biology.
The system identification problem for stochastic chemical
kinetics models consists of estimating the reaction propen-
sities for a set of known chemical reactions from observa-
tions. Many approaches including Lillacci and Khammash
(2013) use Bayesian methods and sampling techniques
to tackle this problem, while other approaches leverage
subspace methods for system identification [Hori et al.
(2013)]. Munsky and Khammash (2010) and Lillacci and
Khammash (2011) are also good references on estimating
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reaction propensities from flow cytometry data. However,
some of these methods require computationally expen-
sive sampling while more computationally efficient meth-
ods tend to require perfect measurements of all relevant
species. These methods also require a priori knowledge of
the relevant chemical species and reactions.

Machine learning methods are the other popular approach
to identifying stochastic models in biology. These models
assume minimal prior knowledge about the system and
fit a model to the data that provides scientific insight
about the system. For example, in Neuert et al. (2013),
the authors fit a discrete-state continuous-time Markov
model to the yeast transcriptional response to osmotic
stress. The results showed that gene expression could be
switched on and off and came on in multiple steps and
provided insight into the underlying dynamics. However,
the states in this model are black box states and do not
correspond to biological properties. Other machine learn-
ing approaches such as Sachs et al. (2005) and Husmeier
(2003) use Bayesian network methods to reveal the struc-
ture of signaling pathways. While these methods elucidate
the structure of signaling pathways, the work in Neuert
et al. (2013) is a good example of why understanding the
dynamics matters as well.

The method we develop in this paper tries to bridge the
gap between these two approaches to biological system
identification. Given realistic sensors and minimal prior
information about our system of interest, our goal is to find
a Markov model for the dynamics of a biocircuit in a single
cell, where the states in the model correspond to different
levels of RNA and protein. Our approach is different
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from methods to estimate the transition probabilities
such as the Baum-Welch algorithm [Russell et al. (1995)]
because our time series measurements are distributional
measurements rather than measurements for an individual
cell. Also, methods for noisy linear system identification
work poorly because they assume Gaussian noise, and this
assumption limits performance when data is sparse.

The paper is organized as follows. In Section II, we mo-
tivate the FMC identification problem in the context of
systems biology and then reduce it to an optimization
problem. In Section III, we discuss methods to solve this
optimization problem and recover an estimate of the FMC
transition probabilities. In Section IV, we consider nec-
essary and sufficient conditions under which the FMC
transition probabilities are correctly identifiable from dis-
tributional measurements in the special case of full observ-
ability and infinite sample size. In Section V, we consider
instructive toy examples as well as a biological example.
We conclude in Section VI.

2. MOTIVATION AND OPTIMIZATION PROBLEM
SETUP

2.1 Motivation of Problem

The nature of the single cell data collected in systems
biology experiments suggests the use of a finite Markov
chain model to model and identify the dynamics of systems
in single cells. Biological measurement techniques such as
FISH or flow cytometry provide noisy data at discrete
time intervals. This data is typically binned, so there is a
finite number of outputs. As a result, the natural model to
consider for modeling this data is a finite Markov chain.
Before delving into our specific problem formulation, we
discuss some preliminaries on Markov chains.

2.2 Preliminaries

For a good review of Markov chains, see Levin et al.
(2009). A finite Markov chain is a discrete time stochastic
process on a finite state space Ω. Finite Markov chains
must satisfy the Markov property, which states that given
the current state, the next state is independent of the past.
Specifically, if Xt is a random variable denoting the state
of the chain at time step t ∈ Z+, then

P(Xt+1|Xt) = P(Xt+1|Xt, Xt−1, . . . , X0).

Therefore, letting |Ω| = n, we can define a transition
matrix P ∈ Rn×n

+ such that

P(Xt+1 = y|Xt = x) = P (y, x),

where P (y, x) denotes the (y, x)-th entry of P . Addition-
ally, we let the vector xt ∈ Rn

+ denote the probability
distribution of Xt where P(Xt = j) = xt(j). Then, we see
that

Pxt = xt+1 t ∈ Z+. (1)

We refer to (1) as the dynamic constraint as it enforces
that the probability distributions evolve according to the
transition matrix.

Both the transition matrix P and state distributions xt are
confined to compact, convex sets. The transition matrix

P must be column stochastic. Similarly, each xt must
be a stochastic vector. We can describe these constraints
through inequalities by stating

P ∗1 = 1

P ≥ 0

1∗xt = 1 t ∈ Z+

xt ≥ 0 t ∈ Z+.

(2)

The inequalities here are element wise and 1 refers to a
column vector of ones of the appropriate dimension. We
refer to equation (2) as the stochastic feasibility constraint.
We are now ready to consider the problem of doing system
identification of finite Markov chains from distributional
measurements.

2.3 Problem Setup

Suppose that each cell in a large culture contains a
biocircuit that is modeled by a finite Markov chain and
that each cell is identical and evolves independently of all
other cells. Then we have an infinite pool of Markov chains
with transition matrix P and initial state distribution x0.
The transition matrix P and initial distribution x0 are
hidden, and we desire to estimate P . To do so, we run the
chain for T − 1 time steps and at each time step, we draw
M chains from the pool and measure the state of each. We
form a data matrix D ∈ Zn×T

+ , where the (i, j)-th entry
Dij is the number of sampled chains observed to be in
state i at time step j.

We then want to calculate the maximum a posteriori
(MAP) estimate of P having observed the data D. The
principle of maximum entropy [Jaynes (1957)] tells us that
the prior distribution over both P and the xt’s should be
uniform. Applying Bayes’ rule, we get

p(P |D) ∝
∫
p(D|P,x)p(P )p(x)dx

∝
∫
p(D|P,x)dx, (3)

where p(P |D) is the posterior probability density function
(PDF) of P given the data D, p(P ) and p(x) are uniform
prior distributions, and p(D|P,x) is the likelihood func-
tion.

To avoid computing the difficult integral in (3), we further
approximate the posterior distribution as being peaked at
one value of P and x, which allows us to maximize the
likelihood function over P and x.

The final step in setting up the optimization problem is
defining the likelihood function p(D|P,x). First, we let
d0, . . . ,dT−1 be the columns of D. Then, since we are
drawing cells from an infinite population, we do not need to
consider issues of replacement, so dj is multinomially dis-
tributed with parameter xj . Then, using the multinomial
probability mass function, the likelihood can be written
down as

p(D|P,x) =

T−1∏
j=0

(
M !

d1
j ! . . .dn

j !

n∏
i=1

(xi
j)

di
j

)
, (4)
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where di
j refers to component i of dj , and xi

j refers to
component i of xj .

Note that this likelihood function is only valid for combi-
nations of P and x that satisfy the stochastic constraint
(2) and dynamic constraint (1). Taking the logarithm of
the likelihood function (4) and dropping terms that only
depend on the data, we arrive at the log-likelihood function
`(x), which is given by

`(x) =

T−1∑
j=0

n∑
i=1

di
j logxi

j . (5)

We can then finally write down the following optimiza-
tion problem, which is the full non convex optimization
problem that we want to solve.

minimize
P,x0,x1,...

− `(x)

subject to P ∗1 = 1

P ≥ 0

1∗xt = 1 t = 0, . . . , T − 1

xt ≥ 0 t = 0, . . . , T − 1

Pxt = xt+1 t = 0, . . . , T − 2.

(6)

By solving the optimization problem given by (6), we take
the optimal value of P to be our estimate of the transition
matrix. However, this problem is not convex because of
the bilinear dynamic constraint.

Also, it is straightforward to add in affine constraints on P
if we have information on the structure of P . We can also
generalize the optimization problem to a case where we
cannot observe the exact state of the chain and different
states provide the same output. However, in the interest
of clarity and space, these considerations are omitted in
this paper.

3. SOLUTION METHODS TO OPTIMIZATION
PROBLEM

In this section, we propose two methods for handling
the non convex optimization problem given by (6). The
first method simply offloads the problem to the fmincon
function provided by MATLAB, while the second method
utilizes the alternating direction method of multipliers
(ADMM) [Boyd (2010)].

3.1 Direct Solution

In this approach, we note that there are only two variables
that are effectively free in the model, the transition matrix
P , and the initial state distribution x0. Once these two
variables are specified, the distribution at each future time
step is given by xt = P tx0. Thus, we can rewrite the
non-convex optimization problem (6) as an optimization
problem over only P and x0. This yields the reduced non-
convex optimization problem (7).

minimize
P,x0

−
T−1∑
j=0

n∑
i=1

di
j log(P jx0)i

subject to P ∗1 = 1

P ≥ 0

1∗x0 = 1

x0 ≥ 0

(7)

Only the objective function is now non-convex, and we
can then solve (7) by passing it to the interior point
algorithm provided by the fmincon function in MATLAB.
As a starting point for P , we use the least squares solution
of P generated by solving the constrained least squares
problem

minimize
P

T−2∑
j=0

‖P x̂j − x̂j+1‖22

subject to P ∗1 = 1

P ≥ 0,

(8)

where x̂j refers to the empirical probability distribution
generated by the data at time step j. For the starting
point for x0, we simply use the empirical distribution x̂0.
This direct solution method works very quickly on small
problem sizes but scales poorly.

3.2 Alternating Direction Method of Multipliers

We can also solve the full non convex optimization problem
(6) by using the alternating direction method of multipliers
[Boyd (2010)]. The ADMM approach is slower than the
direct minimization but scales better to larger problem
sizes, can be parallelized, and has more flexibility for future
extensions.

To do ADMM, we add the dynamic constraints into the
objective function to form an augmented Lagrangian. The
augmented Lagrangian is given by

L(P,x,ν) = −`(x)

+

T−2∑
t=0

(
ν∗
t (Pxt − xt+1) +

ρ

2
‖Pxt − xt+1‖22

)
,

(9)

where the ν are Lagrange multipliers. We can then at-
tempt to solve the non convex optimization problem with
the iterative ADMM method.

We start by setting the initial values for x equal to
the empirical probability distributions determined by the
observations. We also set the Lagrange multipliers ν to 0
initially. Having defined the zeroth iterates x(0) and ν(0),
we can proceed with the iterative method.

We take P (k+1) to be the optimal point of the optimization
problem

P step:
minimize

P
L(P,x(k),ν(k))

subject to PT1 = 1

P ≥ 0,

(10)
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which corresponds to minimizing the augmented La-
grangian (9) over only P with all other variables held
constant. We then take x(k+1) to be the optimal point
of the problem

x step:
minimize

x
L(P (k+1),x,ν(k))

subject to 1Txt = 1

xt ≥ 0.

(11)

This corresponds to minimizing the augmented Lagrangian
over only x.

Having minimized the augmented Lagrangian indepen-
dently over both P and x, we then perform a dual update
step given by

ν step:
νk+1
t = νk

t + ρ (Pxt − xt+1) (12)

Both the P step and the x step can be done efficiently
because they are convex optimization problems. For a re-
view of convex optimization, see Boyd and Vandenberghe
(2004). The P step is very efficient because it is a quadratic
program. The x step is not as efficient because of the
logarithmic terms in the objective. However, the x step
can be parallelized with another layer of ADMM. We use
CVX [Grant and Boyd (2008)],[Grant and Boyd (2013)] to
perform these convex optimization steps.

The convergence conditions for ADMM consist of checking
feasibility of the constraint in the augmented Lagrangian
as well as stationarity of the augmented Lagrangian. In
our case, we found that the iterates of P and xt barely
changed after reaching feasibility, and so we terminate
once feasibility is reached. Because our problem is not
convex, the convergence of ADMM is not guaranteed.
However, we typically see convergence in about ten to fifty
iterations.

4. IDENTIFIABILITY CONDITIONS

In the previous sections, we discussed the question of
how to estimate the transition matrix P from the data.
In this section, we consider the question of whether the
data uniquely determine P . We also assume that we have
infinite sample size, which means at each time step we can
measure the true distribution xt. Our experiments consist
of setting x0 and watching the distribution evolve over
time, so we would like to know how to set x0 so that P is
uniquely determined by the time evolution of xt.

Proposition 1. Let P be a square matrix and x0 be any
initial state. The observations consist of xt = P tx0 from
time t = 0 to t = T − 1. Then P is uniquely determined
by the data if and only if the number of time steps T is
greater than the number of states n and [P − λI x0] has
full rank for all real λ.

Proof. We note that P must satisfy P [x0 . . .xT−2] =
[x1 . . .xT−1]. Each time step imposes n constraints on
P and P has n2 variables, so we need at least n steps,
which implies that T > n must hold. Due to Cayley-
Hamilton theorem, additional steps past the first n steps
will provide redundant information, so we then conclude

that [x0 . . .xn−1] must be invertible for the data to deter-
mine P uniquely. However, we can rewrite this matrix as
[x0 . . . P

n−1x0], which is just the controllability matrix for
the linear system (P,x0). Thus, we can identify P from the
data if and only if (P,x0) is controllable. From Dullerud
and Paganini (2000), we know that (P,x0) is controllable
if and only if [P − λI x0] has full rank for all real λ.

When P is stochastic, the conditions on x0 are sufficient
to determine P from the data but may not be fully
necessary if P lies on the boundary of the set of stochastic
matrices. However, the takeaway from the proposition is
that we must make sure to select x0 so as to excite all the
modes of the system. Also, if the system has eigenspaces
with multiple dimension, then there is no single x0 we
can choose to determine P uniquely. Finally, if there are
additional affine constraints on P , then these constraints
may also render the conditions in the proposition sufficient
but not necessary.

5. EXAMPLES

5.1 Two State Example

As a first example, we consider the two state Markov chain
given by Figure 1.

Fig. 1. Two State Example Markov Chain

We then start from an initial distribution of x0 =
[0.7 0.3]T and simulate the Markov chain for ten steps
while collecting twenty samples at each time point. We
produce three such time traces and feed the simulated
data to both our algorithm as well as the least squares
algorithm outlined in (8). We produce two estimates of
the probability matrix. P ls is a least squares estimate, and
PMAP is the estimate produced by our algorithm. These
estimates are given below.

PMAP =

[
0.27 0.82
0.73 0.18

]
P ls =

[
0.40 0.67
0.60 0.33

] (13)

Our method outperforms the least squares method in
terms of producing an estimate of P that is close to
the true value. We also ran both these methods on sixty
randomly generated traces and kept track of the error
distributions. The results are summarized in Figure 2. We
see that in general, it is clear that the estimates produced
by our method have much less error than those produced
by least squares.

In general, our method outperforms least squares in cases
where the data is sparse or the chain starts off near the
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Fig. 2. MAP Estimates Significantly Outperform Least
Squares Estimates of P

stationary distribution. In these cases, the fluctuations in
measurements become more significant in relation to the
dynamics of the chain. Therefore, it becomes more impor-
tant that we consider these fluctuations as multinomial
random variables rather than applying least squares. Also,
from the perspective of identifiability, we note that if we
started the chain at the uniform stationary distribution
of [0.5 0.5]T , we would not have been able to solve for
P uniquely as any symmetric P has a uniform stationary
distribution.

5.2 Toggle Switch

In this section, we apply our method to simulated stochas-
tic gene expression data for a genetic toggle switch [Gard-
ner et al. (2000)]. We simulate the model using the stochas-
tic simulation algorithm (SSA) [Gillespie (1977)] to gen-
erate simulated flow cytometry data. We then apply our
identification method to the data to attempt to identify
the dynamics of the toggle switch.

Our toggle switch model has two different genes and a
total of ten species. First of all, we have the DNA for
each gene d1 and d2, the RNA for each gene r1 and r2,
and the protein for each gene p1 and p2. In addition the
proteins can dimerize to form p1p1 and p2p2. Finally,
the dimerized proteins can bind to the other gene’s DNA
to form p2p2d1 and p1p1d2. Copies of the DNA with
bound dimers are much less likely to produce RNA, which
enforces the mutual repression between the two genes.

The reactions in the system are cataloged in Table 1. The
reactions are all symmetric, so only ten of them are shown
in the table. The other ten reactions can be formed by
switching all the ones and twos in the table and using
the same rates. The propensities are proportional to the
amount of reactants present as well.

This model provides a very noisy and weakly bistable
model of gene expression. In Figure 3, we show an example
simulation trace of this model.

We take distributional data on this model by running 100
simulations of the SSA and recording the final amount of

Table 1. Reaction Propensities for Toggle
Switch Model

Reaction Propensity
d1 → d1 + r1 0.3

p2p2d1 → p2p2d1 + r1 0.002
r1 → r1 + p1 2

r1 → ∅ 0.5
p1 → ∅ 0.067

p1p1 → p1 0.067
p1 + p1 → p1p1 50
p1p1 → p1 + p1 3

p1p1 + d2 → p1p1d2 1
p1p1d2 → p1p1 + d2 10
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Fig. 3. Example SSA Run

each protein at time intervals of 100 starting from t = 200
and going up to t = 1000. This gives us 9 time points, with
100 independent trials ending at each time point. We set
the initial condition to 50 copies of each DNA, 10 copies of
the p2p2 dimer, and 0 copies of everything else. We then
run another experiment starting with the same amount
of DNA, 10 copies of the p1p1 dimer, and 0 copies of
everything else. In an experiment, this type of data could
be collected by inducing one gene before data collection.
We then discretize each protein into three different levels of
expression with cutoffs at 250 copies and 350 copies. This
results in a total of 9 discrete states, since each protein
can be expressed at a low, medium, or high level. We then
bin our measured data and feed it to our algorithm to
estimate the transition matrix P , and we enforce that
transitions are only allowed to neighboring nodes. The
identified model is shown in Figure 4. The graphic excludes
transitions with probability less than 0.01, states that are
rarely visited, and self transitions.

We see that the model observed is not quite symmetric
even though the underlying simulated system is symmet-
ric. However, by looking at the model, we can infer that
the system has bistable behavior and tends to spend most
of its time with medium to high protein 1 and low protein
2, or medium to high protein 2 and low protein 1. In
addition, when the model transitions from one state to
the other, it goes through a middle state where both
proteins are expressed at a medium level. These insights
are consistent with our knowledge of the bistable switch.
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Fig. 4. Identified Toggle Switch Model

The takeaway here is even though the identified model
is not very accurate, it provides us with insight into the
system that we are studying. Given that the underlying
traces are very stochastic and we have a sample size of
only 100, it is also hard to expect anything more.

6. DISCUSSION

The method described in this paper is of potential use
in a systems biology setting where one might want to
study a system of interest in the cell such as a stress
response pathway. The key regulators in this pathway
may be known, but full knowledge of the system may be
unavailable. In that case, this method could be applied to
measurements of these key regulators and the identified
model could provide insight into how these regulators
dynamically interact in order to control the response of
the cell.

In the case of the toggle switch example, our method
identifies a model that suggests noisy but bistable behavior
and also hints that the system usually transitions from
one steady state to the other by going through a middle
state where both proteins are expressed at a medium level.
In addition, we intentionally simulated a small amount
of data and made our system highly stochastic. Sparse
and highly stochastic data is very common in a biological
setting, and we were able to show that at least on a
small example, our method can perform adequately in this
situation.

Potential future directions of work include working on
scalability of the algorithm, automatically selecting a dis-
cretization that allows for the best model to be generated,
and application of the algorithm to real experimental data.
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