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Abstract: The global asymptotic stabilization problem for a general class of uncertain nonlinear systems
with dynamic input uncertainties (input unmodeled dynamics) is considered. The system structure
addressed in this paper is comprised of a nominal system (which can have a general nonlinear dynamics
structure and is assumed to have a nominal control law to stabilize the nominal system) and an appended
input unmodeled dynamics. The proposed approach is based on a control redesign utilizing the nominal
control law and incorporating a singular-perturbation-like dynamic system extension along with a
dynamic scaling to address the dynamic input uncertainties. The control input uncertainty structure is
modeled through an uncertain non-affine function of the control input and the unmeasured state of an
uncertain input unmodeled dynamics subsystem. The proposed control redesign approach is applicable
to a wide class of nonlinear systems including triangular as well as non-triangular system structures as
long as a set of structural and inequality conditions on the system dynamics are satisfied and provides a
global robust output-feedback stabilizing controller.

Keywords: Dynamic output feedback, Robust control, Uncertain dynamic systems, Nonlinear control
systems, Lyapunov methods.

1. INTRODUCTION

The following class of systems with input unmodeled dynamics
is considered:

ẋ = f(x, u) ; y = h(x)

u = µ(x, η, u) ; η̇ = qη(x, η, u) (1)
where 1 x ∈ Rn is the state of the nominal system, u ∈ R is the
control input, u ∈ R is the perturbed control input that takes the
place of a nominal control input (i.e., the nominal unperturbed
system is of form ẋ = f(x, u)), y ∈ Rny is the measured
output, and η ∈ Rnη is the state of an appended dynamics
that represents a dynamic input perturbation (input unmodeled
dynamics). f , µ, and qη are uncertain continuous functions and
h is a known continuous function. The system (1) is a perturbed
form of a nominal system given by

ẋ = f(x, u) ; y = h(x) (2)
wherein the control input u is replaced by the function µ that
represents the input perturbation both in terms of static uncer-
tainty (as the uncertain function µ) and the dynamic perturba-
tion due to the appearance of η, the state of the input unmodeled
dynamics subsystem.
The stabilization problem for various classes of nonlinear
systems has been widely studied in the literature, including
specific classes of system structures such as the feedforward
(Kaliora and Astolfi [2001], Teel [1992], Mazenc and Praly
[1996], Sepulchre et al. [1997]) and strict-feedback (Krstić et al.
[1995]) triangular forms under various sets of assumptions (on,
for instance, uncertainties in the system, appended dynamics,
state and input time delays, etc). The control of systems with
input nonlinearities and input unmodeled dynamics under vari-
? Corresponding author: F. Khorrami.
1 R, R+, and Rk denote the set of real numbers, the set of non-negative
real numbers, and the set of real k-dimensional column vectors, respectively.
The notation max(a1, . . . , an) indicates the largest value among the numbers
a1, . . . , an; the notation min(a1, . . . , an) similarly indicates the smallest
value among the given arguments. |a| denotes the Euclidean norm of a column
vector a.

ous sets of assumptions has also been addressed (e.g., Praly and
Wang [1996], Zhang and Ge [2006], Ren et al. [2008], etc., and
references therein). A dual dynamic high-gain scaling approach
has been addressed in Krishnamurthy et al. [2003], Krishna-
murthy and Khorrami [2004a,b] providing a unified control
design methodology applicable to both feedforward and strict-
feedback triangular system structures. High-gain and low-gain
approaches (e.g., Khalil and Saberi [1987], Ilchmann and Ryan
[2003], Lin [2009] and references therein) are popular design
techniques for the control of various types of systems. State-
dependent scaling techniques for control of nonlinear systems
are also addressed in Ito [2006]. A combination of a high-gain
observer and a backstepping based controller was proposed in
Praly [2003], Krishnamurthy et al. [2003].
The dual observer/controller dynamic high-gain scaling tech-
nique was introduced in Krishnamurthy and Khorrami [2002,
2004b] and shown to be a flexible design technique capable
of handling uncertain terms dependent on all states and un-
certain Input-to-State Stable (ISS) appended dynamics with
nonlinear gains from all the system states and the input.
The dynamic high-gain scaling technique provides a unified
framework for state-feedback and output-feedback control of
both strict-feedback (Krishnamurthy and Khorrami [2004b],
Kaliora et al. [2006], Krishnamurthy and Khorrami [2007b])
and feedforward (Krishnamurthy and Khorrami [2004a, 2008])
systems as well as state-feedback control of nontriangular
polynomially-bounded systems (Krishnamurthy and Khorrami
[2007a]). A three-time-scale based control design utilizing two
dynamic scaling parameters (with the first being analogous to
the scaling parameter utilized in our prior dual dynamic high-
gain scaling based control designs as in Krishnamurthy and
Khorrami [2004a] and the second scaling parameter specifically
introduced to handle the nonlinear input uncertainties) was
proposed in Krishnamurthy and Khorrami [2013] to address
feedforward-like systems with input uncertainties (analogous
to the uncertain function µ).
The dynamic scaling based controller proposed in this paper
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provides a general control redesign procedure that takes a
dynamic output-feedback control law for the nominal system
and adds a singular-perturbation-like dynamic extension and
dynamic scaling to achieve robust global stabilization of the
system (1). The proposed dynamic control design is based on
the dynamic scaling based output-feedback controller devel-
oped in our earlier work (Krishnamurthy and Khorrami [2013])
for feedforward systems with uncertain input unmodeled dy-
namics. While these previous works addressed the specific class
of upper triangular (feedforward) system structures, it is shown
in this paper that this dynamic scaling based approach can be
applied to the general class of systems (1) to provide a robust
control redesign procedure to address uncertain dynamic input
perturbations µ(x, η, u). The assumptions introduced on the
system (1) are given in Section 2 along with discussions on the
system structure and illustrative examples. The control redesign
comprised of a dynamic extension and a dynamic scaling is
summarized in Section 3. The stability analysis and the design
of the scaling parameter dynamics are presented in Section 4.

2. SYSTEM STRUCTURE AND ASSUMPTIONS
This paper considers the class of systems shown in (1) which
forms a perturbed form of the nominal dynamics (2) with the
nominal control input u in (2) replaced by u = µ(x, η, u).
It is assumed that sufficient conditions (e.g., local Lipschitz
property) on f , qη , and µ for local existence and uniqueness of
solutions of (1) are satisfied. The control objective is to regulate
x and η to zero (utilizing the measurement of the output y)
starting from any initial conditions x(0) ∈ Rn and η(0) ∈ Sη
where Sη is some (not necessarily compact or bounded) known
subset of Rnη . The proposed controller is based on a dynamic
scaling based redesign procedure starting from an a priori
known dynamic output-feedback control law (for the nominal
system) of the following form:

ξ̇ = fξ(y, ξ) ; u = hξ(y, ξ) (3)
where ξ is the nξ-dimensional state vector of the dynamic con-
troller (that could, in general, include an observer state, adap-
tation parameters, dynamic scaling parameters, etc.). Based on
the design of this control law for the nominal system, the set
of possible initial conditions for ξ is denoted by Sξ,0 ⊂ Rnξ ,
i.e., ξ0 ∈ Sξ,0, and the set of possible values of ξ(t) for all
time t ≥ 0 is denoted by Sξ ⊂ Rnξ . The sets Sξ,0 and Sξ are
not necessarily compact or bounded and could be the entire set
Rnξ , but are simply introduced to model the possibility that
certain components of the nominal dynamic controller state
vector are initialized in a specific region of the state space,
e.g., adaptation parameters introduced to estimate the magni-
tude of uncertain parameters and are commonly required in
adaptive control designs to be initialized to be non-negative
and are furthermore non-decreasing due to the design of the
adaptation parameter dynamics, dynamic scaling parameters
(Krishnamurthy and Khorrami [2004b]) that are initialized to be
greater than 1 and are non-decreasing due to the design of the
scaling parameter dynamics, etc. The assumptions introduced
on the system (1) and the nominal control law (3) are given as
Assumptions A1-A5 below.
Assumption A1 (a control law of form (3) for the closed-
loop nominal system with robustness in a Lyapunov sense to
additive perturbations in the span of the nominal control input):
Functions fξ, hξ, and Vxξ are known such that for all x ∈ Rn,
ξ ∈ Sξ, and ε ∈ R, the following inequality is satisfied:[

∂Vxξ
∂x

f(x, hξ(y, ξ)) +
∂Vxξ
∂ξ

fξ(y, ξ)

+
∂Vxξ
∂x

[f(x, hξ(y, ξ)+ε)−f(x, hξ(y, ξ))]

]
≤ −αxξ(x, ξ) + γ1(y, ξ)γ̃(ε2) (4)

where

• Vxξ is a non-negative function such that 2 the bound-
edness of Vxξ along with the form of the dynamics (2)
and (3) implies the boundedness of x and ξ, i.e., for any
positive constant V , a positive constant cV can be found
such that if it is known that Vxξ ≤ V at a time t ≥ 0,
then using the dynamics (2) and (3), it can be shown that
|x|+ |ξ| ≤ cV .

• αxξ is a known non-negative function such that if the
signal αxξ(x(t), ξ(t)) seen as a function of time t goes
to zero as t → ∞, then it can be inferred by using the
properties of Vxξ as defined above and the dynamics (2)
and (3) that x(t)→ 0 as t→∞.

• γ1(y, ξ) is a known non-negative function
• γ̃(ε2) being a known non-negative function that satisfies
γ̃(0) = 0 and is polynomially bounded, i.e., γ̃(ε2) ≤∑nε
i=1 pε,iε

2i where nε ≥ 1 is an integer and pε,i, i =
1 . . . , nε are non-negative real numbers.

Assumption A2 (conditions on uncertain input perturbation
function µ): The function µ(x, η, u) is such that for any system
trajectory starting from any initial values x(0) ∈ Rn and
η(0) ∈ Sη and given any input signal u(t), the following
inequalities are satisfied for the values of (x(t), η(t), u(t)) at
any time t ≥ 0 with µ(y, u) being a known continuous function
and µ being a known constant: (a) ∂

∂uµ(x, η, u) ≥ µ > 0 ; (b)
|µ(x, η, u)| ≤ µ(y, u). Furthermore, lim|u|→∞ |µ(x, η, u)| =
∞ for any x ∈ Rn and any η ∈ Rnη .
Assumption A3 (ISS condition on input unmodeled dynamics
η): The η subsystem is ISS with ISS Lyapunov function Vη :
Rnη → [0,∞) such that the following inequality is satisfied:

∂Vη
∂η

qη(x, η, u) ≤ −αη(|η|) + βη(x, u) (5)

for all x ∈ Rn, u ∈ R, and η ∈ Rnη , with αη being a known
class K∞ function and βη being a non-negative function. Also,
a positive constant V η is known such that αη(|η|) ≥ V ηVη(|η|)
for all η ∈ Rnη .
Assumption A4 (a known function h̃(y) that is relative degree
one with respect to the control input in the nominal system (2)):
A function h̃ is known such that for all x ∈ Rn and u ∈ R,

∂h̃(h(x))

∂x
f(x, u) = fh1(y) + fh2(y)u (6)

with fh1 and fh2 being known functions of y. A positive con-
stant f

h2
exists such that fh2(y) ≥ f

h2
for all y ∈ Rny .

Assumption A5 (inequality conditions on perturbation func-
tions in overall system dynamics and the function αxξ in
nominal Lyapunov function): Non-negative constants k11, k13,
k21, k22, and k31 and non-negative functions β11(y, ξ, u),
β13(y, ξ, u), β21(y, ξ, u), β22(y, ξ, u), and β31(y, ξ, u) are
known such that the following inequalities are satisfied for all
x ∈ Rn, ξ ∈ Sξ, u ∈ R, ε ∈ R, η ∈ Rnη :[(

∂µ

∂x
− ∂hξ

∂y

∂h

∂x

)
f(x, hξ(y, ξ) + ε)

]2

≤ k11αxξ(x, ξ)β11(y, ξ, u) + k13γ̃1(ε2)β13(y, ξ, u) (7)[
∂µ

∂η
qη(x, η, u)

]2

≤ k21αxξ(x, ξ)β21(y, ξ, u)

+ k22Vη(η)β22(y, ξ, u) (8)[
∂hξ
∂ξ

]2

≤ k31αxξ(x, ξ)β31(y, ξ, u) (9)

where γ̃1(ε2) is a non-negative function that satisfies γ̃1(0) = 0
2 The formulation of these requirements in Assumption A1 on Vxξ and αxξ is
discussed further in Section 2.1.
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and is polynomially bounded, i.e., γ̃1(ε2) ≤
∑nε,1
i=1 pε,i,1ε

2i

where nε,1 ≥ 1 is an integer and pε,i,1, i = 1 . . . , nε,1 are non-
negative real numbers. Also, non-negative constants kη1 and
kη2 and functions ϕ(ξ) and βη1(y, ξ) are known such that the
following inequalities are satisfied:

βη(x, u)

ϕ(ξ)
≤ kη1αxξ(x, ξ) + βη1(y, ξ)|µ(x, η, u)|2 (10)

βη1(y, ξ)[hξ(y, ξ)]
2 ≤ kη2αxξ(x, ξ) (11)

with ϕ(ξ) being a function that is lower bounded by a positive
constant (i.e., a constant ϕ0 exists such that ϕ(ξ) ≥ ϕ0 for all
ξ) and such that the signal ϕ(ξ(t)) is a non-decreasing function
of time (i.e., ∂ϕ(ξ)

∂ξ fξ(y, ξ) ≥ 0 for all y and ξ).
2.1 Remarks on Assumptions
Assumption A1 asserts that a dynamic output-feedback control
law and corresponding Lyapunov function are known for the
nominal system (wherein u = u) with a robustness (in the sense
of the Lyapunov inequality (4)) on an additive perturbation
ε in the span of the nominal control input. The Lyapunov-
like inequality requirement (4) in Assumption A1 is weaker
than requiring that the nominal control law (3) should render
the nominal closed-loop system (comprised of (2) and (3))
ISS with respect to an additive perturbation ε in the span of
the nominal control input since (4) allows a function γ1(y, ξ)
appearing multiplicatively with γ̃(ε2) in (4). Several control
design techniques (e.g., backstepping for strict-feedback sys-
tems, dynamic high-gain scaling based control design for feed-
forward and strict-feedback systems) can, in fact, make the
nominal closed-loop system ISS with respect to an additive
perturbation ε and hence can easily satisfy Assumption A1,
making this assumption, in general, satisfiable for a very wide
class of systems including lower triangular and upper triangular
systems as well as various classes of non-triangular systems
for which control designs have been studied in the literature.
Also, the polynomial boundedness condition on the functions γ̃
and γ̃1 in Assumptions A1 and A5 are trivially satisfied in the
special, but highly common, case wherein the nominal system
(2) is affine in the nominal control input, i.e., f(x, u) is of the
form f1(x) + g1(x)u, and is also, in general, satisfiable if the
function f(x, u) includes, for instance, higher-order powers of
u, terms such as u sin(u), etc.
The requirement on the Lyapunov-like function Vxξ in Assump-
tion A1 is written in terms of the boundedness of the state
components x and ξ being inferrable from the boundedness
of Vxξ and the dynamics (2) and (3) rather than simply from
boundedness of Vxξ to also address control design procedures
that result in “weak” Lyapunov functions wherein a part of the
state component (such as the dynamic scaling parameter r in
Krishnamurthy and Khorrami [2004b]) is inferred as bounded
by also utilizing the dynamics of that state component rather
than directly only from boundedness of Vxξ. The condition on
αxξ in terms of its convergence to zero implying convergence of
x to zero and the requirement on Vxξ as outlined above essen-
tially characterizes a wide class of nominal nonlinear systems
(2) for which control laws (3) can be designed and closed-loop
stability properties proved using LaSalle’s Invariance Principle.
While it is only required in the properties of αxξ that conver-
gence of x (and not necessarily ξ) to zero be inferrable from
convergence of αxξ to zero, some subset of the controller state
component ξ might also, in general, converge to zero depending
on the nominal controller design (3), in which case the proposed
control redesign procedure will also achieve convergence of
that subset of ξ to zero in the perturbed system (1).
Assumption A2 prescribes conditions on the unknown function
µ(x, η, u) in terms of upper bounds on the function µ and its
partial derivatives and comprises of the physically meaningful
requirements that a lower bound on the variation of µ with
respect to u should be known which is greater than 0 (e.g., ∂

∂uµ

cannot vanish), that µ does not saturate the available control
authority (if it did saturate the control magnitude, then global
stabilization would typically not be attainable, in general, by
any control design), and that an upper bound (as a function
of y and u) on the uncertain function should be known. As-
sumption A3 is a general ISS condition on the input unmodeled
dynamics η̇ = qη(x, η, u); while an ISS condition is utilized for
simplicity, it can be shown that this condition can be relaxed
to an integral ISS condition (with αη relaxed to be a contin-
uous function which is positive for positive arguments). As-
sumption A4 requires that a measured signal ỹ (i.e., a function
ỹ = h̃(y)) should exist which is relative degree one with respect
to the control input in the nominal system (2) and also requires
that u appear linearly in the dynamics of this measured signal
ỹ with the coefficient function being only output-dependent.
In the output-feedback context, Assumption A4 is structurally
the strongest of the imposed assumptions. For triangular sys-
tems (both for lower triangular and upper triangular systems)
with state x = [x1, . . . , xn]T wherein the control input ap-
pears in the dynamics of xn (e.g., ẋ1 = f1(x1, x2), ẋ2 =
f2(x1, x2, x3), . . . , ẋn = fn(x1, . . . , xn, u) for lower triangu-
lar systems), this assumption effectively requires that xn (or
some combination of xi’s involving xn) should be part of the
measured output y.
Assumption A5 prescribes a set of inequality bounds that need
to be satisfied. The inequalities (7), (8), (10), and (11) form
essentially requirements on the size of αxξ (i.e., that αxξ is
big enough in a nonlinear function sense). The inequality (9)

is essentially only a local order condition, i.e.,
[
∂hξ
∂ξ

]2
=

O[αxξ(x, ξ)] around the origin, since ∂hξ
∂ξ is a function of only

y and ξ and the right hand side of (9) includes the arbitrary
function β31(y, ξ, u)). Also, the inequalities (7) and (8) are
essentially requirements on the size of αxξ in terms of unmea-
sured state variables (hence, trivially satisfied in the special
case that y = x) since the arbitrary functions β11(y, ξ, u)
and β21(y, ξ, u) appear in the right hand sides of (7) and (8).
The set of inequality bounds in Assumption A5 forms essen-
tially a nonlinear stability margin requirement (in a Lyapunov
function sense) of the nominal closed-loop control system or
equivalently a requirement that the nominal control law can
be constructed to provide such a nonlinear stability margin (in
practice, given some knowledge of the forms of the functions
appearing in the system, the nominal control design would be
customized to provide the appropriate stability margins as, for
instance, in the example discussed in Remark 1). The function
ϕ(ξ) is introduced in Assumption A5 to address control de-
sign procedures such as the dynamic high-gain scaling design
technique for strict-feedback and feedforward systems, which
introduces a scaling parameter r that would appear in the terms
within αxξ necessitating scaling of the Lyapunov function Vη
and therefore βη by an appropriate power of r (e.g., see Krish-
namurthy and Khorrami [2004b], Krishnamurthy and Khorrami
[2013]). In cases wherein the nominal control design does not
involve a dynamic scaling or other mechanism (e.g., an adap-
tation parameter) that provides a relevant function ϕ(ξ) that is
monotonically non-decreasing as a function of time, then ϕ(ξ)
can simply be defined to be 1 in Assumption A5.
Remark 1: To illustrate the structure of the Assumptions A1-
A5, consider the simple example system given by

ẋ1 = x2 + x2
1 ; ẋ2 = x3 + x1x2

ẋ3 = µ(x, η, u) = u+ (1 + cos(η))u+ x2
1u

3

η̇ = −η + x2
1 ; y = [x1, x3]T . (12)

The nominal system with state x = [x1, x2, x3]T is of a strict-
feedback form that can be easily addressed using observer
backstepping (Krstić et al. [1995]), i.e., designing a full-order
or reduced-order observer to estimate the unmeasured state
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component x2, and performing backstepping from x1 through
observer estimate x̂2 to x3 or an observer estimate x̂3, and then
to u. It is easily seen that with this nominal control design,
this system satisfies Assumption A1. Assumption A2 is easily
seen to be satisfied. Assumption A3 is seen to be satisfied
with, for instance, Vη = 1

2η
2, which yields αη(|η|) = 1

2η
2,

βη(x, u) = x4
1. Assumption A4 is trivially satisfied since x3 is

measured where ẋ3 = u. It can be seen that Assumption A5 is
also satisfied by an appropriate construction of the virtual con-
trol inputs and control Lyapunov functions in the backstepping
based control design for the nominal x subsystem. To illustrate
this backstepping based nominal control design, note that if the
backstepping procedure is started with V1 = 1

2x
2
1 in the first

step, then by defining z2 = x̂2 + x2
1 + x1 + x3

1, we would
get V̇1 = −x2

1 − x4
1 + x1z2 + x1e2 where e2 = x2 − x̂2

is the observer error. The x3
1 term in z2 and the resulting x4

1

term in V̇1 are introduced specifically to ensure inequality (10)
since βη(x, u) = x4

1. Taking ϕ(ξ) = 1, the function βη1 for
this example reduces to 0, thus trivially satisfying (11). Com-
pleting the backstepping procedure along the standard lines
(Krstić et al. [1995]), it can be seen that the assumptions listed
above can be satisfied. Hence, the control redesign procedure
proposed in this paper is applicable to this example system.
Also, in the context of upper triangular (feedforward) systems,
it was shown in our prior works (Krishnamurthy and Khorrami
[2013]) that a singular-perturbation-like dynamic scaling based
controller analogous to the control redesign procedure proposed
in this paper can be applied to address dynamic input uncer-
tainties. As an example, the control redesign procedure can be
applied to the following feedforward system starting from a
nominal control design based on the dual dynamic high-gain
scaling approach (Krishnamurthy and Khorrami [2004a]) and
utilizing the dynamic scaling based control redesign procedure
proposed in this paper:

ẋ1 = (1 + x2
1 + x2

4)x2 + x3x
2
1 + x1x

2
4

ẋ2 = (1 + x1x4 + x2
1 + x2

4)x3 + x1x
5
4u

ẋ3 = (2 + x2
1 + x2

4 + 0.5x2
4 sin(x1))x4 + x1x4u

ẋ4 = µ(x, η, u) ; y = [x1, x4]T

η̇ =−η + x1x4 + (1 + x2
4)u

x1

1 + x2
1

(13)

where µ(x, η, u) = a1(2+x2
1 +cos(η))u+a2(x2

1 +x2
4)u3 with

known a1, a1, a2, a2 such that 0 < ai ≤ ai ≤ ai, i = 1, 2.

3. DYNAMIC SCALING BASED CONTROL REDESIGN

The dynamics of the x subsystem from (1) can be written as
ẋ = f(x, hξ(y, ξ) + ud) (14)

where ud
4
= [µ(x, η, u)− hξ(y, ξ)] and hξ denotes the nominal

control law from (3) for the nominal system. The principal
effect of the dynamic input perturbation (represented by the
uncertain function µ(x, η, u) with η being the state of the non-
linear appended dynamics subsystem, i.e., input unmodeled dy-
namics) in the context of the dynamics (14) is the introduction
of the term involving ud = [µ(x, η, u) − hξ(y, ξ)]. If it were
possible to directly set µ(x, η, u) = hξ(y, ξ) by solving the
equation µ(x, η, u) = hξ(y, ξ) for u (in terms of y and ξ), then
the resulting closed-loop system would be effectively the nom-
inal closed-loop system and hence globally stable with asymp-
totic convergence of x to zero. However, solving the equation
µ(x, η, u) = hξ(y, ξ) for u is, in general, not directly possible
since µ is uncertain and non-affine and furthermore involves η
which is the unmeasured state of the uncertain input unmodeled
dynamics η̇ = qη(x, η, u). The singular perturbation approach
(Saxena et al. [1984], Hovakimyan et al. [2007], Yurkevich
[2008], Chakrabortty and Arcak [2009]) in such a situation

is to attempt to overcome the non-affine nature of the input
appearance by introducing a fast dynamic extension of the form
aεu̇ = −sign

(
∂µ(x,η,u)

∂u

)
[µ(x, η, u) − ũ] with ũ = hξ(y, ξ)

and with aε being a small enough constant. The introduction
of the singularly perturbed dynamic extension has a stabilizing
effect on the signal ud = [µ(x, η, u)− ũ] since this dynamic ex-
tension will generate a term of the form −(1/aε)|∂µ(x,η,u)

∂u |ud
in u̇d, which with aε being a small constant would represent
a high gain stabilizing term in the dynamics of ud. If µ is an
uncertain function, then a multiple state singularly perturbed
dynamic extension can be utilized instead to estimate the uncer-
tain function µ(x, η, u) and thereafter to force this estimate to
converge to the nominal input ũ = hξ(y, ξ). Given any compact
set in which the initial conditions of the closed-loop system
lie, then, by picking aε small enough, stability and asymp-
totic convergence can be proved using Tikhonov’s theorem.
This classical singular perturbation approach thus addresses
semiglobal results. However, in keeping with the spirit of this
paper and the dynamic scaling approach, we seek global results
here by utilizing a dynamic scaling parameter instead of a small
constant aε. Also, µ(x, η, u) being an uncertain function cannot
be directly utilized in the control design; furthermore, η is
an unmeasured state component. Here, denoting ỹ = h̃(y), a
dynamic extension is designed as:
ζ̇ = ṙuỹ+rufh2(y)hξ(y, ξ)+rufh1(y) ; u = ζ−ruỹ (15)

where ru is a dynamic scaling parameter introduced specifically
to handle the uncertain function µ(x, η, u). The dynamics of
ru will be designed later in Section 4 such that ru(t) is a
monotonically non-decreasing function of time; furthermore,
ru will be initialized with ru(0) ≥ 1. In the implementation
of (15), the notation ṙu refers to the function specifying the
derivative of ru, as will be designed later in Section 4 (equation
(33)). From (15), the control law designed above for u yields:

u̇ = ζ̇ − ṙuỹ − ru ˙̃y = −rufh2(y)ud. (16)
Define

Vu =
1

2Π(ru)
ln(1 + u2

d) (17)

where ln denotes the natural logarithm. Π : R+ −→ R+ is
any function (e.g., Π(ru) = 1 + tanh(kru) with k being any
positive constant) such that Π(ru) ≥ 1 for all ru ≥ 1, Π(ru) is
a continuously differentiable monotonically increasing function
of ru over [1,∞), Π′(ru) = ∂Π(ru)

∂ru
> 0 for all ru ∈ [1,∞),

and Π(ru) is a bounded function, i.e., some positive constant Π
exists such that Π(ru) ≤ Π for all ru ∈ [1,∞). The dynamics
of ud = [µ(x, η, u)− hξ(y, ξ)] can be written as:

u̇d = −rufh2(y)
∂µ(x, η, u)

∂u
ud +

∂µ(x, η, u)

∂x
f(x, u)

+
∂µ(x, η, u)

∂η
qη(x, η, u)− ∂hξ(y, ξ)

∂y

∂h(x)

∂x
f(x, u)

− ∂hξ(y, ξ)

∂ξ
fξ(y, ξ). (18)

4. STABILITY ANALYSIS AND SCALING PARAMETER
DYNAMICS

Using Assumption A1 and noting that u = µ(x, η, u) =
hξ(y, ξ) + ud, we have

V̇xξ ≤ −αxξ(x, ξ) + γ1(y, ξ)γ̃(u2
d). (19)

Note that |ud| can be bounded as |ud| ≤ ud(y, u, ξ) where
ud(y, u, ξ) is a known function given as

ud(y, u, ξ)
4
=
[
µ(y, u) + |hξ(y, ξ)|

]
. (20)

Using the polynomial upper bound on γ̃ in Assumption A1, we
derive the inequality
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γ̃(u2
d) =

γ̃(u2
d)

ln(1 + u2
d)

ln(1 + u2
d) ≤ γ̃(y, u, ξ) ln(1 + u2

d) (21)
where

γ̃(y, u, ξ) = [1 + u2
d(y, u, ξ)]

nε∑
i=1

pε,iu
2i−2
d (y, u, ξ). (22)

Note that in writing the equations (21) and (22), we have
utilized the inequality

εi ≤ εi−1(1 + ε) ln(1 + ε) (23)
which holds for all ε ≥ 0 and all integers i ≥ 1. Hence, using
(19) and (21), we have

V̇xξ ≤ −αxξ(x, ξ) + γ1(y, ξ)γ̃(y, u, ξ) ln(1 + u2
d). (24)

Defining a scaled Lyapunov function Ṽη =
Vη
ϕ(ξ) , and using

Assumption A3, (10) and (11) in Assumption A5 and the
condition on ϕ(y(t)) that it is nondecreasing as a function of
time, we get:
˙̃Vη ≤ −

αη(|η|)
ϕ(ξ)

+
βη(x, u)

ϕ(ξ)

≤ −αη(|η|)
ϕ(ξ)

+[kη1 + 2kη2]αxξ(x, ξ)+2βη1(y, ξ)u2
d. (25)

Using (17) and (18), we have

V̇u = −rufh2(y)
∂µ(x, η, u)

∂u

u2
d

(1 + u2
d)Π(ru)

− Π′(ru)ṙu
2Π2(ru)

ln(1 + u2
d)

+
ud

(1 + u2
d)Π(ru)

{
∂µ(x, η, u)

∂x
f(x, u)

+
∂µ(x, η, u)

∂η
qη(x, η, u)− ∂hξ(y, ξ)

∂y

∂h(x)

∂x
f(x, u)

− ∂hξ(y, ξ)

∂ξ
fξ(y, ξ)

}
. (26)

Using the inequality (from Assumption A4) that fh2(y) is lower
bounded by a positive constant f

h2
, the inequality (from As-

sumption A2) that ∂µ(x,η,u)
∂u is lower bounded by a positive con-

stant µ, and the inequalities in Assumption A5, the inequality
(26) can be reduced to the inequality

V̇u ≤ −rufh2
µ

u2
d

(1 + u2
d)Π(ru)

− Π′(ru)ṙu
2Π2(ru)

ln(1 + u2
d)

+ 2cu
u2
d

(1+u2
d)Π(ru)

{
k11β11(y, ξ, u)+

k13

8
β13(y, ξ, u)

+ k21β21(y, ξ, u) +
k22

4cηV η
β22(y, ξ, u)ϕ(ξ)

+ k31β31(y, ξ, u)

}
+

3

8cu
αx,ξ(x, ξ) +

1

cu
γ̃1(u2

d) +
cηV ηVη

2cuϕ(ξ)
(27)

which holds for any positive constants cu and cη . Analogous to
(21), an upper bound for γ̃1(u2

d) can be written as γ̃1(u2
d) ≤

γ̃1(y, u, ξ) ln(1 + u2
d) where

γ̃1(y, u, ξ) = [1 + u2
d(y, u, ξ)]

nε,1∑
i=1

pε,i,1u
2i−2
d (y, u, ξ). (28)

A composite Lyapunov function is defined as:
V = Vxξ + cηṼη + cuVu (29)

with cu being any positive constant and cη being any positive
constant such that cη ≤ 1

8(kη1+2kη2) . Hence, using (24), (25),

(27), and (28), the inequality V ηVη ≤ αη(|η|) from Assump-
tion A3, the inequality u2

d ≤ (1+u2
d(y, u, ξ)) ln(1+u2

d) which
follows from (23), and the inequality that Π(ru) ≥ 1 from the
design of the function Π, we obtain the following inequality:

V̇ ≤ −1

2
αxξ(x, ξ)−curuµ̃

u2
d

(1+u2
d)Π(ru)

− cη
2ϕ(ξ)

αη(|η|)

− cuΠ′(ru)ṙu
2Π2(ru)

ln(1 + u2
d) +

Qu1(y, ξ, u)

Π(ru)

u2
d

1 + u2
d

+Qu2(y, ξ, u) ln(1 + u2
d) (30)

where µ̃ = f
h2
µ and

Qu1(y, ξ, u) = 2c2u

{
k11β11(y, ξ, u) +

k13

8
β13(y, ξ, u)

+ k21β21(y, ξ, u) +
k22

4cηV η
β22(y, ξ, u)ϕ(ξ)

+ k31β31(y, ξ, u)

}
(31)

Qu2(y, ξ, u) = γ1(y, ξ)γ̃(y, u, ξ) + γ̃1(y, u, ξ)

+ 2cηβη1(y, ξ)[1 + u2
d(y, u, ξ)]. (32)

The dynamics of the parameter ru are designed as
ṙu = λ(Ru(y, ξ, u)− ru)Ωu(y, ξ, u, ru) (33)

Ru(y, ξ, u) = max

(
Ru,

2Qu1(y, ξ, u)

cuµ̃
,

2[Qu2(y, ξ, u)+νu](1+u2
d(y, u, ξ))Π

cuµ̃

)
(34)

Ωu(y, ξ, u, ru) = max

(
Ωu,

4Qu1(y, ξ, u)Π(ru)

cuΠ′(ru)
,

4[Qu2(y, ξ, u) + νu]Π2(ru)

cuΠ′(ru)

)
(35)

where Ru and Ωu are nonnegative constants that can be arbi-
trarily picked and νu is any positive constant. λ : R → R+ is
any nonnegative continuous function such that λ(s) = 1 for
any s > 0 and λ(s) = 0 for any s < −εr with εr being
some positive constant. The form of the dynamics of the scaling
parameter ru in (33) is motivated by the idea of ensuring that
the derivative of the parameter (i.e., ṙu = Ωu) is large until the
parameter itself becomes large.
Considering the two cases that (a) ru ≥ Ru and (b) ru < Ru,
it can be shown that in either of the two cases (in the first case,
ru ≥ Ru, and in the second case, ṙu = Ωu):

V̇ ≤ −1

2
αxξ(x, ξ)−

cη
2
V ηṼη − 2νuVu. (36)

Local existence of solutions is guaranteed by the assumptions
on the functions appearing in the system dynamics and the con-
tinuity (by construction) of functions appearing in the overall
dynamic controller. Let the maximal interval of existence of
solutions be [0, tf ) where tf ∈ (0,∞]. By (36), V is bounded
on [0, tf ). From the definition of V , and noting that Π(ru) is a
bounded function of ru, this implies directly that x, ξ, Ṽη , and
|ud| are bounded. The boundedness of x implies boundedness
of y and ỹ. Also, the boundedness of ξ implies boundedness
of ϕ(ξ); also, by Assumption A5, ϕ(ξ) is lower bounded by a
positive constant ϕ0; boundedness of Ṽη(η) and ϕ(ξ) implies
boundedness of Vη and hence of η. Boundedness of ud and
ũ = hξ(y, ξ) implies boundedness of µ(x, η, u) = ud +
ũ and therefore of u by Assumption A2. Hence, from (34),
Ru(y, ξ, u) is bounded over [0, tf ) implying boundedness of
ru since, by the dynamics of the scaling parameter ru in (33),
it is known that ru(t) ≥ 1 for all t ∈ [0, tf ), ru(t) is a
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monotonically non-decreasing function of time, and ṙu is zero
if ru ≥ (Ru + εr). Finally, boundedness of ζ also follows from
boundedness of u, ru, and ỹ from the definition of u in (15).
Hence, all the closed-loop signals (x, ξ, η, ζ, ru, u) are bounded
over [0, tf ); therefore tf = ∞ and solutions exist for all time.
The stability analysis above holds globally, i.e., for any initial
conditions (x(0), ξ(0), η(0), ζ(0), ru(0)) ∈ Rn × Sξ,0 × Sη ×
R × [1,∞). Furthermore, from (36), it is seen that while u, ζ,
and ξ do not necessarily converge to zero in general, the signals
x(t), η(t), and ud(t) all go to zero asymptotically as t → ∞.
The overall dynamic output-feedback controller is given by the
combination of the dynamics of ξ in (3), the dynamic extension
(ζ) and the definition of the control input u in (15), and the
scaling parameter dynamics in (33).

5. CONCLUSION
A general class of uncertain nonlinear systems with dynamic
input unmodeled dynamics was considered in this paper and
a dynamic scaling based control redesign procedure was pro-
posed to provide global output-feedback asymptotic stabiliza-
tion. The design of the scaling parameter dynamics is analogous
to the scaling parameter dynamics in our dual dynamic high-
gain scaling based control designs for feedforward and strict-
feedback systems and shares the same motivating philosophy
that the time derivative of the scaling parameter is designed
to be large (relative to an appropriately designed function of
the available state variables of the closed-loop system) until
the scaling parameter itself becomes sufficiently large (also
relative to an appropriately designed function of the available
state variables of the closed-loop system). The control redesign
procedure proposed in this paper to address dynamic input
uncertainties is applicable to a wide class of uncertain nonlinear
systems including triangular (both upper triangular and lower
triangular) and non-triangular system structures as long as a
nominal control law for the unperturbed system is available
with appropriate stability margins (in a Lyapunov inequality
sense) and structural inequality bounds as given in Section 2
and provides a general tool for handling uncertain dynamic
input perturbations. The analysis of specific classes of triangu-
lar and non-triangular system structures and the corresponding
structural conditions on the functions appearing in the overall
system dynamics remains a topic for further research.
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