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Abstract: Weakly damped electrical and mechanical oscillators that contain a cubic nonlinear-
ity are described mathematically using Duffing’s equation. In particular microelectromechanical
systems (MEMS) exhibit mechanical structures that are characterized by nonlinear elasticity
due to a hardening or softening spring constant. Driving these nonlinear oscillators by sinusoidal
excitation with varying frequency and amplitude we observe typical characteristics of nonlinear
oscillators in the frequency response as jump phenomena at bifurcation points. Especially in
applications with varying physical parameters due to changes in environmental conditions
or external disturbances a stable operation in resonance cannot be guaranteed by applying
conventional Phase Locked Loops (PLLs). In this work we propose an adaptive phasor control
approach that is based on a phasor representation of the linearized Duffing oscillator in order to
control the amplitude and phase of the oscillation separately. The Duffing oscillator is linearized
adaptively by using a dynamic parameter estimator for the unknown nonlinear spring constant.

1. INTRODUCTION

Duffing’s equation has been originally introduced by Duff-
ing [1918] and describes mathematically the motion of
a mechanical, single degree-of-freedom system with har-
monic excitation and a nonlinear restoring force. In this
work we consider the damped Duffing oscillator with a
general excitation function u(t) given by:

ẍ(t) + 2dω0 ẋ(t) + ω2
0 x(t) + αx(t)3 = b u(t). (1)

x(t), ẋ(t) denote general state variables with initial con-
ditions x(0), ẋ(0), that for instance represent electrical or
mechanical quantities as voltage or angular deflection and
their time derivatives. In accordance to the linear case
(α = 0) ω0, d and b refer to the undamped eigenfrequency,
the damping ratio and the input gain of the oscillating sys-
tem, respectively. For a simple mass-spring-damper system
with mass M , that is suspended on a parallel combination
of a spring with constant K and a dashpot with damping
factor C these parameters are calculated using:

ω0 =

√

K

M
, d =

C

2
√
MK

, b =
1

M
. (2)

The cubic nonlinearity is parametrized by the constant
factor α. In the mass-spring-damper system α accounts
for a nonlinear spring constant that decreases (α < 0)
or increases (α > 0) proportional to the square of the
displacement. This type of elasticity is often referred to
as a softening or hardening spring, respectively. A general
solution of (1) for arbitrary inputs u(t) does not exist but
assuming a periodic excitation u(t) = cos (ωt) analytical

as well as numerical solutions of Duffing’s equation have
been presented in Holmes and Rand [1976], Nayfeh and
Mook [1979] and Brennan et al. [2008]. A typical frequency
response function of a harmonically forced Duffing oscil-
lator is demonstrated in Fig. 1. The response amplitude
of the resulting oscillation is shown qualitatively for the
spring softening (α < 0), the linear (α = 0) as well as
the spring hardening (α > 0) case. Oscillating systems
that exhibit cubic elasticity are quite prevalent in technical
systems, particularly in MEMS. A broad compilation of
resonant MEMS with Duffing-like behaviour is presented
in Rhoads et al. [2010]. The vacuum encapsulated tor-
sional microscanners presented in Hofmann et al. [2012]
also possess a nonlinear spring characteristic and mainly
motivated this work. These devices are primarily supposed
to be applied in mobile laser displays that project video
data on arbitrary surfaces by scanning a synchronously
modulated RGB laser. In order to achieve large screen
diameters and low power consumption simultaneously the
micromirrors have to be driven in resonance at constant
deflection amplitude. Since the laser source intensity is
fluctuating continuously according to the projected video
data the spring characteristic of the scanner is changing
as well resulting in time varying parameters α and ω0. To
attain a high video resolution a precise deflection tracking
is required as well. Using standard PLLs to operate these
micromirrors in resonance is usually insufficient. Due to
the vacuum packaging the scanners possess very low damp-
ing (typically d ≈ 10−5) causing excessive transition times
when driven harmonically to resonance by sweeping the
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Fig. 1. Frequency response function of a harmonically
forced Duffing oscillator (Kanamaru [2008])

excitation frequency. Owing to the unstable path in the
frequency response function near the resonance peak (cf.
Fig. 1) even small variations of the spring characteristic or
the frequency of the driving signal induce a jump to the
lower stable branch. The general problem of controlling a
Duffing system has been studied extensively in literature,
for example in Agrawal et al. [1998] and Harb et al. [2007].
For systems with uncertain or time varying parameters
adaptive control strategies have been reported as well in
Dong et al. [1997], Loria et al. [1998], Cao [2000] and Yu
and Zhang [2004]. In this work we propose a new adaptive
phasor control approach to drive a weakly damped Duffing
oscillator. It is based on the phasor representation for
linear underdamped second order systems, that has been
formerly introduced in Koschmieder and Röck [2009] to
control a Coriolis Mass Flow Meter (CMFM). Analogous
to the investigated Duffing oscillator the tube oscillation
of the CMFM is characterized by very low damping as
well as unknown and time varying parameters. The model-
based phasor control of the CMFM presented in Röck
and Koschmieder [2009] exhibits excellent performance in
real world experiments. Detailed theoretical as well as
practical results regarding the phasor control of linear
second order systems will be published in a PhD thesis in
2014. In this work we adopt the phasor control approach to
the Duffing oscillator. A nonlinear parameter estimation
is used to adaptively linearize the Duffing oscillator by
compensating the cubic nonlinearity. In section 2 the esti-
mation algorithm and the reduced order observer for the
unmeasured state variable are presented in detail. In order
to determine the apriori unknown and time varying quan-
tities eigenfrequency ω0 and damping ratio d a dynamic
parameter model as well as an online parameter estimator
are derived in section 3. The derivation of the phasor
model as well as the amplitude and frequency controller
are covered in section 4. To demonstrate the performance
of the proposed control scheme the results of numerical
simulations realized in MatLab/Simulink are discussed in
section 5. Theoretical considerations regarding stability
and robustness of the complete control method as well as
a practical evaluation are not part of this paper and will
be the subject of future work. In the following sections
the time variable t is omitted for reasons of clarity and
comprehensibility.

2. ADAPTIVE LINEARIZATION

Reordering (1) gives

ẍ+ 2dω0 ẋ+ ω2
0 x = b [u− α

b
x3]. (3)

From (3) it is easy to see that by choosing

u = ν +
α̂

b
x3 with α̂(t → ∞) = α (4)

an exact linearization of the Duffing oscillator is achieved.
The result is the linear second order differential equation

ẍ+ 2dω0 ẋ+ ω2
0 x = bν (5)

with virtual input ν. As the parameter α is unknown
apriori due to tolerances in the manufacturing process
and varies over time caused by the fluctuating laser beam
intensity a nonlinear parameter estimator is used to de-
termine α online. Following Friedland [1997] a nonlinear
dynamical estimator is designed that guarantees asymp-
totical stability for the dynamics of the estimation error
e = α − α̂ by incorporating Lyapunov’s stability theory.
The initial estimation error e0 = α − α̂0 vanishes for
t → ∞. Starting from the general nonlinear system in
state space form

ẋ = f(x, u, θ) (6)

with the unknown parameter vector θ the following pa-
rameter estimator is chosen:

θ̂ = φ(x) + z, (7)

ż = −Φ(x) f(x, u, θ̂), with Φ(x) =
[∂ φi(x)

∂ xj

]

. (8)

Assuming θ is constant and the dynamics of the system
(6) are affine in the parameter vector θ, i.e.

f(x, u, θ) = F (x, u)θ + g(x, u), (9)

with F (x, u) =
[∂ fi(x, u, θ)

∂ θj

]

(10)

the differential equation describing the error propagation
reduces to:

ė = − ˙̂
θ = −Φ(x)F (x, u). (11)

By appropriately choosing φ(x) the error equation (11)
finally results in

ė = −Le, (12)

with L being a positive semi-definite matrix and thus
guaranteeing asymptotical stability in accordance to Lya-
punov’s stability theory. For a detailed derivation of the
parameter estimator refer to Friedland [1997]. In order
to apply this methodology to the Duffing oscillator the
system equation in (1) is represented in state space form
by defining the state variables x1 = x, x2 = ẋ. This gives:

f(x, u, θ) =

[

ẋ1

ẋ2

]

=

[

x2

−2dω0x2 − ω2
0x1 − αx3

1 + bu

]

=

[

0
−x3

1

]

α+

[

0 1
−2dω0 −ω2

0

] [

x1

x2

]

+

[

0
b

]

u. (13)

Defining
φ(x) = −lx1x2, with l > 0 (14)

Φ(x) can be calculated directly using (8):

Φ(x) = [−lx2 −lx1] . (15)

The matrix L reduces to a positive scalar given by

L = Φ(x)F (x, u) = lx4
1 > 0 (16)

and guarantees that the differential error equation

ė = Le = lx4
1 e (17)

is asymptotical stable. The parameter estimator in (14)
requires both state variables x1 = x, x2 = ẋ. Assuming
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Fig. 2. Parameter estimation

that the first quantity is measured directly, y = x1, a
nonlinear reduced order Luenberger observer, that can be
found for example in Kailath [1980], is used to estimate
the second state x2.

3. PARAMETER ESTIMATION

Analogous to the quantity α the parameters ω0 and d vary
for individual devices due to tolerances in the manufactur-
ing process. Additionally the linear undamped eigenfre-
quency ω0 is also affected by temperature gradients due
to the fluctuating laser intensity and varies over time.
Again an online estimation algorithm is needed to deter-
mine the parameters during operation. As all attempts
to find an appropriate function φ(x) for estimating the
three unknown parameters with the method presented in
the previous section have failed, a separate linear state
observer is used to determine ω0 and d. For this purpose
we define the discrete time state vector

η
k
= η(tk) =

[

ω2
0(tk)

2dω0(tk)

]

=

[

ω2
0

2dω0

]

k

(18)

with tk = k T , k ∈ N and the constant time interval T .
Assuming slowly varying parameters ω0 and d, the linear
time varying parameter model is given by:

[

ω2
0

2dω0

]

k+1

=

[

1 0
0 1

] [

ω2
0

2dω0

]

k

+ wk+1 ,

η
k+1

= Ak η
k
+ wk+1 , (19)

[b νh(tk)− ÿh(tk)]k = [yh(tk) ẏh(tk)]k

[

ω2
0

2dω0

]

k

+ vk ,

zk = cTk η
k
+ vk. (20)

The stochastic variables wk, vk model random, additive
system or measurement noise and represent zero mean,
uncorrelated noise processes with covariance Qk, rk, re-
spectively. The quantities νh, yh, ẏh and ÿh are calculated
from the input ν and the output y of the linearized system
by using the state variable filter topology demonstrated in
Fig. 2. H(s) is designed as a linear second order filter with
stationary gain ks = 1 and real poles s∞ = s∞,1 = s∞,2.
The parameter state vector η

k
is estimated by applying a

discrete time Kalman filter. The required filter equations
can be found in Gelb [1974].

Fig. 3. Definition of the complex phasor in the (a) fixed

and (b) with φ̇ rotating complex plane

4. PHASOR CONTROL

Defining the complex, time varying phasor

Y−→ = Re{Y−→}+  Im{Y−→} = YR + YI (21)

a harmonically oscillating signal y according to Fig. 3 is
defined by:

y = Im{Y−→eφ} (22)

= Im
{(

YR + YI

)(

cosφ+  sinφ
)}

= YR sinφ+ YI cosφ.

By using this phasor representation the amplitude and
phase information of a sinusoidal signal can be separated
according to (22) and Fig. 3(b). In order to derive a
phasor model of the linearized oscillator we differentiate
(22) to compute ẏ, ÿ and define a phasor U−→ = UR + UI

representing the virtual input ν = UR sinφ + UI cosφ.
Substituting these quantities in (5) and setting the state,
input and output vectors to

X =
[

YR YI ẎR ẎI

]T
, U = [UR UI ]

T
, Y = [YR YI ]

T

finally results in the phasor model of the linearized oscil-
lator given by

Ẋ = AX +B U (23)

Y = C X. (24)

A =









0 0 1 0
0 0 0 1

(φ̇2 − ω2
0) (φ̈+ 2dω0φ̇) −2dω0 2φ̇

−(φ̈+ 2dω0φ̇) (φ̇2 − ω2
0) −2φ̇ −2dω0









B =







0 0
0 0
b 0
0 b






, C =

[

1 0 0 0
0 1 0 0

]

.

The phasor model is represented by a linear fourth order
time varying system that enables a separate amplitude and
phase control of the sinusoidal oscillation y. To continu-
ously calculate the phasor state vector X a Kalman-Bucy-
Filter is implemented using the system (23) and measure-
ment (22). The filter equations as well as the mathematical
derivation is shown in Gelb [1974].
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Fig. 4. Definition of the phase error ε in steady state

4.1 Phase control

Using the phasor notation a measurement of the phase
shift ϕ between input and output in steady state can
easily be introduced, and used to adjust the stimulating
frequency. The objective of phase control is to guarantee
that the oscillator is stimulated in its linear eigenfrequency
ω0 at any time. As the linearized model is a second order
delay the phase shift between the virtual control input
ν and controlled variable y has to be adjusted to ϕ =
ϕ(ω0) = −π

2
in steady state. If the corresponding phasors

U−→ and Y−→ are represented in the complex plane rotating

with φ̇, a generalized phase error ε can be introduced
that will vanish, if the phase conditions are met. Using
normalized phasors

U−→n =
U−→
|U−→| , Y−→n =

Y−→
|Y−→| , |U−→n| = |Y−→n| = 1

the phase angle ϕ is calculated from Fig. 4 and reads

tan
ϕ

2
=

|(U−→n − Y−→n)/2|
|(U−→n + Y−→n)/2|

. (25)

When stimulating in the linear eigenfrequency φ̇ = ω0 we
get according to the control objective

|(U−→n − Y−→n)| = |(U−→n + Y−→n)|.
Thus we can define the generalized phase error as

ε =
1

2
|(U−→n + Y−→n)| −

1

2
|(U−→n − Y−→n)|. (26)

In steady state the error ε will be zero, if the oscillator
is stimulated in its eigenfrequency ω0. To control the
stimulating frequency φ̇, a simple Integral Controller

φ̈ = kI ε (27)

is used. Filtering the control input with a first order delay
and cut off frequency ωf ,

Gf (s) =
1

s
ωf

+ 1
,

finally results in a more smooth control. As the phase con-
trol drives the oscillator in its natural eigenfrequency we
have φ̇ = ω0 in steady state. Hence, this controller provides
an alternative method to determine ω0 independently of
the parameter observer in section 3.

4.2 Amplitude control

For amplitude control, a 2 DOF (degree of freedom) con-
trol scheme is used, consisting of feedforward control and
trajectory control in the feedback loop (Horowitz [1963]).

Fig. 5. 2 DOF control scheme for the oscillation amplitude

The basic control approach is depicted in Fig. 5. The
amplitude Y of the oscillator is tracked via feedforward
control to the desired trajectory Y ∗ = [Y ∗

R Y ∗

I ]
T that is

calculated from the amplitude setpoint W = [WR WI ]
T

by an appropriate trajectory generator. As the time vary-
ing phasor model has full relative degree the feedforward
control UF can be calculated very easily using system
inversion. In order to account for model uncertainties,
changes in parameters and noise a LQ-controller is used in
the feedback loop for trajectory control. For the feedfor-
ward control UF = [UFR UFI ]

T with predefined setpoint
trajectory Y ∗ we have

UFR =
1

b

[

− (φ̇2 − ω2
0)Y

∗

R + 2dω0Ẏ
∗

R + Ÿ ∗

R

+(φ̈+ 2dω0φ̇)Y
∗

I − 2φ̇Ẏ ∗

I

]

, (28)

UFI =
1

b

[

(φ̈+ 2dω0φ̇)Y
∗

R + 2φ̇Ẏ ∗

R

−(φ̇2 − ω2
0)Y

∗

I + 2dω0Ẏ
∗

I + Ÿ ∗

I

]

. (29)

From this immediately results that the trajectories have
to be at least two times continuously differentiable, i.e.
Y ∗

R , Y ∗

I ∈ C2. This is realized by using the critically
damped second order filters

GW,i(s) =
si Y ∗

R

WR

=
si Y ∗

I

WI

=
si ω2

W

s2 + 2ωW s+ ω2
W

, (30)

i = 0 , 1 , 2

with unity gain in steady state as the trajectory generator.
With the free parameter ωW , the dynamics of the tra-
jectories can be adjusted and thus the maximum control
action can be limited. The feedback controller is designed
according to the resulting error model of the feed forward
controlled oscillator. For the trajectory error

EF =









XR − Y ∗

R

XI − Y ∗

I

ẊR − Ẏ ∗

R

ẊI − Ẏ ∗

I









= X −
[

Y ∗

Ẏ
∗

]

(31)

we get by using the phasor model (23)

ĖF = AEF +BUC , (32)

Y F = CEF (33)

with UC = [UCR UCI ]
T . For feedback control of the

trajectory error a LQ-controller with integral action is
used, guaranteeing zero steady state error. The feedback
loop for the extended system is depicted in Fig. 6. The free
parameters of the PI controller can be chosen arbitrarily in
order to meet specific requirements. Fig. 7 illustrates the
complete phasor control scheme for the Duffing oscillator
including adaptive linearization as well as parameter and
phasor estimation. The control equation in time domain is
then given by:
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Fig. 6. Extended feedback loop for the error model

Fig. 7. Complete phasor control scheme for the Duffing
oscillator

u =
α̂

b
y3 + ν , (34)

ν =UR sinφ+ UI cosφ

=(UFR + UCR) sinφ+ (UFI + UCI) cosφ. (35)

5. SIMULATION

To demonstrate the performance of the proposed approach
we present numerical simulations that have been realized
using MatLab/Simulink. For reasons of numerical stability
the simulations are performed using the normalized non-
dimensional form

d

dτ
η1 = η2, (36)

d

dτ
η2 = −2dωn η2 − ω2

n η1 − αn η
3
1 + bn un, (37)

yn = η1, (38)

τ = ωN t, η1 =
x1

x1N

, η2 =
x2

x2N

, un =
u

uN

, (39)

ωn =
ω0

ωN

, αn = α
x2
1N

ω2
N

, bn = b
uN

ω2
Nx1N

. (40)

of the Duffing oscillator. The unknown parameters of the
simulated plant are set to αn = −0.2, ωn = 2, d = 10−5

and the input gain is given by bn = 3. In Fig. 8 and 9
the simulation results of an amplitude set point tracking
are demonstrated. By choosing WRn,WIn as depicted in
Fig. 8 the reference trajectory wn is set to a sinusoidal
oscillation with varying amplitude WRn and frequency ωn.
The time behaviour of yn and φ̇N clearly reveals that the
desired amplitude as well as the frequency of the output
yn are achieved within one oscillation period. Considering

−5
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W
I
n
,Ŷ

I
n

 

 
WIn

ŶIn
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W
R
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Fig. 8. Simulation of an amplitude setpoint tracking. Ref-
erence oscillation wn, controlled output yn, reference
trajectories WRn,WIn, controlled phasors YRn, YIn

and control input un.
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Fig. 9. Simulation of an amplitude set point tracking.

Real and estimated parameters ωn, ω̂n, d, d̂, αn, α̂N ,
controlled excitation frequency φ̇n and phase error εn.

the low damping (d = 10−5) of the simulated system the
realized transitions of the amplitude are remarkably fast.
However, this requires a relatively large control input u
as depicted in Fig. 8. For real systems with constrained
actuation force the maximum required control u can be
effectively reduced by increasing the amplitude transition
time in the trajectory generator (30). The apriori unknown
system parameters are also estimated correctly within a
few oscillation periods. It is worth noting that the estima-
tion process is not influenced by changes in the oscillation
amplitude. The simulation shown in Fig. 10 and 11 demon-
strates a controlled Duffing oscillator with time varying
system parameters. For this purpose the eigenfrequency
ωn is increased by 10% and the nonlinearity parameter
αn is increased by 50% during the simulation (cf. Fig. 11).
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Fig. 10. Simulation of time varying system parameters ωn

and αn. Reference oscillation wn, controlled output
yn, reference trajectories WRn,WIn, controlled pha-
sors YRn, YIn and control input un.
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Fig. 11. Simulation of time varying system parameters ωn

and αn. Real and estimated parameters ωn, ω̂n, d, d̂,
αn, α̂n, controlled excitation frequency φ̇n and phase
error εn.

The reference trajectory wn is set to a sinusoidal oscillation
with constant amplitude and frequency equal to the linear
eigenfrequency ωn of the plant. The estimated parameters
are presented in Fig. 11 together with the real system
parameters. The time responses show that the simulated
parameter changes are detected correctly within a few
oscillation periods but are subject to strong fluctuations.
However, the impact on the controlled output oscillation
is negligible.
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H. Röck and F. Koschmieder. Model-Based Phasor Con-
trol of a Coriolis Mass Flow Meter (CMFM) for the
Detection of Drift in Sensitivity and Zero Point. In S. C.
Mukhopadhyay, G. S. Gupta, and R. Y.-M. Huang, edi-
tors, Recent Advances in Sensing Technology, volume 49
of Lecture Notes in Electrical Engineering, pages 221–
240. Springer, Berlin and Heidelberg, 2009.

Y. Yu and S. Zhang. Adaptive backstepping synchroniza-
tion of uncertain chaotic system. Chaos, Solitons &
Fractals, 21(3):643–649, 2004.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1313


