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Abstract: In this paper, we develop a novel mechanism for reducing volatility of residential de-
mand for electricity. We construct a reward-based (rebate) mechanism that provides consumers
with incentives to shift their demand to off-peak time. In contrast to most other mechanisms
proposed in the literature, the key feature of our mechanism is its modest requirements on
user preferences, i.e., it does not require exact knowledge of user responsiveness to rewards for
shifting their demand from the peak to the off-peak time. Specifically, our mechanism utilizes
a probabilistic reward structure for users who shift their demand to the off-peak time, and
is robust to incomplete information about user demand and/or risk preferences. We approach
the problem from the public good perspective, and demonstrate that the mechanism can be
implemented via lottery-like schemes. Our mechanism permits to reduce the distribution losses,
and thus improve efficiency of electricity distribution. Finally, the mechanism can be readily
incorporated into the emerging demand response schemes (e.g., the time-of-day pricing, and
critical peak pricing schemes), and has security and privacy-preserving properties.
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1. INTRODUCTION

In recent years, demand response (DR) in smart gird
infrastructures has emerged as an important topic of re-
search. These schemes aim to control/flatten the aggregate
demand curves by shifting the users’ consumption times to
improve efficiency. For e.g., time-of-day variations of resi-
dential demand for electricity posit a considerable problem
for stability and efficiency of electric grid. Indeed, higher
volatility of user demand results in higher average distrib-
utor’s expenses on network maintenance and electricity
provision which creates upward pressure on retail prices.
Altogether, these reasons have resulted in a considerable
interest in mechanisms for reducing demand volatility. The
ongoing deployments of Advanced metering infrastruc-
tures (AMI) and Smart Utility Networks (SUN) present
new opportunities for the deployment of DR schemes.

Real-time pricing may sound as an attractive theoretical
choice for DR via AMI/SUN. However, numerous com-
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plications arise in any practical implementation of real-
time pricing. Firstly, various studies on risk preferences
of users indicate that they prefer flat-rate prices, and are
even willing to pay a premium to avoid being charged
a non-flat price for their electricity consumption. More-
over, residential users show low responsiveness to price
signals. Secondly, the communication of disaggregated user
demand data to a distribution utility (distributor) may
cause substantial privacy concerns. The bi-directional real-
time communication between the distributor and the users
also introduces numerous insecurities (1). For e.g., the de-
mand data from AMIs to the distributor could be falsified,
corrupted, or suppressed. Even when the actual demand
data reaches the distributor uncorrupted, the pricing in-
formation could be maliciously altered (e.g., by fraudulent
users). Systematic exploitation of such insecurities could
even induce network instability (8).

Yet, with increasing wholesale price(s), and predictions
of further price escalation, distributors are experimenting
with tiered pricing schemes. Essentially, the distributors’
considerations about DR schemes in smart infrastructures
include the following trade-off: On one hand, in order to
increase the efficiency of electricity provision, user prices
should reflect the scarcity of electricity. On the other
hand, fairness, privacy and security considerations limit
the usability and attractiveness of real-time pricing for
retail electricity.
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In this paper, we develop a DR scheme of reducing the
volatility of residential energy demand by building on
Morgan’s paper (10) on economics of public goods. We
view the user actions that contribute to the reduction of
demand volatility as means of public good provision. Thus,
while we employ Morgan’s technique (10), in our model,
the users contribute not the money, but negawatts (16),
i.e., the amount of demand they shift from peak to off-peak
time. Our goal here is to design a reward-based scheme
that incentivizes users to shift their demand to off-peak
times. The key feature our scheme is its relative simplicity.
Specifically, our scheme does not require the knowledge
of how responsive the users are in shifting their demand.
Essentially, we employ a probabilistic reward structure for
users who shift their demand to the off-peak times. This
feature makes our scheme robust to incomplete informa-
tion about user demand and risk preferences, and intro-
duces privacy-preserving features. In addition, our scheme
is advantageous from the perspective of cyber-security.
Lastly, our incentive scheme could be used in conjunction
with other existing demand response mechanisms (e.g., the
time-of-day pricing (5)).

We model the interactions of the distributor with cus-
tomers (here assumed to be residential or household users)
as a game. Practically, electricity consumption of each in-
dividual user has negligible effect on the aggregate demand
faced by the distributor. Still, the electricity price faced
by each user depends on the aggregate demand. This fea-
ture is exactly what is considered in so-called aggregative
games. In aggregative games, the payoff function of each
player depends on his own action and an aggregative term
reflecting the effect of other players’ actions; but not on
the individual actions of others, as in the standard non-
aggregative games. A generic payoff function of player i in
such a game with an additive aggregative term is given by

ui

xi,∑
j 6=i

xj

 .

Aggregative games in large-scale systems are often called
mean-field games (13; 14; 15). To develop our reward-
based DR scheme, we model the provision of megawatts
as an aggregative game, where the reward is chosen by the
distributor, based on his reduction of the network mainte-
nance costs, which we assume as a decreasing and convex
function of the maximum (peak) and variance of the de-
mand. In our setup, the users who shift their demand to
the off-peak time obtain rewards via a lottery-like scheme.
We characterize the equilibrium of the mean-field game
and compare it with the social optima. We demonstrate
that the users and the distributor are better off in the
presence of our reward-based mechanism. Specifically, in
equilibrium, individual users will produce more negawatts,
and therefore receive higher utility relative to the case
when such mechanism is not offered.

1.1 Outline

The rest of the paper is organized as follows. In Section 2
we overview of lottery-based approach to public good
problem, and discuss technical problems that emerge in
adopting lotteries to reduce variability of electric demand.
We introduce our model in Section 3. In Section 4, we

formulate the corresponding mean field game. We prove
the existence and the uniqueness of the Nash equilibrium
and show that interior equilibrium (i.e., equilibrium in
which random rebates are offered) exists, and is welfare
superior to the no-rebate case. In Section 5 we conclude
with a short discussion of our results and future extensions.

2. BACKGROUND

2.1 Literature Review

Below we briefly review three different threads of research
relevant for our paper.

I. In the first part, we cover the literature about demand
shaping, which naturally divides into two approaches,

II. The second part of our review covers mean field-like
game models in electricity market. The aggregate response
of several consumers (or producers) to a price signal may
be modeled as a function of individual contribution and
an aggregative term (2; 3; 4).

In (5) Jiang and Low analyzed demand management in
smart grid. They considered the case user demand is
not time-correlated and provided an independent opti-
mization scheme per time period. In (6) studied real-
time demand response with uncertain renewable energy
in smart grid. They designed and evaluated distributed
algorithms for optimal energy procurement and demand
response in the presence of uncertain renewable supply and
time-correlated demand. When random renewable energy
is realized at delivery time, it actively manages user load
through real-time demand response and purchases balanc-
ing power on the spot market to meet the aggregate de-
mand. A summary of recent progress on demand response
can be found in (9).

The authors in (7) proposed a decentralized charging con-
trol strategy for large populations of plug-in electric vehi-
cles (PEVs). They have proposed aggregative and mean-
field games in situation where PEV agents are rational
and weakly coupled via their operation costs. Each of the
PEV agents reacts optimally with respect to the average
charging strategy of all the PEV agents.

III. Lastly, in the third part, we discuss the papers which
apply lottery-like mechanisms to address public good
provision.

We are building on the insights of a famous paper about
the economics of public goods (10), i.e., by viewing user
actions that are reducing demand volatility as a tool of
public good provision. However, the specifics of demand
management for residential electricity usage requires sub-
stantial changes of Morgan’s approach in (10).

The idea of lotteries have also been used in other con-
texts, e.g., for the raffle scheduling technique applied in
computer operating systems. Recent interest in application
of lotteries to congestion management was facilitated by
Mergu, Prabhakar, and Rama who demonstrated with a
field study that lottery-based mechanisms can be used to
decongest transportation systems.In contrast, our focus is
similar to (12), and it is predominantly methodological.
These papers approach lotteries as a technical tool of
congestion management, and also compare their setup(s)
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to Morgan’s scheme of using lotteries for funding public
goods. We refer to (12) (and the references therein) for
an overview of the driving forces behind the lottery-based
schemes usage to reduce congestion in different domains
(internet and traffic).

2.2 Morgan’s model

Game-theoretic analysis in Morgan’s paper (10) shows
that lotteries are attractive tools for financing of public
goods. We now present an overview of Morgan’s results;
also see (18). Let N = {1, . . . , n} denote the set of users.
Each user i ∈ N has a wealth wi, and chooses an amount
xi ∈ [0, wi] as his contribution to the level of public good
G◦, which is defined as the sum of individual contributions,
i.e., G◦ =

∑n
i=1 xi. Under voluntary contributions (i.e., no

incentive scheme), the expected utility of i−th user is:

Ui(xi, x−i) = wi + hi

(
n∑
i=1

xi

)
− xi,

where x−i denotes the vector of contributions of all users
but i, and hi(·) is a strictly increasing and strictly concave
function, and reflects the user’s valuation of public good.

The raffle-based scheme in (10) gives a reward R > 0
to one or more users, and each user’s expected reward is
proportional to his contribution to the public good. The
scheme is financed by deducting the reward R from the
total contributions G◦ of all users. Then, the expected
utility of i−th user becomes

Ui(xi, x−i) = wi + hi(G)− xi +R · xi∑n
i=1 xi

, (1)

where the level of public good is now G =
∑n
i=1 xi − R.

An underlying assumption in (10)) is that the lottery
is conducted by a charity. If the total contributions are
insufficient to cover the prize up to an arbitrarily small
amount δ > 0 (i.e.,

∑n
i=1 xi < R−δ), the raffle is canceled

and each contributor gets his contribution back from the
charity. If the denominator term

∑n
i=1 xi is zero, the payoff

is the initial wealth. This creates a discontinuity in the
payoff function. The aggregate welfare W is

W =

n∑
i=1

Ui. (2)

Let social optimum be defined as an allocation with max-
imal aggregate (total) user welfare. In the following, the
superscript (eq) (resp. ∗) denotes the respective quantities
corresponding to Nash equilibrium (resp. social optimum).

Theorem 1. (Main results of Morgan (10)).

(i) For any R > 0, there exists a unique Nash equilib-
rium, whereas for R = 0, multiple equilibria can exist,
all with the same level of public good.

(ii) There exists a unique level of public good G∗, which
maximizes the aggregate welfare, and for any R > 0,
we have G(eq)(0) < G(eq)(R) < G∗.

(iii) The equilibrium level of public good with the raffle-
scheme G(eq)(R) can be made arbitrarily close to the
socially optimal level G∗ by choosing a sufficiently
large reward R.

(iv) For any R > 0, G(eq)(R) > 0 if and only if G∗ > 0.
(v) A fixed-prize raffle with a prize R is outcome equiv-

alent to a game in which each individual receives

a rebate share that is proportional to his or her
contributions to the public good relative to total
contributions. The charity financing the public good
stipulates a rebate amount R which will be set aside
from total contributions (provided that these exceed
R).

From Theorem 1, we know that a probabilistic reward
scheme could be implemented as a raffle (see (v)). How-
ever, to implement such a scheme with a goal of shaping
electricity demand, a number of issues must be addressed.
First, we have to decide who finances the reward R and
how. Here we introduce the distributor as the player who
organizes the lottery. Second, in (10), the users participate
in the lottery via monetary contributions. However, in our
model, the electricity users contribute to demand shaping
via negawatts. Third, we need to explicitly consider the
case when the lottery might be canceled in equilibrium. In
general, it is hard to “return” the negawatts to the users.
In (10), there is a possibility of raffle cancelation in the
case when users believe that others would not contribute
enough, and there is no super-rich player who has sufficient
funds to finance the raffle. Lastly, since each electricity user
has a negligible effect on the aggregate demand faced by
the distributor, a mean-field game model is appropriate
for our environment.

3. MODEL

Consider n users and one distributor. We model the
distributor’s payoff as follows

πn(Rn) =
1

n
(Qn + Q̂n)p− 1

n
Rn − c0(

1

n
Qmax, σ),

where where Qmax is a peak demand, σ = 1
n2 [Q−Q̄]2, and

c0( 1
nQ

max, σ) is the cost of network maintenance, which is
increasing and convex is in both arguments.

Each consumer has a certain peak demand that we decom-
pose as shiftable demand qi and non-shiftable demand q̂i.
The choice variable for a user i is an amount of energy
consumption xi ∈ [0, qi] that he shifts from the peak time.
The payoff ui of user i is equal to

ui = w(si)− [qi + q̂i]p+ u2,i,

The second term u2,i reflects the incentive scheme:

u2,i = 1l{
∑n

j=1
xj 6=0}

[
h(Gn) +Rn

xi∑n
j=1 xj

− d(xi)

]
where Gn denotes the aggregative term

Gn =

 1

n

n∑
j=1

xj

− rn,
and to simplify, below we will illustrate how our model
works with a linear the dis-utility of shifting d(xi) = xi.
We use the indicator function in order to well-define the
payoff at 0. If the denominator is zero the term xi∑

j
xj

= 0
0

but we will replace the payoff by −α ≤ 0. This makes a
discontinuity at 0.

We introduced a strategic decision-making problem with
two-levels. At the first level, the utility proposes a prob-
abilistic reward rn in order to incentivize the consumers
to shift their demand. Then, each consumer, knowing rn,
chooses xi that maximizes his ui.
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4. RESULTS

The standard method for solving bi-level games is the
backward induction. A equilibrium of our hierarchical
game is a profile (r∗n, x

∗(r∗n)) such that

r∗n ∈ arg max
rn

πn(rn, x
∗(rn)), ∀i, x∗i (rn) ∈ arg max

xi

[ui].

We analyze the equilibrium properties of the game in the
asymptotic regime:

u(x,m, r) = w(s)−p(q+q̂)+
[
h(m− r̃)− xi + r

xi
m

]
1l{m≥r̃−δ̄}

where r̃(r) is the inverse quantity required to compensate
the cost due to congestion with the reward r. In order to
simplify the analysis, we choose r̃(r) = r.

4.1 Equilibrium analysis between consumers

For a fixed r which is an inferior limiting point of rn, we
examine the game between consumers. The best response
to the mean m and r is given by

BR(s,m, r) =


0 if m > r

any feasible action if m = r
max. action if r > m ≥ r − δ̄ > 0

any feasible action m < r − δ̄

We define a mean field equilibrium between consumers for
a fixed r > 0 as follows.

Definition 1. (Pure mean field equilibrium). (x,m) is a pure
mean field equilibrium if ∀ s, x(s) > 0 =⇒ x(s) ∈
arg maxx′ u(s, x′(s),m, r) and the mean of the actions x(s)
with the respect to the state should generate m by consis-
tency.

From the definition, a pure mean field equilibrium satisfies
m ∈ arg maxx u(s, x(s),m, r). Suppose r > δ̄. Then x(s) =
m∗(r) = r provides a pure mean field equilibrium between
consumers. The equilibrium payoff is greater than the
one without incentives whenever h(0) ≥ 0. Note that the
equilibrium quantity increases with the reward.

4.2 Social welfare of consumers

Next, we examine the social welfare of consumers. The
arithmetic average payoff of all the consumers is given by

−p(q + q̂) +
1

n

n∑
j=1

w(sj) +
1

n

n∑
j=1

h(·) + rn −
1

n

∑
j

xj

which limiting behavior has the following form:

−p(q + q̂) + w̄ + h(m− r) + r −m

Optimizing the above function yields in optimizing the
function m 7−→ h(m − r) − m which has a maximizer
m∗,so = m∗so(r).

Suppose that h(·) is a concave diffeomorphism. Then, any
interior solution is given by h′(m− r) = 1 i.e.

m∗so = m∗so(r) = r + (h′−1(1))

and the optimum social welfare of consumers is −p(q +
q̂) + w̄ + h(h′−1(1))− h′−1(1).

4.3 Operator’s anticipation

Now we focus on the operator anticipation problem. The
operator will anticipate the reaction of the consumers in
his payoff function and compute the profit as

(q + q̂)p− r − c0(qmax, [m∗(r)− m̄]2).

The profit optimization of the large scale system is equiv-
alent in minimizing the cost r + c0(qmax, [r − m̄]2) in r.
Assume that the highest operator’s cost is greater than
m̄ : c0(qmax, m̄2) > m̄. Then, the maximizer of the profit is
positive, i.e., r∗ > 0 because of very high cost c0(qmax, m̄2)
which increases with m̄2 > 0, and c0(qmax, m̄2) > m̄. To
compute the interior point r∗, we use the first order condi-
tion−1 = 2[r−m̄]∂σc0(qmax, [r−m̄]2). If there are multiple
maximizers, the operator will choose the minimum cost to
organize the lottery. The minimum among the maximizers
of r + c0(qmax, [r − m̄]2) will be chosen. Thus,

0 < r∗ < m̄.

In other words, the operator will finance because the
lottery reduces its cost.

5. CONCLUDING REMARKS

Recent technological developments necessitate a reconsid-
eration of how electricity distribution is done. Indeed, wide
deployment of advanced metering infrastructure (AMI)
gives utility operators and individual households ample
new possibilities to interact. A budding literature investi-
gates new mechanisms of demand management with both,
technology-based and market-based features. While the
primary focus of demand response mechanisms is to assure
integrity and availability of electric infrastructure, in this
paper we are also concerned by potential threats to privacy
of individual users, as well as by security of electric grid,
which could be compromised via real-time information
flows that AMI permits.

Our main contribution is a novel demand response scheme,
based on a probabilistic rebate mechanism. We adopted a
lottery-based scheme of public goods financing to reduce
the societal costs of variability of the residential electric
demand. We developed a probabilistic rebate scheme based
on a lottery mechanism, to incentivise household users to
shift their electric consumption to the off-peak times. In
this paper, we consider only the effect of our mechanism on
the utility costs of its distribution network maintenance.
Our setting is stylized and minimalist, to demonstrate
the essence of the probabilistic rebate mechanism. In our
future work, we will consider the following extensions.

First, we will address the effects of our scheme on the
utility’s costs of electricity acquisition. Our intuition is
that with the inclusion of these costs in the model, cost
savings of the utility would be even higher than now,
due to its reduction of real-time (balancing) purchases
at the highest prices (locational marginal prices (LMPs)).
Second, the positive effects of flatter electric demand are
not limited by the reduced utility costs. Other parties,
such as regional transmission operators (RTOs) are also
actively investing in demand response programs due to
their concern about the overall robustness of the grid, and
specifically transmission system. An interesting extension
of our work will be to consider savings of transmission
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operators and, possibility of using some part of these
savings to finance user rebates. Third, our paper lacks
quantitative estimates. Thus, our next step will be to
include explicit functional forms of user demand and for
utility costs of network maintenance, and fit the existing
household demand data to construct predictions about the
magnitude of the effects of our mechanism. Lastly, we are
working on extending our setting to a dynamic game, in
which evolutionary learning technics are used by the utility
to learn user preferences for demand shifting.
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