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Abstract: This paper deals with the problem of disassembly line balancing where partial
disassembly and uncertainty of task times are studied. Few papers have addressed the stochastic
disassembly line balancing problem and most of existing work focused on complete disassembly
and have not considered AND/OR graphs. In the present work, tasks of the best selected
disassembly alternative are to be assigned to a fixed number of workstations while respecting
precedence and cycle time constraints. Task times are assumed to be random variables
with known probability distributions. An AND/OR graph is used to model the disassembly
alternatives and the precedence relationships among tasks and subassemblies. The objective is
to balance workstations’ idle times, i.e. differences among stations’ loads are as small as possible.
A stochastic binary program is developed. To illustrate the applicability of the solution method
proposed, it was performed on on a set of problem instances from the literature.
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1. INTRODUCTION

The main purpose of disassembly process is to revalorize
End of Life (EOL) products by a systematic separation
of their parts and materials for recycling, remanufactur-
ing and reuse (Güngör and Gupta (1999b)). For higher
productivity rate and automated disassembly, disassembly
lines are more suitable to carry out disassembly operations
(Güngör and Gupta (2002)). The disassembly process is
more complex than assembly. Indeed, in a disassembly en-
vironment, a product is broken down into many parts and
subassemblies whose qualities, quantities and reliabilities
cannot be controlled as in an assembly environment. The
assembly process has to be complete while the disassem-
bly process does not have to be carried out completely
due to technical and economic restrictions. For instance,
irreversible connections of components of a product can
be seen as a technical restriction and the disassembly cost
being greater than the revenue obtained from retrieved
parts as an economic restriction. Hence, disassembly is
typically a partial process (Lambert (2002)). A comparison
of operational and technical considerations of assembly
and disassembly lines is provided in (Gupta and Gungor
(2001)). These characteristics of disassembly make dis-
assembly lines more challenging. Therefore, a particular
attention should be reserved to their balancing phase
and efficient tools are needed in order to optimize their
performances and effectiveness. Such tools must take into
account the uncertainty in the structure and the quality
of the products to be disassembled.
The present paper deals specifically with the Disassembly
Line Balancing Problem (DLBP) with a fixed number of
workstations, which is here referred to as F–DLBP. The

DLPB was introduced by (Güngör and Gupta (1999a))
where a heuristic approach minimizing the number of
workstations was presented.
To deal with the deterministic DLBP, heuristic and meta-
heuristic approaches were developed. Tang et al. (Tang
et al. (2001)) developed a heuristic algorithm to facilitate
disassembly line design and optimization. An iterative
heuristic using branch and bound notion was developed in
(Lambert and Gupta (2005)) to deal with the line balanc-
ing problem subjected to sequence dependent costs. A mul-
tiobjective heuristic for U–shaped DLBP was developed
in (Avikal et al. (2013)). The authors considered several
performance criteria with a lexicographic order: minimize
the workstations idle time, maximize the priority of re-
moving hazardous components and maximize the priority
of removing high demand components. Two multiobjective
metaheuristics, a distributed agent ant system and an
uninformed deterministic search, for the design and bal-
ancing of disassembly lines were developed and compared
in (McGovern and Gupta (2005)). Another multiobjective
formulation of the DLBP was presented in (McGovern
and Gupta (2006)) where the objectives are also ordered
lexicographically. An ant colony optimization metaheuris-
tic was developed for this problem. Ding et al. devel-
oped the same metaheuristic based approaches to deal
with multiobjective disassembly line balancing (Ding et al.
(2010)). The authors considered the different objectives
separately and provided a scheme to determine the Pareto
set. Tang and Zhou (Tang and Zhou (2006)) developed
a Petri net approach where a heuristic was employed to
maximize the line productivity. Qualitative and quantita-
tive comparisons of different heuristics and metaheuristics
for DLBP, including genetic algorithm, ant colony opti-
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mization method, greedy algorithm, greedy/hill-climbing,
greedy/2-opt hybrid heuristics and hunter-killer heuristic,
were undertaken in (McGovern and Gupta (2007)).
Mathematical programming formulations and exact so-
lution approaches were proposed as well for the DLBP.
Altekin et al. (Altekin et al. (2008)) developed an inte-
ger programming formulation for profit maximization for
the case of partial disassembly. Koc et al. (Koc et al.
(2009)) studied the DLBP with the objective to minimize
the number of workstations. Two exact approaches were
developed based on mixed integer and dynamic programs,
respectively.
However, only few studies in the literature have considered
the DLBP under uncertainty. Güngör and Gupta (Güngör
and Gupta (2001)) proposed a heuristic to deal with task
failures caused by defective parts of the EOL product.
The objective is the assignment of disassembly tasks to
workstations minimizing the cost of defective parts. A
MIP based predictive–reactive approach to deal with task
failures was also developed in (Altekin and Akkan (2011))
for DLBP aiming to maximize the profit generated by a
disassembly line. A collaborative ant colony algorithm for
stochastic mixed–model U–shaped disassembly line bal-
ancing was developed by Agrawal and Tiwari (Agrawal
and Tiwari (2006)). Task times were assumed stochastic
with known normal probability distributions. The objec-
tive was to minimize the number of workstations and
the probability of line stoppage. A self–guided ants meta-
heuristic was proposed in (Tripathi et al. (2009)) for the
disassembly line sequencing problem. A fuzzy disassembly
optimization model was developed with the objective of
maximizing the net revenue of the disassembly process
under uncertainty for quality of EOL products. Tuncel
et al. (Tuncel et al. (2012)) used a Monte Carlo based
reinforcement learning technique to solve the multiobjec-
tive DLBP under demand variations of the EOL products.
A nonlinear binary biobjective program was developed in
(Aydemir-Karadag and Turkbey (2013)) for disassembly
line design and balancing under uncertainty of the task
times. Disassembly task times were assumed independent
random variables with known normal probability distribu-
tions. Complete disassembly was considered and a genetic
algorithm was designed to solve the problem.
The literature review provides evidence that there are few
studies that have dealt with stochastic DLBP and were
either restricted to the study of demand fluctuations, con-
dition of the EOL products or stochastic task times as nor-
mal random variables with only heuristic/metaheuristic
solution methods without assessment of the solution qual-
ity. Many of these papers have not studied the case of
partial disassembly and have not used an AND/OR graph
to model the precedence relationships among tasks. Koc
et al. (Koc et al. (2009)) showed that the integration of
the AND/OR graphs in the DLBP formulation allowed
obtaining better solutions in comparison with the use of
AND precedence diagrams. To bridge the gap, the problem
studied in this paper seeks an assignment of a given set I,
of disassembly tasks to a fixed number of workstations
J while satisfying precedence and cycle time constraints
under uncertainty. An AND/OR graph is used to model
the precedence relations among tasks. The case of partial
disassembly is considered and the objective is to balance

the workload of the line. Task times are assumed to be ran-
dom variables with known probability distributions. Any
probability distribution can be used and can be different
from one task to another. A mathematical formulation for
the stochastic (F–DLBP) is developed and an exact solu-
tion method to solve the problem efficiently is proposed.
The algorithm combines Monte Carlo sampling technique
with the MIP optimizer of CPLEX.
The remainder of the paper is organized as follows. A for-
mulation of the stochastic F-DLBP is provided in section
2. Section 3 follows with the proposed solution method.
Section 4 is dedicated to the analysis of numerical exper-
iments and section 5 concludes the paper with a further
research direction.

2. PROBLEM MODELING

The F-DLBP consists to assign the disassembly tasks I
to a known number |J | of stations respecting precedence
and cycle time constraints under uncertainty of task times.
The objective is to balance the line by making the stations’
workloads as smooth as possible. The following assump-
tions are considered: a single type discarded product is
to be partially or completely disassembled on a straight
paced line. The EOL products are sufficiently available. All
received EOL products contain all parts with no addition
or removing of components. Task times are assumed to be
random variables with known probability distributions. A
disassembly task can be performed by any but only one
workstation. Each part of a product has a certain resale
value.
The AND/OR graph utilized here represents explicitly all
the possible alternatives to disassemble an EOL product
and models the precedence relationships among tasks and
subassemblies. An example of such a graph is illustrated in
Figure 1 which is an adaptation of the ball point pen graph
in (Lambert (1999)). An AND/OR graph is constructed
from an EOL product as follows: each subassembly is
represented by a node labeled Ak, k ∈ K, and each node
labeled Bi, i ∈ I, models a disassembly task. Two types of
arcs define the precedence relations among subassemblies
and disassembly tasks: AND and OR. As an example, if
a disassembly task generates two subassemblies, or more,
then, it is related to these subassemblies by AND–type
arcs, in bold in Figure 1. If several concurrent tasks may
be performed on a subassembly, this latter is related to
these tasks by OR–type arcs. For simplicity of the prece-
dence graph, subassemblies with one component are not
represented. A sink node S is introduced and linked with
dashed arcs to all disassembly tasks. The use of the dummy
task S allows a partial disassembly; if S is assigned to a

Fig. 1. And/Or precedence graph
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workstation, the disassembly process is finished (partial or
complete disassembly).
As mentioned earlier, task times t̃i, i ∈ I, are assumed to
be random variables with known probability distributions.
Let t̃i = ti(ξ̃), i ∈ I, where ξ̃ = (t̃1, . . . , t̃|I|) ∈ Ξ ⊂ R|I|+ is
a random vector of the task times and Ξ is a set of a given
probability space (Ξ,F , P ) introduced by ξ̃.The following
stochastic program (F–SBP) has been developed for the
stochastic F–DLBP.

Stochastic Binary Program

Parameters
CT : Cycle time, CT > 0;
Pk: Predecessors index set of Ak, k ∈ K,

i.e. Pk = {i| Bi precedes Ak};
Sk: Successors index set of Ak, k ∈ K,

Sk = {i| Ak precedes Bi}.

Decision Variables

xij =


1, if disassembly task Bi is assigned

to workstation j;
0, otherwise.

xSj =


1, if dummy task S is assigned

to workstation j;
0, otherwise.

Recall that the objective is to make the differences of work-
stations’ workloads as small as possible under uncertainty
of task times. Let STj(ξ̃) =

∑
i∈I ti(ξ̃) · xij , be the station

workload of workstation j,∀j ∈ J .

F–SBP
min max

∀j,j′∈J,j 6=j′

∣∣∣Eξ̃(STj(ξ̃))− Eξ̃
(
STj′(ξ̃)

)∣∣∣ (F–SBP)

s.t.∑
i∈S0

∑
j∈J

xij = 1 (1)∑
j∈J

xij 6 1,∀i ∈ I (2)∑
i∈Sk

∑
j∈J

xij 6
∑
i∈Pk

∑
j∈J

xij ,∀k ∈ K\{0} (3)

∑
i∈Sk

xiv 6
∑
i∈Pk

v∑
j=1

xij ,∀k ∈ K\{0},∀v ∈ J (4)∑
j∈J

xSj = 1 (5)∑
j∈J

j · xij 6
∑
j∈J

j · xSj ,∀i ∈ I (6)

Eξ̃
(
STj(ξ̃)

)
6 CT,∀j ∈ J (7)

xij , xSj ∈ {0, 1},∀i ∈ I, ∀j ∈ J (8)

Constraint (1) imposes the selection of only one disassem-
bly task to begin the disassembly process. Constraint set
(2) indicates that a task is to be assigned to at most
one workstation. Constraints (3) ensure that only one
OR-successor is selected. Constraint set (4) defines the
precedence relationships among tasks. Constraint (5) im-
poses the assignment of the dummy task S to one station.

Constraints (6) ensure the assignment of all disassembly
tasks to lower or equal-indexed workstations than the one
to which S is assigned. Constraints (7) represent the cycle
time ones. Constraints (8) defines the possible values of
the decision variables.

3. SOLUTION METHOD

Let x be a vector of decision variables xij , xSj , (i, j) ∈ I×J ,
X = {x| constraints (1)–(8), are satisfied} and

Ωjj′ = Eξ̃
(
STj(ξ̃)

)
− Eξ̃

(
STj′(ξ̃)

)
,∀j, j′ ∈ J, j 6= j′

The program (DF–SBP) given below represents an equiv-
alent version of program (F–SBP).
min Z (DF–SBP)
s.t.
x ∈ X
− Z 6 Ωjj′ 6 Z,∀j, j′ ∈ J, j 6= j′ (9)
Z > 0

Constraint (9) can be replaced with its equivalent
ejj′ + Ωjj′ = Z,∀j, j′ ∈ J, j 6= j′

0 6 ejj′ 6 2Z,∀j, j′ ∈ J, j 6= j′

Consider the random variable

STλj (ξ̃) = 1
λ
·
`=λ∑
`=1

STj(ξ̃`), j ∈ J

then STλj (ξ̃) is an unbiased estimator of Eξ̃
(
STj(ξ̃)

)
, j ∈

J :

Eξ̃
(
STλj (ξ̃)

)
= Eξ̃

( 1
λ

`=λ∑
`=1

STj(ξ̃`)
)

= 1
λ
·
`=λ∑
`=1

Eξ̃
(
STj(ξ̃`)

)
= Eξ̃

(
STj(ξ̃)

)
, j ∈ J

Using the strong law of large numbers (DeGroot and
Schervish (2012)), it follows that

P

(
lim

λ→+∞
STλj (ξ̃) = Eξ̃

(
STj(ξ̃)

)
, j ∈ J

)
= 1

This law states that STλj (ξ̃), j ∈ J , converges almost
surely to the expected value Eξ̃

(
STj(ξ̃)

)
, j ∈ J . Using

a λ–sample (ξ1, . . . , ξ|j|) of the random vector ξ̃, the
expectation Eξ̃

(
STj(ξ̃)

)
, j ∈ J , is then approximated with

its Monte Carlo estimate 1
λ ·
∑`=λ
`=1 STj(ξ`), j ∈ J , (Mak

et al. (1999)).

4. NUMERICAL EXPERIMENTS

The developed (DF–SBP) was implemented in MS
VC++ 2008 and CPLEX 12.5 was used to solve it on a PC
with Pentium(R) Dual–Core CPU T4500, 2.30 GHz and
3GB RAM. This optimization problem has been applied
to 6 instances available in the literature which contain
process alternatives for disassembly. The names of the
problem instances were respectively composed of the first
letters of authors’ names and year of publication, i.e.
BBD13 (Bentaha et al. (2013b)), BBD13a (Bentaha et al.
(2013a)), KSE09 (Koc et al. (2009)), L99a and L99b from
(Lambert (1999)) and MJKL11 from (Ma et al. (2011)).

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3524



Table 1. Problem instances.

|I| |K| arcs AND–relations |J | CT0 1 2
MJKL11 37 22 76 4 27 6 3 35
L99a 30 18 60 2 26 2 3 30
BBD13a 25 11 49 4 18 3 2 91
KSE09 23 13 47 4 14 5 2 20
L99b 20 13 41 5 9 6 3 5.5
BBD13 10 5 18 3 6 1 2 0.51

The input data for each problem instance are given in
Table 1. The columns ‘AND–relations’ report the number
of disassembly tasks with no successor in subcolumn 0,
with one AND–type arc in subcolumn 1 and with two
AND–type arcs in subcolumn 2. The column ‘arcs’ gives
the total number of AND–type and OR–type arcs.
Table 2 reports the results obtained for the processed

Table 2. Results of the optimization.

Ma
x IT

Mi
n IT

o–
tas
ks

s–t
ask

s

CP
U
tim

e

MJKL11 5.08 4.83 7 5 0.05
L99a 5.12 4.98 9 6 0.02
BBD13b 10.96 10.40 4 2 0.02
KSE09 4.960 4.957 6 5 0.03
L99b 1.53 1.48 8 5 0.05
BBD12 0.299 0.299 3 2 0.02

instances. Columns ‘MaxIT’, ‘MinIT’, ‘o–tasks’, ‘s–task’
and ‘CPU–time report the maximum idle time of all work-
stations, the minimum idle time, the original number of
tasks of the selected disassembly alternative, the number of
selected tasks of the selected alternative and the resolution
time in seconds, respectively. The value of λ was fixed to
1000.
As it can be noted, results of Table 2 show that all selected
disassembly alternatives lead to a partial disassembly of
EOL products. All instances were solved to optimality in
less than 1 second.

5. CONCLUSION

In the present work, the problem of disassembly line
balancing with a fixed number of workstations was studied.
The cases of partial disassembly and uncertainty of task
times are taken into account. Disassembly task times were
assumed to be random variables with known probability
distributions. To model the addressed stochastic F-DLBP,
a stochastic binary program (F–SBP) was proposed. The
developed mathematical model was evaluated on a set of
instances from the literature. The obtained results were
promising and have shown its applicability. All instances
were solved to optimality in less than 1 second.
For further research, a direction to investigate is the
implementation of the developed model for real life cases
in order to assess its performance in practice.
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