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Abstract: In this paper we consider the filter design problem for very high dimensional systems.
Assuming the hypothesis on separability of the vertical and horizontal structure for the error
covariance, the number of unknown elements in the error covariance is reduced drastically and
are estimated from generated error samples. A low-cost filtering algorithm is thus determined
and parameterized up to some pertinent gain coefficients to be tuned to optimize the filter
performance. Results from the experiment on assimilation of the sea surface height (SSH) into an
oceanic numerical model demonstrate the high effectiveness of the proposed filtering approach.
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1. INTRODUCTION

Partial Differential Equations (PDEs) are used practically
in all scientific areas, from financial markets to mathe-
matical biology ... not to say on the well-known domains
like quantum mechanics, electrodynamics, oceanography
and meteorology ... As a mathematical model is only a
simplification or abstraction of a (complex) real world, the
measurements (observations) constitute the most impor-
tant source of information which should be used promptly
in order to improve the model solution for practical prob-
lems. This task can be excellently accomplished by filtering
algorithms.

This paper addresses the problem with the design of an
efficient filtering algorithm for very high dimensional sys-
tems at a moderately low cost. High dimensional systems
we mean here are that resulting from a set of PDEs. In
such systems or numerical models, a typical dimension of
the system state is of order 106 − 108. As to observations,
a typical dimension of the 2d image vector is 104 − 105.

Various approaches have been pursued to overcome the
difficulties associated with very high dimensionality of
the dynamical systems. This includes the methods such
as Optimal Interpolation (OI) Cooper et al. [1996] and
statistical interpolation (Kriging; Stein [1999]); variational
3D-Var and 4D-Var Talagrand et al [1987]; Reduced-order
adaptive filter Hoang et al [1997]; Kalman filter and its
variants like reduced rank and ensemble Kalman filters
(EnKF) Evensen [2003]; and computationally more de-
manding methodologies such as Sequential Monte Carlo
(SMC), Particle Filters (PF) Doucet et al. [2000] ... Gen-
erally speaking there are two principal classes of meth-
ods used so far for solving data assimilation problems
: sequential (filtering, or real-time assimilation systems)

and non-sequential (or retrospective assimilation) where
observation from the future can be used. For a review
of data assimilation methods, see Ghil et al [1991]. The
filtering algorithm developed in this paper is based essen-
tially on the work Hoang et al [1997], with a more detailed
assumption on the structure of the ECM (Section 2) and
a new formulation of the optimization problem for seeking
unknown parameters in the proposed structure (Section
3). The resulting structure of the filter gain is obtained
in Section 4. The experiment on data assimilation in very
high dimensional systems is presented in Section 5, prin-
cipally with the ocean model MICOM. We want to stress
that throughout the paper, the algorithms of simultane-
ous perturbation stochastic approximation (SPSA) Spall
[2000] will be used to estimate the unknown parameters
in the ECM as well as to optimize the filter performance
(adaptive filter - AF). The efficiency of the SPSA for
optimization problems in the filter design has been demon-
strated in Hoang et al [2011b]. The conclusions are given
in Section 6.

2. PROBLEM FORMULATION

Consider the standard filtering problem for the partially
observed process [x(k), z(k)],

x(k + 1) = Φx(k) + w(k), k = 0, 1, 2, ... (1)

z(k + 1) = Hx(k + 1) + ǫ(k + 1), k = 0, 1, 2, ... (2)

here x(k) is the n-dimensional system state at the time
instant k, z(k) is the p-dimensional observation vector.
We assume w(k), ǫ(k) are uncorrelated sequences of zero
mean and time-invariant covariance Q and R respectively.
Mention that the system (1) is considered as a state-space
representation of the numerical model derived from a set
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of PDEs discretized at some spatial grid. Let the state x(k)
be estimated by the filter

x̂(k + 1) = x̂(k + 1/k) +K(k + 1)ζ(k + 1),

x̂(k + 1/k) = Φx̂(k), (3)

where ζ(k+1) = z(k+1)−Hx̂(k+1/k) is the innovation
vector, x̂(k+1) is the filtered (or analysis) estimate, x̂(k+
1/k) is the prediction for x(k + 1). From the Kalman
filtering theory Kalman [1960], the optimal gain K(k+ 1)
is given in the form

K(k + 1) = M(k + 1)HT [HM(k + 1)HT +R]−1 (4)

where M(k + 1) is the ECM for the prediction error (PE)
ep(k + 1) := x̂(k + 1/k) − x(k + 1) (will be denoted as
PECM). The algorithm for computing M(k + 1) is given
by the Kalman filter (KF). For the system with the state of
dimension of order 106 − 107, it is impossible to apply the
KF since the matrix M(k) is composed from 1012 − 1014

elements. The sub-optimal filtering problem is stated as
follows: given the class EM (θ) of matrices M(θ) known up
to the vector of parameters θ, find an optimal θo which
minimizes

J(θ) = E[||M(θ)−Md||
2
F ] → minθ (5)

where E(.) denotes mathematical expectation, ||.||F is the
Frobenius matrix norm, Md is a given ”data” matrix (to
be specified later).

2.1 On the matrix Md

If the true M(k) is known, the best way is to put Md :=
M(k). However, as M(k) is impossible to compute, we
propose to obtain its samples Mk[nu] from the set of PE
samples Sk[nu] which consists of generated approximations
of nu leading real Schur vectors of the system dynamics
Φ. These samples are obtained by applying the sampling
procedure (SP) in Hoang et al [2011a] : At each time
instant k we integrate nu+1 times the dynamical system,
one from the state x(k) and nu from the perturbed states
x(k) + δxl(k), l = 1, ..., nu. This produces a set of nu

perturbations,

Sk+1[nu] := [s1(k + 1), ..., snu
(k + 1)] (6)

which are orthogonalized and used next to generate a new
set of perturbations ...

2.2 Structure for M(θ)

Suppose the solution of numerical model is a space-time
stochastic process x(k, s) where k represents a time instant
tk, s ∈ Rd, d ≥ 1. For d = 3, s = (i, j, l), (i, j) denotes a
horizontal grid point and l - vertical coordinate. Let M ∈
Rn×n be the ECM, i.e. M = M(s, s′). We will assume that
the ECM M has a separable vertical-horizontal structure
(SeVHS),

M(s, s′) = Mv(sv, s
′

v)⊗Mh(sh, s
′

h), sv := l, sh := (i, j),

(7)

where ⊗ denotes the Kronecker product on two matrices,

Mv(sv, s
′

v)⊗Mh(sh, s
′

h) = M(i, j, l; i′, j′, l′) =






mv(1, 1)Mh mv(1, 2)Mh ... mv(1, nv)Mh

mv(2, 1)Mh mv(2, 2)Mh ... mv(2, nv)Mh

... ... ... ...
mv(nv, 1)Mh mv(nv, 2)Mh ... mv(nv, nv)Mh






(8)

3. ESTIMATION OF PARAMETERS IN MV AND MH

3.1 Parametrized ECM

For the given Md, our task is to determine two matrices
Mv and Mh from (7) to minimize (5), where M(s, s′) :=
Mθ(s, s

′) with Mv(θ) and Mh(θ) depending on the vector
of unknown parameters θ. We have thus to find the best
separable (Kronecker product) approximation for Md.

Remember that the closely related nearest Kronecker
product problem (NKP) is formulated in Golub [1996] (p.
712) as follows: Suppose that A ∈ Rm×n,m = m1m2, n =
n1n2. The KNP involves minimizing

φ(B,C) = ||A−B ⊗ C||F

where B ∈ Rm1×n1 , C ∈ Rm2×n2 . The solution to this
problem has been presented from a linear algebraic point
of view in Golub [1996] using singular value decomposition
of a permuted version of A and requires to rearranging A
into another matrix AR ∈ Rm1n1×m2n2 such that the sum
of squares that arise in ||A−B⊗C||F is exactly the same
as the sum of squares that arise in ||AR−vec(B)vec(C))||F
where vec(X) is the vector representation for the matrix
X, i.e. vec(X) is obtained by stacking the columns of X
on top of each other.

In what follows we present a new simple algorithm for esti-
mating the parameters in Mv and Mh. This new algorithm
minimizes E(||.||2F ) - the mean of the square of ||.||F (see
(5)) subject to unknown parameters of Mv and Mh. This
results in linear equations for the unknown elements of Mv

and the formulas for computing these unknowns follow im-
mediately. As to the matrix Mh, a parametrized structure
shall be introduced. Mention that separable covariance
models are a common way to model spatial covariances :
the joint vertical-horizontal covariance is factored into the
product of covariance functions each of which depends only
on vertical or horizontal coordinates (Daley [1991], Section
4.3). In many works (for example, Simonovski et al [2004]),
the unknown parameters inMh are estimated directly from
the set of 2d PE samples.

Return to Eq. (8). Today, in meteorology and oceanog-
raphy usually the number of vertical layers nv < 100. It
is therefore possible to estimate all the elements ckm :=
mv(k,m) of the matrix Mv without assuming hypothe-
ses like homogeneity or isotropy for the vertical error
covariances. As to Mh, we will assume that it is ana-
lytically well determined up to some vector of unknown
parameters. For example, the ECM Mh can be assumed
to have the structure like a Gaussian, first-order (second-
order) auto-regressive models (FOAR, SOAR)... In what
follows, for illustration purpose, let Mh be represented
in the form Mh = DChD with Ch - correlation matrix,
D = diag(σ1, ..., σnv

), σ2
sh

is the error variance at the point
sh. We shall assume two following FOAR structures for Ch,

Ch(sh, s
′

h) = exp[−d/Ld], d = d(sh, s
′

h) (9)
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Ch(sh, s
′

h) = exp[−(dx/Lx + dy/Ly)], (10)

where d = d(i, j; i′j′) =
√

(i− i′)2 + (j − j′)2, dx = |i −
i′|, dy = |j − j′|, Ld has the meaning of correlation length
(Lx and Ly are correlation lengths in x- and y-direction).
Thus for the model (8),(9) the vector of parameters θ have
(nv+1)nv

2 +1 parameters to be estimated. As to the model

(8),(10), this number is equal to (nv+1)nv

2 + 2.

3.2 Parameter estimation

Suppose we are given the ensemble of PE samples Sk[nu]
(see (6)) which are obtained by applying the Sampling
Procedure (Samp-Proc) in Hoang et al [2011a]. Let the

ECM M(k) in (4) be estimated from Sk[nu] as M̂(k),

M̂(k) =
1

k′

k
∑

k′=1

Mk′ ,Mk′ :=
1

nu

Sk′ [nu]S
T
k′ [nu] (11)

For the problem (8)-(9), define the vector of unknown
parameters as

θ := (c11, ..., c1nv
, c21, ..., c2nv

, cnv1, ..., cnvnv
, Ld)

T . (12)

where clm := mv(l,m) (see (8)).

ConsideringMk′ as a sample for the ECMM(k), introduce
the optimization problem for determining the vector θ,

J [θ] = E[Ψ(M(k), θ)] → minθ,

Ψ(M(k), θ)] := ||M(k)−Mv(sv, s
′

v)⊗Mh(sh, s
′

h)||
2
F ,(13)

Comment 3.1. Compared to the original NKP described
above, the optimization problem (13) is different in the
sense that it is aimed at minimizing the mean squared of
the Frobenius norm of the difference between the sample
Mk and Kronecker product of two matrices Mv(sv, s

′

v) and
Mh(sh, s

′

h).

1) Estimation of the vertical covariance matrix Mv

Using a SPSA algorithm Spall [2000], the optimal param-
eters clm can be approached asymptotically by

clm(k + 1) = clm(k)− γ(k + 1)∇clm(k)Ψ[Mk, θ(k)],

∇clm(k)Ψ[Mk, θ(k)] =

1

nu

nu
∑

l=1

∑

i,j;i′,j′

[δxl
p(i, j, l)δx

l
p(i

′, j′,m)−

clm(k)exp[−
d

Ld(k)
]]exp[−

d

Ld(k)
](14)

where {γ(k)} is a scalar sequence ensuring a convergence
of {clm(k)} Spall [2000]. A more quick convergence for
{clm(k)} can be obtained by writing out the cost function
(13) in terms of the time average of PE samples

J [θ] = E[Ψ(Mk, θ)] ≈ Jk[θ] =
1

k

k
∑

k′=1

Ψ(Mk′ , θ) (15)

Without loss of generality, let nu = 1. Taking a derivative
of Jt with respect to clm implies the system of equations

∇clmJk = 0, l = 1, ..., nv,m = 1, ..., nv (16)

and the solution clm is given by

Theorem 3.1. Consider the optimization problem (13)
under the conditions (8)-(9). Then for a given Ld = Ld(k),
the elements clm(k) of the vertical covariance matrix Mv

which solve the system of equations (15), are defined
uniquely by

clm(k) =
ālm(k)

b̄(k)
, ālm(k) =

1

k

k
∑

τ=1

alm(τ) =

ālm(k − 1) +
1

k
[alm(k)− ālm(k − 1)],

b̄(k) =
1

k

t
∑

τ=1

b(τ) = b̄(k − 1) +
1

k
[b(k)− b̄(k − 1)],

alm(τ) :=
∑

i,j;i′j′

δx1
p(i, j, k; τ)δx

1
p(i

′, j′, k′; τ)exp[−
d

Ld

],

b(τ) :=
∑

i,j;i′j′

exp[−2
d

Ld

]

(17)

Comment 3.2. The elements clm(k), determined by The-
orem 3.1, can be thus computed recursively as that given
by (14).

Comment 3.3. For simplicity Theorem 3.1 is proved sub-
ject to the horizontal covariance function (9). The proof
remains identical, with minor modifications, subject to
other correlation functions.

2) Estimation of correlation length Ld.

Taking a derivative of J in (13) with respect to the
correlation length Ld leads to ∇Ld

J [θ] = 0 from which,
similarly to (14), the recursive equation for estimating the
correlation length can be obtained.

4. STRUCTURE OF FILTER GAIN

It is interesting to see how looks the filter gain when
the ECM has a SeVHS. Introduce the notations: at
the instant k, let x(i, j, l) be the value of the system
state defined at the grid points (i, j, l). Let vec(x) =
(vec(x)T1 , vec(x)

T
2 , ..., vec(x)

T
nv
)T be a vector representa-

tion for x where vec(x)l is a vector whose components are
the values of x at all the horizontal grid points (ordered
in some way) at the lth- vertical layer.

Consider the ECM (8) and the observation equation (2).
Represent the observation matrix H in a block-matrix
form

H = [H1, ..., Hnv
] (18)

which corresponds to the vector representation vec(x), i.e.

Hvec(x) =
∑nv

ν=1 Hνvec(x)ν

Compute the gain according to (4). We have

M(k)HT = Mv ⊗MhH
T = [ΣT

1 , ...,Σ
T
nv
]T ,
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Σl = Mh

nv
∑

k=1

clkH
T
k = MhGv,l,

M(k)HT = MdGv,Md = block diag[Mh, ...,Mh],

Gv = [GT
v,1, ..., G

T
v,nv

]T , Gv,l :=

nv
∑

k=1

clkH
T
k ,

Σ := HM(k)HT +R =

nv
∑

k=1,l=1

clkHlMhH
T
k +R,

(19)

This result is formulated in

Theorem 4.1. Suppose that the ECM has a SeVHS (7)-
(8). Then the filter gain (4) has the following form

K = MdKv,Kv = [KT
v,1, ...,K

T
v,nv

]T = GvΣ
−1,

Kv,l = Gv,lΣ
−1, l = 1, ..., nv, (20)

where Gv,l,Σ are defined by (19).

In particular when Hl are identical for all l we have

Corollary 4.1. Consider the situation in Theorem 4.1 and
suppose that Hl = Hc, ∀l = 1, ..., nv, Hc is some constant
matrix. Then the filter gain (4) has the structure (20)
subject to

K = Kv ⊗Kh,

Kv := [Kv,1, ...,Kv,nv
]T ,Kv,l = γl,

Kh = MhH
T
c Σ

−1
h ,Σh := HcMhH

T
c +Rc,

γl :=

∑nv

k=1 clk
σc

, Rc =
R

σc

, σc =

nv
∑

k=1,l=1

clk. (21)

Comment 4.1. As σc is independent on vertical layers, from
Corollary 4.1 it follows that the gain K has a SeVHS too.
The gain (19) is a particular form of the reduced-order
gain postulated in Hoang et al [1997]

K = PrKe (22)

subject to Pr := Kv ⊗ Ip,Ke := Kh.

Comment 4.2. The gain (21) is obtained in Hoang et al
[2001] directly from the assumption (21). In general the
assumption (21) can be considered as an induced approx-
imation for the gain structure.

5. EXPERIMENT WITH OCEANIC MICOM MODEL

5.1 MICOM model

The MICOM model used in this experiment is exactly
as that presented in Hoang et al [2011a]. We recall only
that the model configuration is a domain situated in the
North Atlantic from 300 N to 600 N and 800 W to 440

W. The grid spacing is about 0.20 in longitude and in
latitude, requiring the horizontal mesh i = 1, ..., 140; j =
1, ..., 180. The distance between two points ∆x = xi+1 −

xi ≈ 20km, ∆y = yj+1 − yj ≈ 20km. The number
of layers in the model nv = 4. We note that the state
of the model x := (h, u, v) where h = h(i, j, l) is the
thickness of lth layer, u = u(i, j, l), v = v(i, j, l) are two
velocity components. The ”true” ocean is simulated by
running the model from ”climatology” during two years.
Each ten days the sea surface height (SSH) are stored at
the grid points io = 1, 10, 20, ..., 140; jo = 1, 10, 20, ..., 180
which are considered as observations in the assimilation
experiment. The sequence of true states will be available
and allows us to compute the estimation errors. Thus
the observation operator H is constant at all assimilation
instants.

The assimilation experiment consists of using the SSH to
correct the model solution, which is initialized by some
arbitrarily chosen state resulting from the control run.

5.2 Different filters

The different filters will be implemented to solve this as-
similation problem. First the filter PEF will be constructed
whose PECM is obtained on the basis of (11) and Theorem
3.1. Parallelly two other filters, one is a Cooper-Haines
filter (CHF) Cooper et al. [1996] and another is an EnOI
(Ensemble based Optimal Interpolation) filter Greenslade
et al [2005] will be constructed too. These well known fil-
ters will serve as references to compare their performances
with that of the PEF.

We assume that the covariance has a SeVHS structure.
The horizontal covariance function (9) will be used in the

designed filters. Here d =
√

(i− i′)2 + (j − j′)2, sh(i, j) :=
(xi, yj), s

′

h(i
′, j′) := (x′

i, y
′

j) and (i, j) is denoted as the
(xi, yj) grid point. Thus the correlation length is expressed
in term of the number of grid points.

Mention that the CHF applies a vertical rearrangement of
water parcels (see also Hoang et al [2011a]). The method
conserves the water masses and maintains geostrophy. The
main difference between PEF and EnOI is lying in the way
to generate the ensembles of PE samples for simulating the
PE realizations. In the PEF, the ensemble of PE samples is
generated using the Samp-Proc (and it will be denoted as
En(PEF )). As for the EnOI, the ensemble of background
errors samples (the term used in Greenslade et al [2005]
and will be denoted by En(EnOI)) will be used. The
elements of En(EnOI) are constructed according to the
method in Greenslade et al [2005]. It consists of using
2-year mean of true states as the background field and
the error samples are calculated as differences between
individual 10-day true states during this period and the
background. Based on these two ensembles of PE samples,
the vertical gain coefficients Kv,l, l = 1, ..., 4 and length
scales for two filters PEF and EnOI are computed as
described in Section 3.2.

Fig. 1 shows the estimated coefficients Kpef
v,l , l = 1, ..., 4

obtained on the basis of En(PEF ). It is seen that the
estimates converge quite quickly. The estimated gain coef-
ficients based on two ensembles En(PEF ), En(EnOI) at
the iteration t = 72 are
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Fig. 1. Vertical gain coefficients obtained during applica-
tion of the Samp-Proc for layer thickness correction

Kpef
v,l = [144.594,−29.532,−34.439,−80.120]T

Kenoi
v,l = [34.047,−7.532,−3.305,−22.210]T (23)

The reason for the choice k = 72 is that in practice
the ensemble En(EnOI) has only a limited number of
samples and for the comparison purpose we want to use
two ensembles of the same number of samples. We remark
that all the gain coeffcients in two filters are of identical
sign but the elements ofKenoi

v,l are of much less magnitudes

than that of Kpef
v,l ,

Two gains in (23) will be used in the two filters PEF and
EnOI to assimilate the observations.

As to the correlation length, Fig. 2 displays its esti-
mates obtained on the basis of two ensembles En(PEF )
and En(EnOI). The values produced at the iteration
k = 72 for each ensemble will be taken as correlation
lengths in two filters PEF and EnOI. The correlation
length in the CHF is assigned the value Ld(CHF ) = 20
which is the guess value in the procedures for estimating
Ld(PEF ), Ld(EnOI). The gain coeffficient for CHF is
taken from Hoang et al [2011a] and is equal to

Kchf
v,l = [185.965, 0, 0,−184.964]T (24)

5.3 Numerical results

In Fig. 3 we show the instantaneous variances of the SSH
innovation produced by three filters EnOI, CHF and PEF.
It is seen that initialized by the same initial state, if the
innovation variances in EnOI, CHF have a tendency to
increase, this error remains stable for the PEF during
all assimilation period. At the end of assimilation, the
PE in the CHF is more than two times greater than
that produced by the PEF. The EnOI has produced very
poor estimates, with error about two times greater than
the CHF has done. For the velocity estimates, the same
tendency is observed as seen from Fig. 4 for the surface
velocity PE errors. These results prove that statistically
the members from En(PEF ) much better represent the
PE compared to the samples taken from En(EnOI).

Using the second-order SPSA algorithm, we have adjusted
the parameters in the filter gain to minimize the mean

 16
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 0  10  20  30  40  50  60  70

EnOI
PEF

Fig. 2. Length scales estimated on the basis of two en-
sembles of simulated PE samples En(EnOI) and
En(PEF ).
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Fig. 3. Performance comparison of EnOI, CHF and PEF :
Variance of SSH innovation resulting from the filters
EnOI, CHF and PEF

variance of innovation vector. The gain parameterization
is done exactly as described in Hoang Hoang et al [2012] by
changing variables from layer thickness to layer interface
variables. For a four layer model, by desiring the filter to
produce its output to be matched with the observation
(the observations are noise-free), the first coefficient is
kept unchanged α = 1 and the other three parameters
αk, k = 2, 3, 4 are adjusted. The variances of innovation in
the CHF and its adaptive version (ACHF) are displayed
in Fig. 5 (the curves CHF and ACHF). It is seen that
adaptation allows to stabilize the ACHF and improve
considerably its performance: the ACHF has produced
almost the same error level as that obtained by the PEF. In
the same manner, the adaptation allows to reduce sensibly
the estimation error in the PEF and EnOI.
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Fig. 4. The prediction error variance of the u velocity
component at the surface (cm/s) resulting from the
EnOI, CHF and PEF

.
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Fig. 5. Variance of SSH innovation resulting from CHF
and its adaptive version (AOI)

6. CONCLUSIONS

We have presented a design procedure for a low-cost filter
that produces the state estimate in very high dimensional
systems. While the construction of a filter gain based on
unstable eigenvectors (EVs) or Schur vectors (ScVs) sys-
tem dynamics constitutes a solid theoretical background
and allows to reduce enormous computational and memory
requirements, its implementation is possible today only for
systems with a moderate number of unstable eigenvalues
(order about O(100)). Otherwise, seeking directly the cor-
rection in the subspace of all unstable EVs or ScVs is still
practically unrealizable.

To work with systems independently on their dimensions,
the SeVHS hypothesis on ECM structure has been intro-
duced. The objective is twofold. Firstly it allows to ensure
a positive definiteness of the ECM whereas involving an
insufficient number of samples to approximate the ECM
leads to its rank deficiency and to poor estimation results.
Secondly, this hypothesis allows to parametrize the ECM
by a very few number of unknown parameters to be esti-
mated.

The effectiveness of the algorithm has been verified by
numerical experiment on a high dimensional oceanic model
MICOM.
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